WEIRD K-ACTIONS ON $\mathcal{U}(\mathfrak{g})$ FOR $\mathfrak{s o}(n, 1)$ AND $\mathfrak{s u}(n, 1)$

Hrvoje Kraljević

For Marko Tadić, with our admiration and appreciation

Abstract

Let \mathfrak{g}_{0} be either $\mathfrak{s o}(n, 1)$ or $\mathfrak{s u}(n, 1)$, \mathfrak{g} its complexification, K a maximal compact subgroup of the adjoint group of $\mathfrak{g}_{0}, \mathcal{U}(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g} and $\mathcal{U}(\mathfrak{g})^{K}$ its subalgebra of K-invariants. A consequence of our results in [2] is that besides the usual adjoint action of K on $\mathcal{U}(\mathfrak{g})$ there is another action of K commuting with the adjoint action and leaving $\mathcal{U}(\mathfrak{g})^{K}$ pointwise invariant. The case $\mathfrak{g}_{0}=\mathfrak{s o}(2,1) \simeq \mathfrak{s u}(1,1)$ is trivial since K is commutative and the weird action of K coincides with the inverse of adjoint action. We investigate closely the weird action of K in the simplest nontrivial case $\mathfrak{g}_{0}=\mathfrak{s o}(3,1)$.

1. Notation

Our notation is usual: \mathbb{C} are complex numbers, \mathbb{R} real numbers, \mathbb{Z} integers, \mathbb{Z}_{+}nonnegative integers, $\mathbb{N}=\mathbb{Z}_{+} \backslash\{0\}, M_{n, m}(K)$ the space of $n \times m$ matrices with entries from a field $K, M_{n}(K)=M_{n, n}(K), A_{j, k}$ is the (j, k) entry of a matrix A, I_{n} is the unit $n \times n$ matrix, A^{t} denotes the transpose of a matrix A, A^{*} is the adjoint ($=$ transpose and complex conjugate) of a matrix $A \in M_{n}(\mathbb{C})$. Furthermore, $\mathfrak{g l}(n, K)$ is the Lie algebra $M_{n}(K)$ with commutator $[A, B]=A B-B A, \mathfrak{s l}(n, K)=\{A \in \mathfrak{g l}(n, K) ; \operatorname{Tr} A=0\}$, $\mathfrak{s o}(n, 1)=\left\{A \in M_{n+1}(\mathbb{R}) ; A^{t}=-\Gamma A \Gamma\right\}$ with $\Gamma=\operatorname{diag}(1, \ldots, 1,-1), \mathfrak{s o}(n)=$ $\left\{B \in M_{n}(\mathbb{R}) ; B^{t}=-B\right\}, \mathfrak{s u}(n, 1)=\left\{A \in \mathfrak{s l}(n+1, \mathbb{C}) ; A^{*}=-\Gamma A \Gamma\right\}$, and $\mathfrak{u}(n)=\left\{B \in M_{n}(\mathbb{C}) ; B^{*}=-B\right\}$; the complexifications of the real Lie algebras $\mathfrak{s o}(n, 1), \mathfrak{s o}(n), \mathfrak{s u}(n, 1)$ and $\mathfrak{u}(n)$ are $\mathfrak{s o}(n, 1, \mathbb{C})=\left\{A \in M_{n+1}(\mathbb{C}) ; A^{t}=\right.$ $-\Gamma A \Gamma\}, \mathfrak{s o}(n, \mathbb{C})=\left\{B \in M_{n}(\mathbb{C}) ; B^{t}=-B\right\}, \mathfrak{s l}(n+1, \mathbb{C})$ and $\mathfrak{g l}(n, \mathbb{C})$. Furthermore, $\mathrm{GL}(n, K)$ denotes the group of invertible matrices in $M_{n}(K)$ and $\mathrm{SL}(n, K)=\{A \in \mathrm{GL}(n, K) ; \operatorname{det} A=1\}$. The matrix Lie groups of the introduced real Lie algebras are $\mathrm{SO}(n, 1)=\left\{A \in \mathrm{SL}(n+1, \mathbb{R}) ; A^{t} \Gamma A=\Gamma\right\}$ with the identity component $\mathrm{SO}_{e}(n, 1)=\left\{A \in \mathrm{SO}(n, 1) ; A_{n+1, n+1} \geq 1\right\}, \mathrm{SO}(n)=$

[^0]$\left\{A \in \mathrm{SL}(n, \mathbb{R}) ; A^{t} A=I_{n}\right\}, \mathrm{SU}(n, 1)=\left\{A \in \mathrm{SL}(n+1, \mathbb{C}) ; A^{*} \Gamma A=\Gamma\right\}$ and $\mathrm{U}(n)=\left\{A \in \mathrm{GL}(n, \mathbb{C}) ; A^{*} A=I_{n}\right\}$. We have
\[

\mathfrak{s o}(n, 1)=\left\{\left[$$
\begin{array}{cc}
B & a \\
a^{t} & 0
\end{array}
$$\right] ; B \in \mathfrak{s o}(n), a \in M_{n, 1}(\mathbb{R})\right\}
\]

and

$$
\mathfrak{s u}(n, 1)=\left\{\left[\begin{array}{cc}
B & a \\
a^{*} & -\operatorname{Tr} B
\end{array}\right] ; B \in \mathfrak{u}(n), a \in M_{n, 1}(\mathbb{C})\right\}
$$

2. Preliminaries

Let \mathfrak{g}_{0} be either $\mathfrak{s o}(n, 1)(n \geq 2)$ or $\mathfrak{s u}(n, 1)$, \mathfrak{g} its complexification, G the adjoint group of \mathfrak{g}_{0}, K its maximal compact subgroup, $\mathfrak{g}_{0}=\mathfrak{k}_{0} \oplus \mathfrak{p}_{0}$ the corresponding Cartan decomposition and $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ its complexification.

