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ON PRIME ELEMENTS IN COMMUTATIVE DOMAINS

Boris Širola

To Marko, with respect and admiration

Abstract. We present some results concerning prime elements in in-
tegral domains. In particular we deal with the following question: Does
every order in an algebraic number field has infinitely many prime ele-
ments? Then we show that for real quadratic fields the answer to that
question is positive. We also give certain partial results and examples
about prime polynomials in two or more variables with coefficients from
arbitrary integral domain.

Introduction

Recall that a commutative ring with identity is called an integral domain if
the product of any two nonzero elements is nonzero. Given an integral domain
A it is interesting to understand the set IrrA of all irreducible elements in A,
and in particular its subset PrA of all prime elements in A. (Note here that
if A is moreover a UFD, then PrA = IrrA; see Proposition 1.6.) In general
it might be considerably more difficult, and in fact more interesting, to see if
a given element of A is prime than if it is irreducible.

There are not many statements about prime elements, and there are not
many examples of prime elements in rings that are not UFDs, in the existing
literature. Also those results and examples that are known are scattered
throughout various books and papers. The purpose of this work is to present a
contribution to the current knowledge. In particular suppose K is an algebraic
number field and let OK be its ring of integers. Recall that a subring R ≤ OK
is called an order in K if the index (OK : R) is finite, for R considered as
a subgroup of the additive group (OK,+). In particular, OK is called the
maximal order. As a well known fact we have that an order is a Noetherian
integral domain in which every nonzero prime ideal is moreover maximal; see,
e.g., [11, Ch. I, (12.2) Prop.]. Further, an order R ̸= OK is not integrally
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closed in K, and thus such R is not a UFD; see, e.g., [7, Ex. 6 for Ch. II, p.
337]. Therefore the orders are good candidates for exploring the sets of their
prime elements.

The theorem given below illustrates one of the principal aims of our paper.
In order to state it first recall the following. Assume K|F is a finite field
extension. For any x ∈ K define an (F-linear) map fx : K → K, fx(y) = xy.
Then define a norm map

NK|F : K→ F, NK|F(x) = det fx.

Clearly, the map N = NK|F is totally multiplicative; i.e., for x, y ∈ K we have
N(xy) = N(x)N(y). Now we are ready to state our result.

Theorem 0.1. Let K be an algebraic number field. Suppose R is an
order in K and π ∈ R is an element such that |NK|Q(π)| = p, for some prime
number p ∈ N. Then π is a prime element of R. Also if ρ ∈ R is such
that |NK|Q(ρ)| = m, where m is a composite number which is not of the form
m = pk for some prime number p ∈ N and k ≥ 1, then ρ is not a prime
element of R.

For a quadratic field K and R = OK, the conclusion that under the given
assumptions the element π is irreducible is well known, and easy to show; see
[12, Thm. 9.24], and Lemma 2.1(iii) below. Thus our result strengthen the
later one.

The paper is organized as follows. Section 1 is preparatory. There we first
introduce our notation and recall some terminology and certain well known
results that will be needed in what follows. Also we prove some results that
might be essentially known, but we are not aware of any appropriate reference;
see Lemma 1.4, Proposition 1.6 and Corollary 1.7. In Section 2 we prove the
above theorem. There we also deal with the question asking whether any order
R in an algebraic number field K has infinitely many prime elements. As one
might expect, this question is closely related to the problem of solvability for
certain special Diophantine equations; and so it is likely that it would not be
easy to answer the posed question in general. At the same time as a relatively
simple fact we note that for real quadratic fields the answer to the later
question is positive; see Corollary 2.6. As one more interesting observation
in Proposition 2.10 we show that there are infinitely many numbers d = pq,
where p, q ∈ N are different primes satisfying p ≡ 5 (mod 8) and q ≡ 1, 3
(mod 4), so that the ring of integers OK of the quadratic field K = Q(

√
d) is

not a UFD; i.e., it is not a PID. Given some interesting integral domain A it
is a standard problem to understand whether particular polynomials in two
or more variables, with coefficients from A, are irreducible or not. A number
of the corresponding results are known, in particular when A is moreover a
field; see, e.g., [10]. In Section 3 we present some basic results and examples
where for arbitrary integral domain A we deduce that certain A-polynomials
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are prime elements of the corresponding polynomial ring. As the central result
there we have Proposition 3.4.

1. Some basic results

In what follows every ring we consider is commutative and with identity.
Given a ring A, by A× we denote the set of its nonzero elements and by A∗

the group of its invertible elements (i.e., units). For any positive integer n
by A[X] = A[X1, . . . , Xn] we denote the ring of A-polynomials in variables
X1, . . . , Xn. Recall that a nonzero polynomial f ∈ A[X] is reducible if f ̸∈
A[X]∗ and f can be written as a product f = gh, for some non-invertible
polynomials g, h ∈ A[X]. Otherwise we say that f is irreducible. As it is
customary, a unique factorization domain will be abbreviated as UFD and a
principal ideal domain as PID.

It is well known that the above notions of polynomial (ir)reducibility can
be generalized. For the convenience of the reader we recall some terminology,
and introduce the corresponding notation. For all the unexplained terminol-
ogy and notation, or proofs of some known results, see for example [8], [9] or
[13]. Given a ring A, elements x, y ∈ A are associates if there is some u ∈ A∗

such that x = uy. We write x ∼ y if x and y are associates. Then ∼ is an
equivalence relation on A. For any x ∈ A define [x] to be the corresponding
class in the quotient set A/ ∼. An element c ∈ A× is irreducible in A if
c ̸∈ A∗ and the following holds: If c = ab for some a, b ∈ A, then either
a ∈ A∗ or b ∈ A∗. By IrrA we denote the set of all irreducible elements in A.
Further for two elements x, y ∈ A, by x|y we denote the fact that x divides y.
An element p ∈ A× is prime in A if p ̸∈ A∗ and the following holds: If p|ab
for some a, b ∈ A, then p|a or p|b. By PrA we denote the set of all prime
elements in A.

Observe that the notions of an irreducible element and prime element are
strictly related to the ring under consideration. More precisely, we can have
two rings A ⊆ B and an element c ∈ A which is irreducible (resp. prime) in
A, but the same does not hold in B. On the other hand we can have c ∈ A
such that c is irreducible (resp. prime) as an element of B, but it is not the
same true for A. Related to this observation it might be convenient to state
the following simple result; cf. Corollary 1.7 given below.

Proposition 1.1. Let A be an integral domain and m < n positive
integers. Define R0 = A, the ring of polynomials Rm = A[X1, . . . , Xm]
and analogously Rn. Also define R∞ = A[X1, X2, . . .], the ring of A-
polynomials in infinitely many variables. We consider the chain of subrings
A ≤ Rm ≤ Rn ≤ R∞, in the obvious way. If c ∈ Rm is irreducible in Rm,
then it is irreducible both as an element of Rn and as an element of R∞. That
is we have the inclusions

IrrA ⊆ IrrRm ⊆ IrrRn ⊆ IrrR∞.
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Proof. First note that R∗
m = R∗

n = R∗
∞ = A∗. It is sufficient to treat

the case of the ring R∞. Thus assume that for an element 0 ̸= c ̸∈ R∗
∞ there

are some a, b ∈ R∞ satisfying c = ab. Then it is clear there is a positive
integer N so that c, a, b ∈ A[X1, . . . , XN ]. Here recall that given any integer
ℓ ≥ 2 and any 1 ≤ k < ℓ we have an isomorphism

A[X1, . . . , Xℓ] ∼= A[X1, . . . , Xk]
[
Xk+1, . . . , Xℓ

]
.

Hence it is immediate that in fact we can take N = m. So, if c is irreducible
in Rm, we conclude that a ∈ R∗

∞ or b ∈ R∗
∞; i.e., that c is irreducible as an

element of R∞.

For later use recall also the following well known facts.

Lemma 1.2. Let A be a ring.
(i) An element x ∈ A× is irreducible (resp. prime) if and only if every

y ∈ [x] is irreducible (resp. prime).
(ii) Assume that A is an integral domain. If an element p ∈ A is prime,

then it is irreducible as well; i.e., we have the inclusion PrA ⊆ IrrA.
(iii) Assume that A is a PID. An element p ∈ A is prime if and only if it

is irreducible; i.e., we have the equality PrA = IrrA.

Recall also one more well known fact emphasizing the role of prime ele-
ments in the ideal theory.

Lemma 1.3. Given a ring A, p ∈ A× is a prime element if and only if
the principal ideal Ap of A is prime.

Related to the last two claims of Lemma 1.2 we should note some further
facts. As we already mentioned, for a particular element of a given ring it
is always more demanding to see whether it is prime than if it is irreducible.
Here we want to state an interesting characterization of UFDs within the class
of Noetherian integral domains; see Proposition 1.6 below. As the referee
pointed out to us, a proof of the following auxiliary lemma can be found in
[1, Theorems 3.2.1 and 3.2.2]; and so we omitted our proof given in the first
version of the paper.

Lemma 1.4. Let A be a Noetherian integral domain. Then A is a fac-
torization domain; i.e. every nonzero non-invertible element x ∈ A can be
written as a finite product of irreducible elements (perhaps in a non-unique
way). In particular, in every Noetherian integral domain which is not a field
there is at least one irreducible element.

Remark 1.5. Here it is instructive to note that there are UFDs that are
not Noetherian rings. For example if A is a UFD, then the ring of polynomials
R∞ = A[X1, X2, . . .] is a UFD as well; which is easy to show having in mind
Proposition 1.1. Obviously, R∞ is not Noetherian.
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Now we are ready for the announced proposition, which is a stronger
statement than the one of Lemma 1.2(iii).

Proposition 1.6. Let A be a factorization domain; e.g., A is a Noether-
ian domain. Then the following are equivalent.

(a) The ring A is a UFD.
(b) PrA = IrrA.

Proof. As it was again pointed out to us by the referee, a proof that (a)
implies (b) can be found in [1, Thm. 3.3.2].

Now suppose that (b) holds. In order to see that A is a UFD it must
be shown the uniqueness condition in the definition of a UFD. But this is an
easy inductive argument; the same one as for the basic fact that every PID is
a UFD as well.

The next observation is an analogue of Proposition 1.1, where now instead
of irreducible elements we consider prime elements.

Corollary 1.7. Let A be a UFD and m < n positive integers. Let Rm,
Rn and R∞ be the same polynomial rings as in Proposition 1.1. If p ∈ Rm is
prime in Rm, then it is prime both as an element of Rn and as an element of
R∞. That is we have the inclusions

PrRm ⊆ PrRn ⊆ PrR∞.

Proof. The rings Rm, Rn and R∞ are UFDs; see Remark 1.5. Now one
just has to combine Propositions 1.6 and 1.1.

Remark 1.8. As a concrete and very useful consequence of the above
corollary we have the following nontrivial fact. Suppose A is a UFD.
Within the ring of polynomials R = A[X1, . . . , Xm, T1, . . . , Tn] we consider
S = A[X1, . . . , Xm] as a subring in the standard way. Suppose p ∈ S is an
irreducible polynomial and that g, h ∈ R are some polynomials such that p
divides the polynomial product gh. Then p divides g or h; i.e., p is a prime
as an element of R.

2. Examples of prime elements

Suppose K is an algebraic number field; i.e., we have a finite field extension
K|Q. Let OK be the corresponding ring of integers. For the convenience of
the reader here we include one more lemma which gives three well known
claims. A proof of the first one is an easy consequence of the fact that OK has
a free Z-basis with [K : Q] elements; see [7, Ch. II]. For a proof of the second
claim (ii) see [7, Ch. IV, (4.2)]. Using that the norm N = NK|Q is totally
multiplicative and taking into account (ii), a proof of (iii) is in fact the same
as in [12, Thm. 9.24] where K is a quadratic field; see, e.g., [1, Thm. 9.2.3].
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Lemma 2.1. Let K be an algebraic number field, OK its ring of integers
and N = NK|Q the corresponding norm map.

(i) The restriction of N to OK have values in Z; i.e., we have the restricted
norm map N : OK → Z.

(ii) An element α ∈ OK is a unit if and only if |N(α)| = 1.
(iii) If c ∈ OK is such that |N(c)| = p, for some prime number p ∈ N, then

c is an irreducible element.