In the case $\mathfrak{g}_{0}=\mathfrak{s o}(n, 1)$ the adjoint group G can be identified with the group $\mathrm{SO}_{e}(n, 1)$ and the adjoint action of $A \in \mathrm{SO}_{e}(n, 1)$ on \mathfrak{g} is given by $A \cdot X=(\operatorname{Ad} A) X=A X A^{-1}, X \in \mathfrak{g}$. In this case we choose the maximal compact subgroup $K=\left\{\left[\begin{array}{cc}B & 0 \\ 0 & 1\end{array}\right] ; B \in \mathrm{SO}(n)\right\} \simeq \mathrm{SO}(n)$. Then

$$
\begin{gathered}
\mathfrak{k}_{0}=\left\{\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right] \in M_{n+1}(\mathbb{R}) ; B \in \mathfrak{s o}(n)\right\} \simeq \mathfrak{s o}(n) \\
\mathfrak{p}_{0}=\left\{\left[\begin{array}{cc}
0 & a \\
a^{t} & 0
\end{array}\right] ; a \in M_{n, 1}(\mathbb{R})\right\}
\end{gathered}
$$

and

$$
\begin{gathered}
\mathfrak{k}=\left\{\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right] \in M_{n+1}(\mathbb{C}) ; B \in \mathfrak{s o}(n, \mathbb{C})\right\} \simeq \mathfrak{s o}(n, \mathbb{C}), \\
\mathfrak{p}=\left\{\left[\begin{array}{cc}
0 & a \\
a^{t} & 0
\end{array}\right] ; a \in M_{n, 1}(\mathbb{C})\right\} .
\end{gathered}
$$

In the case $\mathfrak{g}_{0}=\mathfrak{s u}(n, 1)$ we have $\mathfrak{g}=\mathfrak{s l}(n+1, \mathbb{C})$. We choose the Cartan decomposition of \mathfrak{g}_{0}

$$
\mathfrak{k}_{0}=\left\{\left[\begin{array}{cc}
B & 0 \\
0 & -\operatorname{Tr} B
\end{array}\right] \in M_{n+1}(\mathbb{C}) ; B \in \mathfrak{u}(n)\right\} \simeq \mathfrak{u}(n)
$$

and

$$
\mathfrak{p}_{0}=\left\{\left[\begin{array}{cc}
0 & a \\
a^{*} & 0
\end{array}\right] ; a \in M_{n, 1}(\mathbb{C})\right\} .
$$

Then

$$
\mathfrak{k}=\left\{\left[\begin{array}{cc}
B & 0 \\
0 & -\operatorname{Tr} B
\end{array}\right] \in M_{n+1}(\mathbb{C}) ; B \in M_{n}(\mathbb{C})\right\} \simeq \mathfrak{g l}(n, \mathbb{C})
$$

and

$$
\mathfrak{p}=\left\{\left[\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right] ; a \in M_{n, 1}(\mathbb{C}), b \in M_{1, n}(\mathbb{C})\right\}
$$

Now G is identified with $\operatorname{SU}(n, 1) / Z$, where Z is the center of $\operatorname{SU}(n, 1)$:

$$
Z=\left\{\alpha I_{n+1} ; \alpha \in \mathbb{C}, \alpha^{n+1}=1\right\} \simeq \mathbb{Z}_{n+1}:=\mathbb{Z} /(n+1) \mathbb{Z}
$$

Then $K=\tilde{K} / Z$, where \tilde{K} is a maximal compact subgroup of $\operatorname{SU}(n, 1)$

$$
\tilde{K}=\left\{\left[\begin{array}{cc}
B & 0 \\
0 & (\operatorname{det} B)^{-1}
\end{array}\right] ; B \in \mathrm{U}(n)\right\} \simeq \mathrm{U}(n)
$$

Denote by $\mathcal{U}(\mathfrak{g})$ and $\mathcal{U}(\mathfrak{k}) \subseteq \mathcal{U}(\mathfrak{g})$ the universal enveloping algebras of \mathfrak{g} and \mathfrak{k}. Furthermore, let $S(\mathfrak{g})$ and $S(\mathfrak{k}) \subseteq S(\mathfrak{g})$ be the symmetric algebras over \mathfrak{g} and \mathfrak{k}; using the invariant non-degenerate trace bilinear form $(A, B) \mapsto \operatorname{Tr} A B$ one identifies \mathfrak{g} and \mathfrak{k} with its dual spaces \mathfrak{g}^{*} and \mathfrak{k}^{*}, thus the symmetric algebras $S(\mathfrak{g})$ and $S(\mathfrak{k})$ with the polynomial algebras $\mathcal{P}(\mathfrak{g})=S\left(\mathfrak{g}^{*}\right)$ and $\mathcal{P}(\mathfrak{k})=$ $S\left(\mathfrak{k}^{*}\right)$. The group G (and its subgroup K) acts by automorphisms on the algebras $\mathcal{U}(\mathfrak{g})$ and $\mathcal{P}(\mathfrak{g})$ and K acts by automorphisms on $\mathcal{U}(\mathfrak{k})$ and $\mathcal{P}(\mathfrak{k})$. Denote by $\mathcal{U}(\mathfrak{g})^{G}, \mathcal{P}(\mathfrak{g})^{G}, \mathcal{U}(\mathfrak{g})^{K}, \mathcal{P}(\mathfrak{g})^{K}, \mathcal{U}(\mathfrak{k})^{K}$ and $\mathcal{P}(\mathfrak{k})^{K}$ the subalgebras of invariants. Then $\mathcal{U}(\mathfrak{g})^{G}$ is the center $\mathcal{Z}(\mathfrak{g})$ of $\mathcal{U}(\mathfrak{g})$ and $\mathcal{U}(\mathfrak{k})^{K}$ is the center $\mathcal{Z}(\mathfrak{k})$ of $\mathcal{U}(\mathfrak{k})$. Knop has proved in [1] the following theorem.

Theorem 2.1. The multiplication induces an isomorphism of $\mathcal{Z}(\mathfrak{g}) \otimes \mathcal{Z}(\mathfrak{k})$ onto the algebra $\mathcal{U}(\mathfrak{g})^{K}$ and an isomorphism of $\mathcal{P}(\mathfrak{g})^{G} \otimes \mathcal{P}(\mathfrak{k})^{K}$ onto $\mathcal{P}(\mathfrak{g})^{K}$.

Denote by \mathcal{N}_{K} the set of all nilpotent elements of \mathfrak{g} whose projection onto \mathfrak{k} along \mathfrak{p} is nilpotent in the reductive Lie algebra \mathfrak{k}, and let \mathcal{H} be the subspace of $\mathcal{U}(\mathfrak{g})$ spanned by all powers (in $\mathcal{U}(\mathfrak{g})$) $A^{k}, A \in \mathcal{N}_{K}, k \in \mathbb{Z}_{+}$. The subspace \mathcal{H} of $\mathcal{U}(\mathfrak{g})$ is invariant under the action of K. We have proved in [2] the following theorem.