For later use we also state the following known observation about finitely
generated abelian groups, which is interesting in itself. Although we are not
aware of any suitable reference, its (somewhat involved) proof will be omitted
as it is not crucial for the understanding of what follows.

Lemma 2.2. Let A be an n× n matrix with entries from Z. Then define
an endomorphism z 7→ Az of the additive group Zn and consider its image
AZn.

(i) If A is a regular matrix, then the quotient group Zn/AZn is finite of
order |detA|.

(ii) If A is not regular and so its rank rk(A) < n, then the rank of the
quotient group Zn/AZn is equal to n− rk(A).

Now we are prepared for the following.

Proof of Theorem 0.1.
As R is a free abelian additive group of rank [K : Q] = n, we can choose some
basis B = (v1, . . . , vn) of R. For arbitrary ρ ∈ R consider the map fρ : R→ R
defined as before by fρ(r) = ρr. And let then A = (aij) be an n × n matrix
with entries from Z defined by

fρ(vj) =
n∑
j=1

aijvj , for j = 1, . . . , n.

Next define a map ϕ : R→ Zn so that for v = z1v1 + · · ·+znvn, where zi ∈ Z,
we put ϕ(v) = (z1, . . . , zn). Clearly, ϕ is an isomorphism of additive groups.
Further define a map

ϑ : R/Rρ→ ϕ(R)/ϕ(Rρ)
so that for v ∈ R we put ϑ(v + Rρ) = ϕ(v) + ϕ(Rρ). It is easy to check that
ϑ is a well defined isomorphism of groups. Here also note that

ϕ(R)/ϕ(Rρ) = Zn/AZn.
Taking into account the claim (i) of Lemma 2.2 we conclude that

card(R/Rρ) = |detA|.
It remains to observe that detA = det fρ = NK|Q(ρ).

Now let ρ = π ∈ R be as in the statement of our theorem. As we have
that |NK|Q(π)| = p is a prime number in N, it is immediate that the quotient
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ring R/Rπ is isomorphic to the field Z/pZ. And so the principal ideal Rπ is
maximal and therefore prime as well. By Lemma 1.3, π is prime as an element
of R.

On the other hand suppose ρ is such that |NK|Q(ρ)| = m, for m as in the
statement of the theorem. Now we get that R/Rρ is a ring with m elements.
But such a ring cannot be an integral domain, and consequently ρ cannot be
a prime element. Namely otherwise it would follow that this ring is moreover
a field; i.e., a Galois field. This is clearly impossible.

Suppose we have algebraic number fields F and K so that K|F|Q and an
order R ≤ OK. What we would like to find out are some prime elements of R.
A helpful idea is to have some prime elements p ∈ PrOF such that the norm
NF|Q(p) ∈ PrZ. And then we can try to find some elements π ∈ R satisfying
NK|F(π) = p. Clearly every such π will be a prime element of R. It might
be instructive to see how that “search in stages” works at one interesting
example.

Example 2.3. Consider the quadratic field F = Q(i) and the biquadratic
field K = Q(i,

√
2). Then OF = Z[i], the ring of Gaussian integers. Also with

a little work one can show that the ring of integers OK consists of all elements
of the form

(2.1) w = a+ bi+ c
√

2 + di
√

2, for a, b, c, d ∈ Z.

It is a standard fact that the norm NF|Q(a+ bi) = a2 + b2. At the same time
for w as above we have that

NK|F(w) = (a+ bi)2 − 2(c+ di)2,

and also

(2.2) NK|Q(w) = NF|Q(NK|F(w)) = (a2 − b2 − 2c2 + 2d2)2 + 4(ab− 2cd)2.

As the first useful observation we have the following claim.

Claim. The ring of integers OK is not a UFD.

In order to prove this we begin by showing that there is no w ∈ OK such
that |NK|Q(w)| = 2. Namely suppose to the contrary, that NK|Q(w) = ±2 for
some w. If we write w as in (2.1) then by the above expression (2.2) it is clear
that a2 − b2 is even, and therefore NK|Q(w) must be divisible by 4; which is
impossible. Now as an immediate consequence we deduce that

√
2 ∈ IrrOK.

But we claim that
√

2 is not a prime element. Namely
√

2 divides (1+i)(1−i),
but does not divide neither of the two factors. Namely suppose that we have
some w ∈ OK satisfying 1± i =

√
2w. If we write w as in (2.1) it follows that

in particular 1 = x
√

2 + 2z for some integers x and z. But this is impossible.
Thus, as OK is a Noetherian domain and PrOK ̸= IrrOK, by Proposition 1.6
our Claim follows.
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Further recall the description of the set PrZ[i]; see, e.g., [11, Ch. I, (1.4)
Thm.]. Every prime p of Z[i], up to multiplication by an invertible element,
has one of the following three forms:

(1) p = 1 + i;
(2) p = α+ βi, where α2 + β2 = p with α > |β| > 0 and p ≡ 1 (mod 4);
(3) p = p, where p ≡ 3 (mod 4).

(In (2) and (3) the symbol p denotes a prime in N.) First observe that
p = 1 + i is not suitable for our approach as there is no w ∈ OK satisfying
NK|F(w) = 1 + i. Also for p of type (3) we can have some ρ ∈ OK such that
NK|F(ρ) = p, but at the same time we have NF|Q(p) = p2 and therefore it is
not clear whether such ρ is prime or not. (Note that for the above considered
non-prime element w =

√
2 the quotient ring OK/OK

√
2 is isomorphic to

Z/2Z×Z/2Z.) But the primes of type (2) are good for our approach. Namely
now the equality NK|F(w) = p, where w is as in (2.1), is equivalent to the
system of Diophantine equations

(2.3)
{
a2 − b2 − 2c2 + 2d2 = α

2ab+ 4cd = β

As an easy exercise we have to check that the smallest prime p ∈ N satisfying
both p ≡ 1 (mod 4) and α2 + β2 = p, and such that the above system (2.3)
has a solution, is p = 41. For example for p = 29 the only two possibilities for
(α, β) as in (2) are (5,±2). But then by the second equation in (2.3) we have
that ab is necessarily odd. And then the left-hand side of the first equation
is even; which cannot be. Similarly we rule out every p ∈ {5, 13, 17, 37}. On
the other hand for p = 41 we have that (α, β) is either (5, 4) or (5,−4). Thus
the system (2.3) becomes{

a2 − b2 − 2c2 + 2d2 = 5
ab+ 2cd = ±2

By inspection we obtain as a conclusion that for example every π from the
set

S(41) = {2 + i+ i
√

2, 3− 2i+ 2
√

2 + 2i
√

2, 6 + i− 4
√

2 + i
√

2, . . .}
is prime in OK. It is easy to see that the next smallest p of the form as in
(2) is 97, when for (α, β) we again have just two possibilities; either (9, 4)
or (9,−4). For this p = 97 we have for example as primes from OK the four
elements 3±

√
2± i

√
2.