Theorem 2.2. Under above assumptions

(i) The multiplication induces an isomorphism of $\left(\mathcal{U}(\mathfrak{g})^{K}, K\right)$-modules $\mathcal{U}(\mathfrak{g})^{K} \otimes \mathcal{H}$ onto $\mathcal{U}(\mathfrak{g})$.
(ii) Let \hat{K} be the set of equivalence classes of irreducible (finite-dimensional) representations of K. The multiplicity of any $\delta \in \hat{K}$ in the K-module \mathcal{H} is equal to its degree $d(\delta)$.

3. Weird action of K on $\mathcal{U}(\mathfrak{g})$

We recall briefly the proof of (ii) which leads to a weird action of K on $\mathcal{U}(\mathfrak{g})$. The inverse of the symmetrization $\mathcal{U}(\mathfrak{g}) \rightarrow S(\mathfrak{g})=\mathcal{P}(\mathfrak{g})$ maps the K-submodule \mathcal{H} onto the space $\mathcal{H}_{K}(\mathfrak{g})$ of K-harmonic polynomials on \mathfrak{g} :

$$
\mathcal{H}_{K}(\mathfrak{g})=\left\{f \in \mathcal{P}(\mathfrak{g}) ; \partial(u) f=0 \forall u \in S_{+}(\mathfrak{g})^{K}\right\}
$$

Here $\partial: S(\mathfrak{g}) \rightarrow \mathcal{D}(\mathfrak{g})$ is the usual isomorphism of the symmetric algebra $S(\mathfrak{g})$ onto the algebra $\mathcal{D}(\mathfrak{g})$ of linear differential operators on $\mathcal{P}(\mathfrak{g})$ with constant
coefficients: $\partial(X)$ is the derivation in the direction X for any $X \in \mathfrak{g}$. Furthermore, we denote by $S_{+}(\mathfrak{g})^{K}$ and $\mathcal{P}_{+}(\mathfrak{g})^{K}$ the maximal ideals (of codimension 1) of the algebras of K-invariants $S(\mathfrak{g})^{K}$ and $\mathcal{P}(\mathfrak{g})^{K}$:
$S_{+}(\mathfrak{g})^{K}=\bigoplus_{k>0} S^{k}(\mathfrak{g})^{K}, \quad \mathcal{P}_{+}(\mathfrak{g})^{K}=\bigoplus_{k>0} \mathcal{P}^{k}(\mathfrak{g})^{K}=\left\{P \in \mathcal{P}(\mathfrak{g})^{k} ; P(0)=0\right\}$.
Then the set \mathcal{N}_{K} of K-nilpotent elements of \mathfrak{g} is the zero set of the ideal $\mathcal{P}(\mathfrak{g}) \mathcal{P}_{+}(\mathfrak{g})^{K}$ generated by $\mathcal{P}_{+}(\mathfrak{g})^{K}$ in $\mathcal{P}(\mathfrak{g})$, i.e.

$$
\mathcal{N}_{K}=\left\{X \in \mathfrak{g} ; P(X)=0 \forall P \in \mathcal{P}_{+}(\mathfrak{g})^{K}\right\} .
$$

Now, by the Knop's theorem $\mathcal{P}(\mathfrak{g})^{K} \simeq \mathcal{P}(\mathfrak{g})^{G} \otimes \mathcal{P}(\mathfrak{k})^{K}$. By Harish-Chandra isomorphism and by Chevalley's theorem on Weyl group invariants we know that the algebra $\mathcal{P}(\mathfrak{g})^{G}$ is generated by $\ell=$ rank \mathfrak{g} homogeneous algebraically independent G-invariant polynomials f_{1}, \ldots, f_{ℓ} and the algebra $\mathcal{P}(\mathfrak{k})^{K}$ is generated by $k=\operatorname{rank} \mathfrak{k}$ homogeneous algebraically independent K-invariant polynomials $\varphi_{1}, \ldots, \varphi_{k}$. Thus, $\mathcal{P}(\mathfrak{g})^{K}$ is generated by $\ell+k$ homogeneous algebraically independent polynomials $f_{1}, \ldots, f_{\ell}, \varphi_{1}, \ldots, \varphi_{k}$ and so

$$
\mathcal{N}_{K}=\left\{X \in \mathfrak{g} ; f_{1}(X)=\cdots=f_{\ell}(X)=\varphi_{1}(X)=\cdots=\varphi_{k}(X)=0\right\}
$$

is a Zariski closed subset of \mathfrak{g} of dimension $\operatorname{dim} \mathfrak{g}-\ell-k$. More generally, for any $(\xi, \eta)=\left(\xi_{1}, \ldots, \xi_{\ell}, \eta_{1}, \ldots, \eta_{k}\right)$ in $\mathbb{C}^{\ell+k}$ we define a $K^{\mathbb{C}}$-stable Zariski closed set of the same dimension ($K^{\mathbb{C}}$ being the complexification of the group K)

$$
\mathcal{N}_{K}(\xi, \eta)=\left\{X \in \mathfrak{g} ; f_{j}(X)=\xi_{j}, j=1, \ldots, \ell, \varphi_{i}(X)=\eta_{i}, i=1, \ldots, k\right\}
$$

For the Lie algebras $\mathfrak{s o}(n, 1)$ and $\mathfrak{s u}(n, 1)$ one finds that $\operatorname{dim} \mathcal{N}_{K}(\xi, \eta)=$ $\operatorname{dim} K^{\mathbb{C}}$. We saw in [2] that for every $(\xi, \eta) \in \mathbb{C}^{\ell+k}$ the restriction of polynomials to $\mathcal{N}_{K}(\xi, \eta)$ induces an isomorphism of K-modules

$$
\mathcal{H}_{K}(\mathfrak{g}) \approx \mathcal{P}\left(\mathcal{N}_{K}(\xi, \eta)\right)=\mathcal{R}\left(\mathcal{N}_{K}(\xi, \eta)\right)
$$

Here $\mathcal{P}(S)=\{f \mid S ; f \in \mathcal{P}(\mathfrak{g})\}$ for any subset $S \subseteq \mathfrak{g}$ and $\mathcal{R}(T)$ denotes the algebra of regular functions on an algebraic variety T. In [2] we have proved that there exists $X_{0} \in \mathfrak{g}_{0}$ such that its stabilizer $K_{X_{0}}^{\mathbb{C}}$ in $K^{\mathbb{C}}$ is trivial. Then the dimension of the $K^{\mathbb{C}}$-orbit $\mathcal{O}_{X_{0}}=K^{\mathbb{C}} . X_{0}$ equals $\operatorname{dim} K^{\mathbb{C}}$. For $(\xi, \eta)=$ $\left(f_{1}\left(X_{0}\right), \ldots, f_{\ell}\left(X_{0}\right), \varphi_{1}\left(X_{0}\right), \ldots, \varphi_{k}\left(X_{0}\right)\right)$ we have $\mathcal{O}_{X_{0}} \subseteq \mathcal{N}_{K}(\xi, \eta)$ and the equality of dimensions implies that $\mathcal{O}_{X_{0}}$ is Zariski open in $\mathcal{N}_{K}(\xi, \eta)$, Thus the restriction to $\mathcal{O}_{X_{0}}$ is an isomorphism of $\mathcal{P}\left(\mathcal{N}_{K}(\xi, \eta)\right)=\mathcal{R}\left(\mathcal{N}_{K}(\xi, \eta)\right)$ onto $\mathcal{P}\left(\mathcal{O}_{X_{0}}\right)$. Using Peter-Weyl and Stone-Weierstrass theorems we have proved in [2] that in fact $\mathcal{P}\left(\mathcal{O}_{X_{0}}\right)=\mathcal{R}\left(\mathcal{O}_{X_{0}}\right) \approx \mathcal{R}\left(K^{\mathbb{C}}\right)$.

Thus, as a K-module, $\mathcal{H} \approx \mathcal{H}_{K}(\mathfrak{g})$ is isomorphic to the left regular representation of K on $\mathcal{R}\left(K^{\mathbb{C}}\right)$. Now $\mathcal{R}\left(K^{\mathbb{C}}\right)$ carries also the right regular representation of K commuting with the left one. By the isomorphism $\mathcal{R}\left(K^{\mathbb{C}}\right) \approx \mathcal{H}$ we transfer this action of K to \mathcal{H} and expand it to $\mathcal{U}(\mathfrak{g})=\mathcal{U}(\mathfrak{g})^{K} \otimes \mathcal{H}$ by leaving $\mathcal{U}(\mathfrak{g})^{K}$ pointwise invariant. The obtained representation of K on $\mathcal{U}(\mathfrak{g})$
we call weird action of K on $\mathcal{U}(\mathfrak{g})$. In the simplest case $\mathfrak{s o}(2,1) \approx \mathfrak{s u}(1,1)$ the compact group K is commutative and thus the weird action coincides with the adjoint action composed with the inverse map $x \mapsto x^{-1}$ in K.

In the cases $\mathfrak{s o}(n, 1), n \geq 3$, and $\mathfrak{s u}(n, 1), n \geq 2$, when K is not commutative, the weird action is not unique: it depends on the choice of $X_{0} \in \mathfrak{g}_{0}$ such that its stabilizer $K_{X_{0}}^{\mathbb{C}}$ in $K^{\mathbb{C}}$ is trivial. Furthermore, in general the operators of the weird action are not automorphims of the algebra $\mathcal{U}(\mathfrak{g})$. One gets automorphisms if the weird action is trivially extended to the localization $\mathcal{U}(\mathfrak{g})_{\mathcal{U}(\mathfrak{g})^{K} \backslash\{0\}}$ and if we consider this localization as an algebra over the field of fractions $\mathcal{U}(\mathfrak{g})_{\mathcal{U}(\mathfrak{g})^{K} \backslash\{0\}}^{K}$ of the integral domain $\mathcal{U}(\mathfrak{g})^{K}$.

4. Weird action For $\mathfrak{g}_{0}=\mathfrak{s o}(3,1)$

We will compute the weird action in the simplest nontrivial case $\mathfrak{g}_{0}=$ $\mathfrak{s o}(3,1)$. Computation will be on $\mathcal{P}(\mathfrak{g})$ instead of $\mathcal{U}(\mathfrak{g})$; one passes to $\mathcal{U}(\mathfrak{g})$ by symmetrization $\mathcal{P}(\mathfrak{g})=S(\mathfrak{g}) \rightarrow \mathcal{U}(\mathfrak{g})$.

We choose a basis of $\mathfrak{g}=\mathfrak{s o}(3,1, \mathbb{C})=\mathfrak{k} \oplus \mathfrak{p}$ as follows:

$$
\begin{aligned}
& H=\left[\begin{array}{cccc}
0 & 2 i & 0 & 0 \\
-2 i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], E=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & i & 0 \\
1 & -i & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], F=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & i \\
0 \\
-1 & -i & 0 \\
0 \\
0 & 0 & 0 \\
0
\end{array}\right], \\
& Z=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 \\
0 & 0 & -2 & 0
\end{array}\right], X=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -i \\
0 & 0 & 0 & 0 \\
1 & -i & 0 & 0
\end{array}\right], Y=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & -i \\
0 & 0 & 0 & 0 \\
-1 & -i & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Then $\{H, E, F\}$ is a basis of \mathfrak{k} and $\{Z, X, Y\}$ is a basis of \mathfrak{p}. The commutators are

$$
\begin{array}{lllll}
{[H, E]=2 E,} & {[H, X]=2 X,} & {[E, X]=0,} & {[F, X]=Z,} & {[Z, X]=-2 E,} \\
{[H, F]=-2 F,} & {[H, Z]=0,} & {[E, Z]=2 X,} & {[F, Z]=2 Y,} & {[Z, Y]=-2 F,} \\
{[E, F]=H,} & {[H, Y]=-2 Y,} & {[E, Y]=Z,} & {[F, Y]=0,} & {[X, Y]=-H}
\end{array}
$$

The algebra of G-invariants $S(\mathfrak{g})^{G}$ is generated by two algebraically independent homogeneous elements $D_{1}, D_{2} \in S^{2}(\mathfrak{g})$ chosen as multiples of two Casimir elements corresponding to two simple factors $\mathfrak{s o}(4, \mathbb{C}) \simeq \mathfrak{s l}(2, \mathbb{C}) \times \mathfrak{s l}(2, \mathbb{C})$:

$$
\begin{aligned}
& D_{1}=\frac{1}{4} H^{2}+\frac{1}{4} Z^{2}+\frac{1}{2} H Z+E F+E Y-F X-X Y \\
& D_{2}=\frac{1}{4} H^{2}+\frac{1}{4} Z^{2}-\frac{1}{2} H Z+E F-E Y+F X-X Y
\end{aligned}
$$