Perhaps it might be interesting to observe here one more thing which
is motivated by the above two examples of p. Namely suppose there is an
odd number x > 1 such that p = x4 + 16 is a prime number. Then for
(α, β) ∈ {(x2,±4)} the system (2.3) becomes{

a2 − b2 − 2c2 + 2d2 = x2

ab+ 2cd = ±2
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Clearly, (a, b, c, d) = (±x, 0,±1,±1) are solutions of the later system. As an
interesting fact we have that 34 + 16 = 97, 54 + 16 = 641, 74 + 16 = 2417,
94 + 16 = 6577 and 114 + 16 = 14567 are primes. On the other hand for
x = 13 or 15 we obtain composite numbers 134 + 16 = 28577 = 17 · 1681 and
154 + 16 = 50641 = 89 · 569. But 174 + 16 = 83537 is again a prime. It would
be nice to know if there is infinitely many primes of the form x4 +16 for x > 1
odd number.

It is likely that for the field K = Q(i,
√

2) the set PrOK is infinite, but we
do not know if this is the case. In general it would be interesting to answer
the following question.

Question. Given an algebraic number field K and an order R in K, is
the set of primes PrR necessarily infinite?

To the end of this section we focus on real quadratic fields. Our first goal
is to show that for these fields the answer to the above question is positive.
For that purpose let d ̸= 1 be a square-free positive integer and define ω = (1+√
d)/2 ∈ C. Define the following subrings of the quadratic field K = Q(

√
d):

Ad = Z[
√
d] = {x+ y

√
d | x, y ∈ Z},

Bd = Z[ω] = {x+ yω | x, y ∈ Z} if d ≡ 1 (mod 4).
The statement (i) of the next lemma is clear, while the other two are well
known facts; cf. Lemma 2.1(ii).

Lemma 2.4. For the field K and the rings Ad and Bd the following hold.
(i) We have OK = Ad for d ≡ 2, 3 (mod 4), and OK = Bd for d ≡ 1

(mod 4). Further for d ≡ 1 (mod 4) the ring Ad is an order in K with
the index of additive groups (OK : Ad) = 2.

(ii) The corresponding norm map N : K → Q is given by N(x + y
√
d) =

x2 − dy2.
(iii) Let C be either some ring Ad or Bd for d ≡ 1 (mod 4). Then an

element u ∈ C is invertible if and only if |N(u)| = 1.

Remark 2.5. As the first basic observation related to the above Question
we have that for the rings Ad we have the following:

For each square-free positive integer d ̸= 1 the ring Ad has infinitely many
irreducible elements.

(In particular again by Proposition 1.6 we have that for d ≡ 2, 3 (mod 4),
such that OK = Ad is a PID, the set of primes PrOK is infinite.) Namely
choose k ∈ Z\{0,±1} such that the generalized Pell equation x2−dy2 = k has
infinitely many solutions in integers and the absolute value |k| is the minimal
possible. Now if (a, b) ∈ Z2 is any solution, then the elements a ± b

√
d ∈ Ad

are irreducible. For more details about the generalized Pell equations see e.g.
[6, 8.3 and 10.3-10.5].
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Now recall a well known fact that for d ≡ 2, 3 (mod 4) every order in
K = Q(

√
d) is of the form

(2.4) Rm = {x+my
√
d | x, y ∈ Z},

for some positive integer m; where in particular R1 = OK. Also for d ≡ 1
(mod 4) every order in K is of the form

(2.5) Rm = {x+myω | x, y ∈ Z},

for some positive integer m; and again R1 = OK. The following corollary
presents the mentioned positive answer to the above posed Question. Here we
recall one classical but nontrivial theorem, due to Dirichlet, in a form suitable
for our purposes; see [5, p. 417] and [2, Abschn. 10]. Namely suppose q(x, y) =
ax2 + bxy + cy2 is an integral primitive quadratic form whose discriminant
b2 − 4ac is not a square. Then q represents infinitely many primes in N.

Corollary 2.6. Let d ̸= 1 be a square-free positive integer and R be an
order in K = Q(

√
d). Then the set of prime elements PrR is infinite.

Proof. For any positive integer m define a quadratic form

qm(x, y) =
{
x2 − dm2y2, if d ≡ 2, 3 (mod 4),
x2 +mxy + 1−d

4 m2y2, if d ≡ 1 (mod 4);

i.e., qm(x, y) = N(x+my
√
d) if d ≡ 2, 3 (mod 4) and qm(x, y) = N(x+myω)

if d ≡ 1 (mod 4). Clearly every qm is primitive and its discriminant is not
a square. Thus by the above stated Dirichlet’s theorem there are infinitely
many primes p ∈ N such that the equation

(2.6) qm(x, y) = p

is solvable in integers. In particular for d ≡ 2, 3 (mod 4) we obtain a general-
ized Pell equation x2−dm2y2 = p. And each of these equations has infinitely
many solutions (x, y) ∈ Z2. By Theorem 0.1 for every such solution (x, y) the
element x + my

√
d belongs to PrR. Similarly for d ≡ 1 (mod 4) and some

solution (x, y) of (2.6) we have that the element x + myω belongs to PrR.
Thus we have the corollary proved.

Note that in the proof of the latter corollary in fact we needed a weaker
result than the mentioned Dirichlet’s theorem is. More precisely it would
suffice to know that for each form qm there is at least one prime p ∈ N so that
at least one of the two Diophantine equations qm(x, y) = ±p has a solution
in integers. Then we can conclude that the corresponding set PrR is infinite.
For d ≡ 2, 3 (mod 4) we saw that in the given proof of the corollary. And for
d ≡ 1 (mod 4) this follows by the next easy lemma.
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Lemma 2.7. Suppose d ≡ 1 (mod 4) and define δ = (d − 1)/4. If for
some nonzero k ∈ Z the Diophantine equation
(2.7) x2 +mxy − δm2y2 = k

has a solution in integers, then it has infinitely many solutions in integers.

Proof. As we in fact already noted, the equation (2.7) can be written in
an equivalent form as N(x+myω) = k. Suppose (x0, y0) ∈ Z2 is its solution.
Also let (u, v) ∈ Z2 be any solution of the Pell equation U2−dm2V 2 = 1; i.e.,
that N(u+mv

√
d) = 1. As the norm N is totally multiplicative, for

z = (x0 +my0ω)(u+mv
√
d)

we have that N(z) = k. It is straightforward to see that z = x̃+mỹω, where
x̃ = x0(u−mv) + 2δm2vy0 and ỹ = y0(u+mv) + 2x0v.

In other words, every (x̃, ỹ) ∈ Z2 is a solution of (2.7).

Example 2.8. (I) Take d = 2 and consider K = Q(
√

2). By a little work
one can check the following interesting fact. For every integer 2 ≤ m ≤ 100
we can find a positive integer x such that x2 − 2m2 = −p for some prime
number p ∈ N; i.e., we can always take y = 1 in order to represent −p by
the corresponding form qm. This in particular gives a direct computational
argument that every set of primes PrRm, where Rm is as in (2.4), is infinite for
2 ≤ m ≤ 100. More precisely, define M(x) as the set of all m ∈ {2, . . . , 100}
such that x2 − 2m2 ∈ PrZ and there is no positive integer x0 < x so that
for m ∈ M(x) we also have m ∈ M(x0). (That is, for m ∈ M(x) this x
is “minimal possible”.) Then we have M(23) = {90}, M(19) = {75, 93},
M(17) = {30}, M(15) = {71}, M(13) = {55}, M(11) = {96}, M(9) = {65}
and also
M(7) = {19, 20, 51, 53, 60, 66, 74, 82, 83, 88, 94},
M(5) = {9, 12, 26, 27, 29, 33, 48, 54, 57, 72, 77, 78, 84, 89, 97, 99},
M(3) = {5, 14, 16, 23, 31, 32, 35, 37, 40, 44, 47, 58, 61, 67, 68, 70, 79, 86, 100}.

The other 45 values of m belong to the set M(1).
(II) Now take d = 5 and consider K = Q(

√
5). Here we have qm(x, y) =

x2 + mxy −m2y2 and therefore qm(x, 2) = (x + m)2 − 5m2. We claim that
for every integer 2 ≤ m ≤ 100 we can find a positive integer x such that
x2 − 5m2 = −p for some prime number p ∈ N. Note that for every m we can
take x ≤ 23, where in particular for m = 60 we get 232 − 5 · 602 = −17471.
We leave to the reader to compute the nonzero sets M(x), for 1 ≤ x ≤ 9
and x ∈ {11, 13, 14, 16, 19}; where M(x) have the same meaning as in (I). In
particular, we have that M(1) contains 28 values. As a conclusion, again we
have a direct argument showing that every set of primes PrRm , where Rm
is as in (2.5), is infinite for 2 ≤ m ≤ 100.
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Remark 2.9. For the above given two examples note the following. As
one might expect the stated Question is closely related to the question of
solvability of certain Diophantine equations. In particular for quadratic fields
we had the question of representability of certain prime integers via particular
quadratic forms in two variables. As one special case of that we can expect
that for every square-free positive integer d the set Σd = {dm2 − 1|m ∈ N}
will contain infinitely many prime integers. Of course we have no idea how to
deal with this. But as one more heuristic fact for example note the following.
Let S be the set of all numbers m satisfying both 200 ≤ m ≤ 300 and 6m2−1
is a prime number. Clearly, for the 40 values of m satisfying m ≡ 1, 4, 6, 9
(mod 10), the number 6m2 − 1 is divisible by 5. For the remaining 61 values
of m, 33 of them belong to the set S. More precisely, we have

S = {200, 207, 208, 210, 212, 220, 222, 223, 225, 227, 230, 235, 237, 238,
240, 242, 247, 248, 257, 260, 263, 265, 267, 273, 277, 280, 283, 285,
287, 288, 290, 292, 298}.

We conclude this section with one more result about real quadratic fields.
First recall some well known facts; see, e.g., [4, Ch. VII, §§2 and 3]. The ring
of integers OK of an algebraic number field K is a Dedekind domain. Further,
a Dedekind domain is a UFD if and only if it is a PID. Consequently, we have
the equivalences

hK = 1⇐⇒ OK is a UFD⇐⇒ OK is a PID,

where hK is the class number of the algebraic number field K; see, e.g., [1,
Thm. 12.1.1]. Related to that a still unsolved problem asks whether we have
infinitely many algebraic number fields K for which OK is a PID. Moreover
a famous conjecture due to Gauss states that there are infinitely many real
quadratic fields K so that the corresponding OK is a PID. At the same time we
know that there are infinitely many real fields K so that its OK is not a PID.
That is there are infinitely many real fields K for which the corresponding class
number hK is greater than 1. For example we know that hK is even if the
discriminant dK of a real quadratic field K is divisible by three different primes;
see, e.g., [7, Ch. V, Thm. 39, Cor. 1] and [3, Ch. 3, Sect. 8, Thm. 8] for more
details. Further we know that given a positive integer e there are infinitely
many real quadratic fields K such that e divides hK. The later result is due
to Yamamoto [16] and Weinberger [15]. Here note that the corresponding
numbers d, of the fields K = Q(

√
d) for which the above stated claims hold,

will often be composite numbers with more than two prime divisors. So it
might be of some interest to observe the following. Perhaps this is known,
but we are not aware of any reference and so its proof is included.

Proposition 2.10. There are infinitely many positive square-free integers
d such that the ring of integers OK, of the quadratic field K = Q(

√
d), is not a
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PID. More precisely, take any prime number p ∈ N satisfying p ≡ 5 (mod 8).
Then we have infinitely many such positive square-free integers d satisfying
both d ≡ 1 (mod 4) and p|d. Also there are infinitely many positive square-free
integers d satisfying both d ≡ 3 (mod 4) and p|d.