The algebra of K-invariants $S(\mathfrak{k})^{K}$ is generated by a multiple $\Omega=H^{2}+4 E F$ of the Casimir element in $S(\mathfrak{k})$. Instead of generators $\Omega, D_{1}, D_{2} \in S^{2}(\mathfrak{g})$ of the algebra $S(\mathfrak{g})^{K}=S(\mathfrak{k})^{K} \otimes S(\mathfrak{g})^{G}$ we use $\Omega, \Delta, \Sigma \in S^{2}(\mathfrak{g})$, where

$$
\begin{aligned}
& \Omega=H^{2}+4 E F, \\
& \Delta=Z^{2}-4 X Y=2 D_{1}+2 D_{2}-\Omega, \\
& \Sigma=H Z+2 E Y-2 F X=D_{1}-D_{2}
\end{aligned}
$$

Thus, generators of the algebra $\mathcal{D}(\mathfrak{g})^{K}$ of K-invariant linear differential operators on $\mathcal{P}(\mathfrak{g})$ with constant coefficients are

$$
\begin{aligned}
& \partial(\Omega)=\frac{\partial^{2}}{\partial h^{2}}+4 \frac{\partial^{2}}{\partial e \partial f}, \\
& \partial(\Delta)=\frac{\partial^{2}}{\partial z^{2}}-4 \frac{\partial^{2}}{\partial x \partial y} \\
& \partial(\Sigma)=\frac{\partial^{2}}{\partial h \partial z}+2 \frac{\partial^{2}}{\partial e \partial y}-2 \frac{\partial^{2}}{\partial f \partial x}
\end{aligned}
$$

Here we have identified $\mathcal{P}(\mathfrak{g})$ with $\mathbb{C}[h, e, f, z, x, y]$, where $\{h, e, f, z, x, y\}$ is the basis of the dual space \mathfrak{g}^{*} which is dual with respect to the chosen basis $\{H, E, F, Z, X, Y\}$ of \mathfrak{g}.

The adjoint representation of \mathfrak{k} on \mathfrak{g} extends to representation by derivations of the symmetric algebra $S(\mathfrak{g})$. Denote by π the represention of \mathfrak{k} on $\mathcal{P}(\mathfrak{g})$ obtained by identification $\mathcal{P}(\mathfrak{g})=S(\mathfrak{g})$ via the nondegenerate trace form $(A, B) \mapsto \operatorname{Tr} A B$ on $\mathfrak{g}=\mathfrak{s o}(3,1, \mathbb{C})$. The operators of the representation π on $\mathcal{P}(\mathfrak{g})$ can be expressed as linear differential operators of first order:

$$
\begin{aligned}
& \pi(H)=-2 e \frac{\partial}{\partial e}+2 f \frac{\partial}{\partial f}-2 x \frac{\partial}{\partial x}+2 y \frac{\partial}{\partial y}, \\
& \pi(E)=-f \frac{\partial}{\partial h}+2 h \frac{\partial}{\partial e}-y \frac{\partial}{\partial z}-2 z \frac{\partial}{\partial x}, \\
& \pi(F)=e \frac{\partial}{\partial h}-2 h \frac{\partial}{\partial f}-x \frac{\partial}{\partial z}-2 z \frac{\partial}{\partial y} .
\end{aligned}
$$

Let us now determine the K-harmonic polynomials on \mathfrak{g} :

$$
\mathcal{H}_{K}(\mathfrak{g})=\{P \in \mathcal{P}(\mathfrak{g}) ; \partial(\Omega) P=\partial(\Delta) P=\partial(\Sigma) P=0\}=\bigoplus_{n \in \mathbb{Z}_{+}} \mathcal{H}_{K}^{n}(\mathfrak{g})
$$

where $\mathcal{H}_{K}^{n}(\mathfrak{g})=\mathcal{H}_{K}(\mathfrak{g}) \cap \mathcal{P}^{n}(\mathfrak{g})$.
By our results in [2] we have $\mathcal{P}(\mathfrak{g}) \approx \mathcal{P}(\mathfrak{g})^{K} \otimes \mathcal{H}_{K}(\mathfrak{g})$, thus

$$
\operatorname{dim} \mathcal{P}^{n}(\mathfrak{g})=\sum_{k=0}^{n}\left(\operatorname{dim} \mathcal{P}^{k}(\mathfrak{g})^{K}\right)\left(\operatorname{dim} \mathcal{H}_{K}^{n-k}(\mathfrak{g})\right)
$$

Since \mathfrak{g} is 6 -dimensional, we have

$$
\operatorname{dim} \mathcal{P}^{n}(\mathfrak{g})=\operatorname{dim} S^{n}(\mathfrak{g})=\binom{n+5}{5}
$$

Furthermore, we know that the subalgebra of K-invariants $S(\mathfrak{g})^{K} \approx \mathcal{P}(\mathfrak{g})^{K}$ is generated by three algebraically independent homogeneous elements $\Omega, \Delta, \Sigma \in$ $S^{2}(\mathfrak{g})$. Thus, the dimensions of homogeneous spaces of K-invariants are

$$
\operatorname{dim} \mathcal{P}^{n}(\mathfrak{g})^{K}=\left\{\begin{array}{cl}
0 & n \text { odd } \\
\frac{1}{2}(k+1)(k+2) & n=2 k
\end{array}\right.
$$

By induction on $n \in \mathbb{Z}_{+}$one gets from these formulas:

Proposition 4.1. The dimensions of homogeneous spaces of K-harmonic polynomials on \mathfrak{g} are

$$
\operatorname{dim} \mathcal{H}_{K}^{n}(\mathfrak{g})=\left\{\begin{array}{cc}
1 & n=0 \\
4 n^{2}+2 & n \geq 1
\end{array}\right.
$$

Lemma 4.2. For any $n \in \mathbb{Z}_{+}$define $2 n$ linearly independent homogeneous polynomials of degree n :
$A_{j}^{n}=f^{n-j} y^{j}, \quad 0 \leq j \leq n, \quad B_{j}^{n-1}=f^{n-j-1} y^{j-1}(h y-f z), \quad 1 \leq j \leq n-1$.
Then all these polynomials are in $\mathcal{H}_{K}^{n}(\mathfrak{g})$ and

$$
\begin{array}{ll}
\pi(H) A_{j}^{n}=2 n A_{j}^{n}, & \pi(E) A_{j}^{n}=0,0 \leq j \leq n \\
\pi(H) B_{j}^{n-1}=(2 n-2) B_{j}^{n-1}, & \pi(E) B_{j}^{n-1}=0,1 \leq j \leq n-1
\end{array}
$$

The proof is by direct calculations with differential operators $\partial(\Omega), \partial(\Delta)$, $\partial(\Sigma), \pi(H)$ and $\pi(E)$.