In particular there are infinitely many positive integers d of the form
d = pq, for some different primes p, q ∈ N, so that the corresponding ring of
integers OK is not a PID.

Keeping the above notation in force we first prove one auxiliary result
about the norm map.

Lemma 2.11. Let p ∈ N be a prime number and d a square-free positive
integer divisible by p. Then the following are equivalent.

(a) There is no w ∈ OK satisfying any of the two congruences N(w) ≡ ±2
(mod p).

(b) We have p ≡ 5 (mod 8).
Proof. First consider the case d ≡ 2, 3 (mod 4). Then an element w =

x+y
√
d ∈ OK satisfies N(w) ≡ ±2 (mod p) if and only if x2−dy2 ≡ x2 ≡ ±2

(mod p). Assume that (a) holds. Then each of the two congruences x2 ≡
±2 (mod p) has no solutions, or equivalently for the corresponding Legendre
symbols we have

( 2
p

)
=
(−2
p

)
= −1. We have that the Legendre symbol( 2

p

)
= 1 if and only if p ≡ ±1 (mod 8); see, e.g., [6, Thm. 4.5]. Also we have(−2

p

)
=
(−1
p

)( 2
p

)
and

(−1
p

)
= (−1)

p−1
2 ; see, e.g., [6, Prop. 4.3]. Thus if (a)

holds we must have that either p ≡ 3 (mod 8) or p ≡ 5 (mod 8), and at the
same time that p ≡ 1 (mod 4). So we conclude that necessarily (b) holds.
For the opposite implication note that (b) implies that

( 2
p

)
=
(−2
p

)
= −1.

Therefore, if (b) holds, then each of the two congruences x2 ≡ ±2 (mod p)
has no solutions. Thus (a) holds.

Next assume that d ≡ 1 (mod 4). Then an element w = x + yω ∈ OK
would be a solution of one of the congruences N(w) ≡ ±2 (mod p) if and
only if we have

x2 + xy + 1− d
4 y2 ≡ ±2 (mod p).

Hence it follows that for t = 2x + y we have t2 − dy2 ≡ ±8 (mod p). Here
observe that the congruence t2 ≡ ε8 (mod p) has a solution if and only if
the congruence t2 ≡ ε2 (mod p) has a solution, for ε ∈ {±1}. This is a clear
consequence of the fact that

(
ε8
p

)
=
(
ε2
p

)3. Therefore by what we have already
shown it is immediate that the equivalence of (a) and (b) holds in this case
as well.

Proof of Proposition 2.10. First suppose that d ≡ 1 (mod 4) and let
then δ = (d− 1)/4 be as before. For x+ yω, a+ bω ∈ OK we have

(x+ yω)(a+ bω) = xa+ ybδ + (xb+ ya+ yb)ω.
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Let us try to find some convenient integers x, y, a, b and d so that xb+ya+yb =
0 and xa + ybδ is equal to some even positive integer 2ν. For example take
y = a = b = 1, and then we have x = −2. Also take d ≡ 1 (mod 8); i.e.,
write d = 8ℓ + 1 for some positive integer ℓ. Now choose a (unique) number
m ∈ {1, . . . , p− 1} so that d = 8(pk+m) + 1 is divisible by p, for any integer
k. Clearly we have m = (5p − 1)/8 and then d = p(8k + 5). Finally, by
the classical Dirichlet’s theorem on primes in arithmetic progressions, there
are infinitely many natural numbers k so that d is square-free. It remains to
observe the following two facts. First, by the previous lemma it is clear that
2 is an irreducible element. Second, note that by our choice we have that

(−2 + ω)(1 + ω) = 2ν.

And hence it is immediate that 2 is not prime. Therefore OK is not a PID.
Now consider the case d ≡ 2, 3 (mod 4). Similarly as above for the prod-

uct of elements x + y
√
d, a + b

√
d ∈ OK we want both xb + ya = 0 and

xa + dby = 2ν for some positive integer ν. Take again y = a = b = 1, where
now x = −1. Thus we in particular obtain that −1 + d = 2ν, and therefore
we have to take d ≡ 3 (mod 4). But if d = 4ℓ + 3, then as above there is a
unique m ∈ {1, . . . , p − 1} so that d = 4(pk + m) + 3 is divisible by p. This
time we have m = 3(p − 1)/4 and then d = p(4k + 3). Clearly for infinitely
many values of k the natural number d will be square-free and again we will
have that 2 ∈ IrrOK and 2 ̸∈ PrOK.

Remark 2.12. Suppose p ∈ N is a prime number satisfying p ≡ 5
(mod 8). Then for k ∈ N define d1

p(k) = p(8k+ 5) and d2
p(k) = p(4k+ 3). By

Proposition 2.10 and its proof we know that for d = d1
p(k) or d2

p(k) square-
free the corresponding ring of integers OK is not a PID. Thus in particular
for 1 < d < 1000 square-free we obtain in total 104 values of d for which OK
is not a PID. Further, there are 22 values of square-free d ∈ {2, . . . , 100} such
that the corresponding OK is not a PID. By our proposition we obtain 8 out
of all these 22 values. These are: 15, 35, 39, 55, 65, 87, 91 and 95.

As the final remark here we note that one could adapt our approach via
Proposition 2.10 and Lemma 2.11 so that some other square-free values of d
could be ruled-out in the sense that the corresponding ring OK is not a PID.

3. On irreducible and prime polynomials

Given an integral domain A it is interesting to find out whether a partic-
ular polynomial p = p(X) of the ring of polynomials A[X], in one variable, is
irreducible or not. If A is not a UFD, it would be often very helpful to see if
p is moreover a prime element or not. The main purpose of this section is to
present some basic results concerning the problems of polynomial reducibility
for polynomials in two or more variables.
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In order to better understand our setting, and the difference between the
cases when A is a UFD and when it is not, it might be helpful to start with
the following general observation. We omit its proof.

Lemma 3.1. Let A be a Noetherian integral domain. Then the following
are equivalent.

(a) The ring A is a UFD.
(b) For every positive integer n the ring of polynomials A[X1, . . . , Xn] is a

UFD.
(c) There is a positive integer n so that the ring of polynomials A[X1,. . .,Xn]

is a UFD.

Recall that given a polynomial p ∈ Q[X], in one variable, it is in general a
difficult problem to find out whether p is reducible or not. Related to that we
could first ask does the set IrrQ[X] = PrQ[X] have infinitely many elements.
The following result, whose proof is an adaptation of the one proving that
N has infinitely many primes, is certainly known. For the convenience of the
reader we include its short proof.

Proposition 3.2. Let A be a Noetherian UFD. Then for every positive
integer n the ring of polynomials R = A[X1, . . . , Xn] has infinitely many
irreducible (i.e., prime) polynomials.

Proof. As R is a Noetherian UFD as well, by Proposition 1.6 we in
particular have that IrrR = PrR. Now assume R has finitely many irreducible
polynomials, say f1, . . . , fn. Define a polynomial F = f1 · · · fn+1A, where 1A
is the identity of A. Now a classical argument gives an irreducible polynomial
q ∈ R which divides F and which cannot be equal to any of fi; a contradiction.

To the end of this section we present some interesting facts and results
about the reducibility of polynomials in two or more variables. We begin with
two examples.

Example 3.3. Let A be an integral domain.

(I) For any integer n ≥ 1 consider the ring of polynomialsR=A[X1, . . .,Xn,Y ],
in variables X1, . . . , Xn and Y . If we define B = A[X1, . . . , Xn], then up to
an isomorphism R = B[Y ]. We claim the following:

For every φ ∈ B, the element p = Y − φ(X1, . . . , Xn) is prime in R.
In order to show this assume f, g ∈ R are nonzero polynomials such that p|fg.
Consider f and g as elements of B[Y ] and then by the division algorithm we
have some q1, q2 ∈ R and r1, r2 ∈ B such that f = q1p+ r1 and g = q2p+ r2.
Now suppose r1 and r2 are nonzero polynomials. As clearly p divides ρ =
r1r2 ∈ B, there is some h ∈ R such that

ρ(X1, . . . , Xn) = ph(X1, . . . , Xn, Y ).



238 B. ŠIROLA

Then write h ∈ B[Y ] as h = h0 + h1Y + · · ·+ hmY
m, for some hi ∈ B where

in particular hm ̸= 0. It follows that

ρ = (−φh0) + · · ·+ hmY
m+1,

which is impossible since m+1 ≥ 1. Thus we conclude that necessarily r1 = 0
or r2 = 0; i.e., that p|f or p|g.

As a special consequence of the above claim we have that each variable
Xi of the polynomial ring A[X1, . . . , Xn] is a prime element.

(II) Now define the ring of polynomials R = A[X,Y ], in variables X and Y .
For arbitrary a, b ∈ A define a polynomial

φ(X) = X3 + aX + b.

We claim the following:
The element p = Y 2 − φ(X) is prime in R.

(Note that, for “nice” A, the equality p = 0 becomes the “Weierstrass form
of an elliptic curve”. Also observe that the argument given in what follows
remains valid for any φ ∈ A[X] of odd degree; cf. Proposition 3.4 below.)

Our argument is similar to the one in (I). Namely assume f, g ∈ R are
nonzero polynomials such that p|fg. Then we can find some q1, q2, r1, r2 ∈ R
such that

(3.1) f = q1(Y 2 − φ) + r1, g = q2(Y 2 − φ) + r2.

Here we can write r1 = s0 + s1Y and r2 = t0 + t1Y , for some si, ti ∈ A[X].
Again assume that r1, r2 ̸= 0. As p|r1r2 there is some h ∈ R satisfying
r1r2 = ph; i.e., we have that

s0t0 + (s0t1 + s1t0)Y + s1t1Y
2 = (Y 2 − φ)h.

Hence it is clear that necessarily h = h0 ∈ A[X]×. And then we have equalities

(3.2) s1t1 = h0, s0t1 + s1t0 = 0, s0t0 = −φh0.

By multiplying the first equality by s0 we get s1s0t1 = s0h0. By multiplying
the second equality by s1 we get s0s1t1 = −s2

1t0. Finally by multiplying the
third equality by s0 we get s2

0t0 = −φh0s0. By the three newly obtained
equalities it is immediate that s2

0t0 = φs2
1t0. Observe that necessarily t0 ̸= 0,

and therefore s2
0 = φs2

1. But as the degrees of s2
0 and s2

1 are even, while the
degree of φ is odd, this is impossible.

It is worth to note that the claim in (II) od the previous Example can be
in part further generalized so that we can have the polynomial φ(X) there
to be of even degree. Namely we have the following proposition. Its part
(ii) shows one more time, on a rather special example, that proving for a
particular element to be prime could be a quite demanding task.
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Proposition 3.4. Let A be an integral domain and φ(X) ∈ A[X] a
polynomial. Define p = Y 2 − φ(X), a polynomial in R = A[X,Y ].

(i) The polynomial p is irreducible in R if and only if there is no polyno-
mial ω(X) ∈ A[X] such that ω2(X) = φ(X).

(ii) Suppose the characteristic charA ̸= 2 and let then φ(X) = X4+aX+b,
where a, b ∈ A are not both equal to zero. Then p is an irreducible
element of R. Furthermore suppose charA ̸= 2, 3 and a, b ∈ A are
such that 256b3 ̸= 27a4. Then p is a prime element of R.

Proof. (i) Suppose p is reducible; i.e., there are polynomials g, h ∈ R\A∗

such that p = gh. By considering g and h as polynomials in the variable Y ,
with coefficients from A[X], we have two possibilities. First assume that

g = a0(X) and h = b2(X)Y 2 + b1(X)Y + b0(X),
for some a0, bj ∈ A[X]. Then we in particular have that a0(X)b2(X) = 1,
which gives that g ∈ A∗; a contradiction. The second possibility is that

g = a1(X)Y + a0(X) and h = b1(X)Y + b0(X),
for some aj , bj ∈ A[X]. Now we have a1(X)b1(X) = 1, which means that
a1(X), b1(X) ∈ A∗. With no loss of generality we can take a1(X) = b1(X) =
1; and so g = Y + a0(X) and h = Y + b0(X). But then it is immediate that

a0(X) + b0(X) = 0 and a0(X)b0(X) = −φ(X).
Hence by putting ω(X) = a0(X) = −b0(X) we have that ω2(X) = φ(X);
or in other words we have a factorization p = (Y − ω(X))(Y + ω(X)). This
finishes our proof of the implication from right to left, while the opposite one
is clear.