Now, from the representation theory of $\mathfrak{k} \simeq \mathfrak{s l}(2, \mathbb{C})$ we see that A_{j}^{n} are highest weight vectors of $(2 n+1)$-dimensional irreducible subrepresentations of π and bases of the corresponding invariant subspaces are $\left\{\pi(F)^{k} A_{j}^{n} ; 0 \leq\right.$ $k \leq 2 n\}, 0 \leq j \leq n$. Furthermore, B_{j-1}^{n-1} are highest weight vectors of $(2 n-1)$ dimensional irreducible subrepresentions of π and bases of the corresponding invariant subspaces are $\left\{\pi(F)^{k} B_{j-1}^{n-1} ; 0 \leq k \leq 2 n-2\right\}, 1 \leq j \leq n-1$. Since the homogeneous subspaces $\mathcal{H}_{K}^{n}(\mathfrak{g})$ are invariant under the representation π we conclude that all these subspaces are contained in $\mathcal{H}_{K}^{n}(\mathfrak{g})$. The sum of their dimensions (for $n \geq 1$) is

$$
(n+1)(2 n+1)+(n-1)(2 n-1)=4 n^{2}+2=\operatorname{dim} \mathcal{H}_{K}^{n}(\mathfrak{g})
$$

Thus, if we denote by π_{n} the equivalence class of $(2 n+1)$-dimensional irreducible representations of K, we conclude:

Proposition 4.3. In the representation of K on $\mathcal{H}_{K}^{n}(\mathfrak{g})$ the multiplicity of the class π_{n} is $n+1$ and the multiplicity of the class π_{n-1} is $n-1$. Other classes do not appear in $\mathcal{H}_{K}^{n}(\mathfrak{g})$.

Note that we have reproved (ii) of Theorem 2.2 in the case $\mathfrak{g}_{0}=\mathfrak{s o}(3,1)$: the multiplicity of π_{n} is $n+1$ in $\mathcal{H}_{K}^{n}(\mathfrak{g})$ and n in $\mathcal{H}_{K}^{n+1}(\mathfrak{g})$, so all together $2 n+1=d\left(\pi_{n}\right)$ in $\mathcal{H}_{K}(\mathfrak{g}) \approx \mathcal{H}$.

Now we calculate weird action ω of \mathfrak{k} on $\mathcal{P}(\mathfrak{g})$. We choose the following $X_{0} \in \mathfrak{g}_{0}=\mathfrak{s o}(3,1)$ whose stabilizer $K_{X_{0}}^{\mathbb{C}}$ in $K^{\mathbb{C}}$ is trivial:

$$
X_{0}=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

The group $K^{\mathbb{C}}$ consists of all complex matrices of the form

$$
k=\left[\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & 0 \\
b_{1} & b_{2} & b_{3} & 0 \\
c_{1} & c_{2} & c_{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

such that $k k^{t}=k^{t} k=I_{4}$ and $\operatorname{det} k=1$. This means that

$$
\begin{array}{ll}
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1, & a_{1}^{2}+b_{1}^{2}+c_{1}^{2}=1, \\
a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0, & a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0, \\
b_{1}^{2}+b_{2}^{2}+b_{3}^{2}=1, & a_{2}^{2}+b_{2}^{2}+c_{2}^{2}=1, \\
a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}=0, & a_{1} a_{3}+b_{1} b_{3}+c_{1} c_{3}=0, \\
c_{1}^{2}+c_{2}^{2}+c_{3}^{2}=1, & a_{3}^{2}+b_{3}^{2}+c_{3}^{2}=1, \\
b_{1} c_{1}+b_{2} c_{2}+b_{3} c_{3}=0, & a_{2} a_{3}+b_{2} b_{3}+c_{2} c_{3}=0,
\end{array}
$$

and

$$
\begin{array}{lll}
a_{1} b_{2}-a_{2} b_{1}=c_{3}, & a_{1} c_{2}-a_{2} c_{1}=-b_{3}, & b_{1} c_{2}-b_{2} c_{1}=a_{3}, \\
a_{1} b_{3}-a_{3} b_{1}=-c_{2}, & a_{1} c_{3}-a_{3} c_{1}=b_{2}, & b_{1} c_{3}-b_{3} c_{1}=-a_{2}, \\
a_{2} b_{3}-a_{3} b_{2}=c_{1}, & a_{2} c_{3}-a_{3} c_{2}=-b_{1}, & b_{2} c_{3}-b_{3} c_{2}=a_{1}
\end{array}
$$

Thus we find

$$
(\operatorname{Ad} k) X_{0}=k X_{0} k^{-1}=\left[\begin{array}{cccc}
0 & c_{3} & -b_{3} & a_{1} \\
-c_{3} & 0 & a_{3} & b_{1} \\
b_{3} & -a_{3} & 0 & c_{1} \\
a_{1} & b_{1} & c_{1} & 0
\end{array}\right]
$$

We consider the restrictions of polynomials on \mathfrak{g} to the $K^{\mathbb{C}}$-orbit of the element X_{0}. We get

$$
\begin{array}{ll}
h\left((\operatorname{Ad} k) X_{0}\right)=-\frac{i}{2} c_{3}, & e\left((\operatorname{Ad} k) X_{0}\right)=-\frac{i}{2}\left(a_{3}+i b_{3}\right), \\
f\left((\operatorname{Ad} k) X_{0}\right)=-\frac{i}{2}\left(a_{3}-i b_{3}\right), & z\left((\operatorname{Ad} k) X_{0}\right)=-\frac{1}{2} c_{1}, \\
x\left((\operatorname{Ad} k) X_{0}\right)=\frac{1}{2}\left(a_{1}+i b_{1}\right), & y\left((\operatorname{Ad} k) X_{0}\right)=-\frac{1}{2}\left(a_{1}-i b_{1}\right) .
\end{array}
$$

For $C=h y-f z \in \mathcal{P}^{2}(\mathfrak{g})$ we get

$$
C\left((\operatorname{Ad} k) X_{0}\right)=-\frac{1}{4}\left(a_{2}-i b_{2}\right)
$$

The restriction to the $K^{\mathbb{C}}$-orbit $K^{\mathbb{C}} . X_{0}$ is an isomorphism of the space $\mathcal{H}_{K}(\mathfrak{g})$ of K-harmonic polynomials onto the space $\mathcal{R}\left(K^{\mathbb{C}} . X_{0}\right)$ of regular functions on $K^{\mathbb{C}} . X_{0}$. As the stabilizer of X_{0} in $K^{\mathbb{C}}$ is trivial, the action of $K^{\mathbb{C}}$ gives rise to the isomorphism $k \mapsto(\operatorname{Ad} k) X_{0}$ of algebraic varieties $K^{\mathbb{C}} \rightarrow K^{\mathbb{C}} . X_{0}$. Thus we can consider the restriction to the orbit $K^{\mathbb{C}} \cdot X_{0}$ as an isomorphism of $\mathcal{H}_{K}(\mathfrak{g})$ onto $\mathcal{R}\left(K^{\mathbb{C}}\right)$. This isomorphism transfers the adjoint representation of K to the left regular representation of K on $\mathcal{R}\left(K^{\mathbb{C}}\right)$. We want to compute the representation ω of K on $\mathcal{H}_{K}(\mathfrak{g})$ obtained by the inverse isomorphism
$\mathcal{R}\left(K^{\mathbb{C}}\right) \rightarrow \mathcal{H}_{K}(\mathfrak{g})$ from the right regular representation of K on $\mathcal{R}\left(K^{\mathbb{C}}\right)$. For $X \in \mathfrak{k}_{0}$ and for a K-harmonic polynomial $P \in \mathcal{H}_{K}(\mathfrak{g})$ we have

$$
(\omega(X) P)\left((\operatorname{Ad} k) X_{0}\right)=\left.\frac{\mathrm{d}}{\mathrm{~d} t} P\left(\left(\operatorname{Ad} k \mathrm{e}^{t X}\right) X_{0}\right)\right|_{t=0}, \quad k \in K^{\mathbb{C}}
$$

To describe the action ω of \mathfrak{k} on $\mathcal{H}_{K}(\mathfrak{g})$ it is enough to compute this action only on the highest weight vectors A_{j}^{n} and B_{j}^{n} for the adjoint representation π which are defined in Lemma 1. With the introduced notation $C=h y-f z \in$ $\mathcal{P}^{2}(\mathfrak{g})$ we have

$$
A_{j}^{n}=f^{n-j} y^{j}, \quad 0 \leq j \leq n, \quad B_{j}^{n}=f^{n-j} y^{j-1} C, \quad 1 \leq j \leq n
$$

Explicit calculation from the definition of the representation ω on $\mathcal{H}_{K}(\mathfrak{g})$ leads to:

Lemma 4.4. The operators $\omega(H), \omega(E)$ and $\omega(F)$ act on the polynomials f, y and $C=h y-f z$ as follows:

$$
\begin{array}{lll}
\omega(H) f=0, & \omega(E) f=-i y-2 C, & \omega(F) f=i y-2 C, \\
\omega(H) y=-4 i C, & \omega(E) y=-i f, & \omega(F) y=i f, \\
\omega(H) C=i y, & \omega(E) C=-\frac{1}{2} f, & \omega(F) C=-\frac{1}{2} f .
\end{array}
$$

From the relations among the matrix elements of $k \in K^{\mathbb{C}}$ we have

$$
\begin{gathered}
\left(a_{1}-i b_{1}\right)^{2}+\left(a_{2}-i b_{2}\right)^{2}+\left(a_{3}-i b_{3}\right)^{2}= \\
\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)-\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-2 i\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)=0
\end{gathered}
$$

Using the formulas for the restriction of the polynomials to the orbit $K^{\mathbb{C}} \cdot X_{0}$ we find that on this orbit

$$
4 C^{2}-f^{2}+y^{2}=\frac{1}{4}\left(a_{2}-i b_{2}\right)^{2}+\frac{1}{4}\left(a_{3}-i b_{3}\right)^{2}+\frac{1}{4}\left(a_{1}-i b_{1}\right)^{2}=0
$$

Therefore, we conclude:
Lemma 4.5. Restricted to the orbit $K^{\mathbb{C}} \cdot X_{0}$ one has the identity

$$
C^{2}=\frac{1}{4} f^{2}-\frac{1}{4} y^{2}
$$

From Lemmas 4.4 and 4.5 we compute the action ω on the π-highest weight vectors in $\mathcal{H}_{K}(\mathfrak{g})$:

THEOREM 4.6. The weird representation ω of \mathfrak{k} on $\mathcal{H}_{K}(\mathfrak{g})$ acts on the π-highest weight vectors A_{j}^{n}, B_{j}^{n} as follows:

$$
\begin{aligned}
& \omega(H) A_{j}^{n}=-4 i j B_{j}^{n}, \\
& \omega(H) B_{j}^{n}=-i(j-1) A_{j-2}^{n}+i j A_{j}^{n}, \\
& \omega(E) A_{j}^{n}=-i(n-j) A_{j+1}^{n}-i j A_{j-1}^{n}-2(n-j) B_{j+1}^{n}, \\
& \omega(E) B_{j}^{n}=-\frac{1}{2}(n-j+1) A_{j-1}^{n}+\frac{1}{2}(n-j) A_{j+1}^{n}-i(j-1) B_{j-1}^{n}-i(n-j) B_{j+1}^{n}, \\
& \omega(F) A_{j}^{n}=i(n-j) A_{j+1}^{n}+i j A_{j-1}^{n}-2(n-j) B_{j+1}^{n}, \\
& \omega(F) B_{j}^{n}=-\frac{1}{2}(n-j+1) A_{j-1}^{n}+\frac{1}{2}(n-j) A_{j+1}^{n}+i(j-1) B_{j-1}^{n}+i(n-j) B_{j+1}^{n} .
\end{aligned}
$$