(ii) By (i) we just have to show that there is no ω ∈ A[X] such that
ω2(X) = φ(X). So assume to the contrary, that there is some such ω and
then write it as ω(X) = X2 + uX + v, with u, v ∈ A. Then it would easily
follow that we have

2u = 0 = u2 + 2v, 2uv = a, v2 = b;
which is impossible since charA ̸= 2 and a, b are not both equal to zero.

For the second claim we proceed as in (II) of Example 3.3. That is suppose
p|fg and write f, g ∈ A[X] as in (3.1). For s0, s1 ∈ A[X] as there we have
again the equality
(3.3) s2

0 = φs2
1,

where both s0 and s1 are nonzero polynomials. Our goal is to prove that in
fact such s0 and s1 do not exist. Namely suppose to the contrary and let
s0, s1 be chosen so that the degree of s0 is the minimal possible. Then by the
division algorithm one more time we can write
(3.4) s0 = Q0φ+R0 and s1 = Q1φ+R1,
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where Qi, Ri ∈ A[X] and degRi < 4 for i = 1, 2. Clearly R0 ̸= 0, as otherwise
it would follow that s2

1 = φQ2
0, which contradicts to the stated minimality

condition. Also if we rewrite (3.3) using (3.4) it is immediate that φ|R2
0. Let

us show that this is impossible. For that purpose define K to be the quotient
field of A and K be its algebraic closure. Also suppose there is some ϑ ∈ A[X]
such that R2

0 = φϑ. Of course the last equality can be considered as an
equality of polynomials in K[X]. Observe that R2

0 has at most three mutually
different roots in K. We want to show that φ has four mutually different roots
in K, which will suffice for our argument. For that purpose assume x0 ∈ K
is a multiple root of φ. Then x0 is a root of the derivative φ′ as well. As we
have that φ(x0) = x0φ

′(x0) is equivalent to x4
0 = b/3, it follows at once that

ax0 = −4b/3. If a = 0, then it is clear that φ cannot have a multiple root.
And if a ̸= 0, we have that x0 = −4b/(3a). Hence we deduce that

0 = φ(x0) =
(
− 4b

3a

)4
+ a
(
− 4b

3a

)
+ b,

which is equivalent to the equality 256b3 = 27a4; a contradiction.

Remark 3.5. Note that for our polynomials φ and p in the second claim
of (ii) in the previous proposition we have that p = 0 can be considered as a
hyperelliptic curve over K, which is in fact an elliptic curve (as all the roots
of φ in K are simple). Here also note that 256b3− 27a4 is the discriminant of
the polynomial φ.

We conclude the paper with two more examples, where we treat the ques-
tion of reducibility for some specific polynomials with some “ad hoc methods”.
For the first one we need the following easy lemma.

Lemma 3.6. Let B be an integral domain with identity 1B such that the
element 2B = 1B+1B is invertible. Let f ∈ B[T ] be a quadratic polynomial of
the form f(T ) = T 2 + αT + β. Then f is reducible if and only if the element
(2−1
B α)2 − β is a square in B.

Proof. Our argument is similar to the one for (i) of the last proposition.
Namely suppose f is reducible and g, h ∈ B[T ] \ B∗ are such that f = gh.
We can assume that g = a1T + a0 and h = b1T + b0, for some ai, bi ∈ B. In
fact we can take a1 = b1 = 1B . Hence it is immediate that a2

0 − αa0 + β = 0,
which can be written in an equivalent form as

(a0 − 2−1
B α)2 = (2−1

B α)2 − β.

Now if ω ∈ B is such that ω2 is equal to the right-hand side of the above
equality, then a0 ∈ {2−1

B α±ω} and b0 = α−a0. And therefore f is reducible.
Clearly we have the opposite implication as well; i.e., if f is reducible, then
(2−1
B α)2 − β must be a square in B.
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Example 3.7. (I) Suppose A is an integral domain with identity 1A such
that the element 2A = 1A + 1A is invertible. Let also g and h be polynomials
from the ring B = A[X,Y ] such that the total degree deg h is odd and greater
than 2 deg g. Then the polynomial

f = Z2 + g(X,Y )Z + h(X,Y )
is irreducible in R = A[X,Y, Z]. In order to see that put α = g and β = h
and then define a polynomial

φ = (2−1
A α)2 − β.

As the degree degφ = deg h is odd, it is clear that φ is not a square in the
ring B. By the previous lemma we know that then f is an irreducible element
in R.

(II) Suppose A is an integral domain and φ is a polynomial from the ring
B = A[X,Y ] whose total degree is not divisible by 3. Then we claim that the
polynomial

f = Z3 + φ(X,Y )
is irreducible in R = A[X,Y, Z]. For that purpose suppose to the contrary,
that f is reducible. Then we would have some ai, bj ∈ B so that for the
polynomials
g = a2(X,Y )Z2 + a1(X,Y )Z + a0(X,Y ) and h = b1(X,Y )Z + b0(X,Y )
we have f = gh. With no loss of generality we can take that a2 = b1 = 1.
Then we get at once that necessarily

a0 + b0a1 = 0 = a1 + b0 and a0b0 = φ.

Hence we obtain that a1 = −b0, further a0 = b2
0 and finally b3

0 = φ. But the
last equality gives in particular that degφ = 3 deg b0, which is impossible.

Remark 3.8. As the final remark we would like to say that the last
two examples above are just special cases of a more general and powerful
technique which enables to treat reducibility questions of polynomials from
the polynomial ring A[X], where A belongs to a rather wide class of integral
domains. The details will appear in [14].
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Prosti elementi u komutativnim domenama

Boris Širola

Sažetak. U radu su prikazani neki rezultati o prostim ele-
mentima u integralnim domenama. Posebno se bavimo sljedećim
pitanjem: Ima li svaki poredak u polju algebarskih brojeva
beskonačno mnogo prostih elemenata? I onda pokazujemo da je
za slučaj realnih kvadratnih polja odgovor na to pitanje potvrdan.
Nadalje, dajemo neke parcijalne rezultate i primjere o prostim
polinomima u dvije ili više varijabli s koeficijentima iz proizvoljne
integralne domene.
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