As the weird action ω commutes with the adjoint action π, one obtains from Theorem 4.6 the action of the operators $\omega(H), \omega(E)$ and $\omega(F)$ on the basis of $\mathcal{H}_{K}(\mathfrak{g})$:

$$
\begin{aligned}
\left\{\pi(F)^{k} A_{j}^{n} ; n \in \mathbb{Z}_{+}, 0 \leq j \leq\right. & n, 0 \leq k \leq 2 n\} \cup \\
& \left\{\pi(F)^{k} B_{j}^{n} ; n \in \mathbb{N}, 1 \leq j \leq n, 0 \leq k \leq 2 n\right\}
\end{aligned}
$$

The irreducible constituents of the representation ω of degree $(2 n+1)$ are acting on the subspaces
$\mathcal{H}_{K}(\mathfrak{g})^{n}=\operatorname{span}\left\{A_{0}^{n}, A_{1}^{n}, \ldots, A_{n}^{n}, B_{1}^{n}, \ldots, B_{n}^{n}\right\}, \quad \pi(F)^{k} \mathcal{H}_{K}(\mathfrak{g})^{n}, \quad 1 \leq k \leq 2 n$.
To find the highest vector for the action ω on $\mathcal{H}_{K}(\mathfrak{g})^{n}$ (and thus also for $\left.\pi(F)^{k} \mathcal{H}_{K}(\mathfrak{g})^{n}\right)$ one has to solve the equation

$$
\omega(H) P=2 n P, \quad P=\sum_{j=0}^{n} \alpha_{j} A_{j}^{n}+\sum_{j=1}^{n} \beta_{j} B_{j}^{n}
$$

or, equivalently, $\omega(E) P=0$. Using the formulas in Theorem 4.6 one obtains recursive equations for calculating the coefficients α_{j} and β_{j}. It turns out that in the case of even $n=2 m$ the coefficients α_{j} and β_{j} vanish for odd j and

$$
\begin{gathered}
\alpha_{2 j}=(-1)^{j} 2^{2 j} m \frac{(m+j-1)!}{(m-j)!(2 j)!} \alpha_{0} \\
\beta_{2 j}=(-1)^{j+1} i 2^{2 j} j \frac{(m+j-1)!}{(m-j)!(2 j-1)!} \alpha_{0}
\end{gathered}
$$

$1 \leq j \leq m$. In the case of odd $n=2 m+1$ the coefficients α_{j} and β_{j} vanish for even j, and

$$
\begin{gathered}
\alpha_{2 j+1}=(-1)^{j} 2^{2 j} \frac{(m+j)!}{(m-j)!(2 j+1)!} \alpha_{1} \\
\beta_{2 j+1}=(-1)^{j+1} i 2^{2 j+1} \frac{(m+j)!}{(2 m+1)(m-j)!(2 j)!} \alpha_{1},
\end{gathered}
$$

$0 \leq j \leq m$. Thus
Proposition 4.7. In the irreducible constituents $\pi(F)^{k} \mathcal{H}_{K}(\mathfrak{g})^{n}, n \in \mathbb{Z}_{+}$, $0 \leq k \leq 2 n$, the highest weight vectors for the weird action ω are $\pi(F)^{k} P_{n}$, where

$$
\begin{aligned}
& P_{2 m}=\sum_{j=0}^{m}(-1)^{j} 2^{2 j} m \frac{(m+j-1)!}{(m-j)!(2 j)!} A_{2 j}^{2 m}+ \\
& \quad+\sum_{j=1}^{m}(-1)^{j+1} i 2^{2 j} j \frac{(m+j-1)!}{(m-j)!(2 j-1)!} B_{2 j}^{2 m}
\end{aligned}
$$

and

$$
\begin{aligned}
P_{2 m+1}=\sum_{j=0}^{m}(-1)^{j} 2^{2 j} & \frac{(m+j)!}{(m-j)!(2 j+1)!} A_{2 j+1}^{2 m+1}+ \\
& +\sum_{j=0}^{m}(-1)^{j+1} i 2^{2 j+1} \frac{(m+j)!}{(2 m+1)(m-j)!(2 j)!} B_{2 j+1}^{2 m+1}
\end{aligned}
$$

Thus, expressed through variables h, e, f, z, x, y and $C=h y-f z$ we have $P_{0}=1, P_{1}=y-2 i C, P_{2}=f^{2}-2 y^{2}+4 i y C, P_{3}=f^{2} y-\frac{4}{3} y^{3}-\frac{2 i}{3} f^{2} C+\frac{8 i}{3} y^{2} C$, $P_{4}=f^{4}-8 f^{2} y^{2}+8 y^{4}+8 i f^{2} y C-32 i y^{3} C, P_{5}=f^{4} y-4 f^{2} y^{3}+\frac{16}{5} y^{5}-\frac{2 i}{5} f^{4} C+$ $\frac{24 i}{5} f^{2} y^{2} C-\frac{32 i}{5} y^{4} C$ etc.

The weird action ω is extended to $\mathcal{P}(\mathfrak{g})=\mathcal{P}(\mathfrak{g})^{K} \otimes \mathcal{H}_{K}(\mathfrak{g})$ trivially on $\mathcal{P}(\mathfrak{g})^{K}$, i.e. $\omega(\mathfrak{k}) \mathcal{P}(\mathfrak{g})^{K}=0$. Our aim was to try to express this action using some K-invariant linear differential operators on $\mathcal{P}(\mathfrak{g})$ with polynomial coefficients. Unfortunately, it does not seem possible. Here is the action of the operators $\omega(H), \omega(E)$ and $\omega(F)$ on the monomial bases of $\mathcal{P}^{1}(\mathfrak{g})$ and $\mathcal{P}^{2}(\mathfrak{g})$:

$$
\begin{array}{lll}
\omega(H) h=0, & \omega(E) h=-i z+e y+f x, & \omega(F) h=i z+e y+f x, \\
\omega(H) e=0, & \omega(E) e=i x-2 h x-2 e z, & \omega(F) e=-i x-2 h x-2 e z, \\
\omega(H) f=0, & \omega(E) f=-i y-2 h y+2 f z, & \omega(F) f=i y-2 h y+2 f z, \\
\omega(H) z=2 i e y+2 i f x, & \omega(E) z=-i h, & \omega(F) z=i h, \\
\omega(H) x=4 i h x+4 i e z, & \omega(E) x=i e, & \omega(F) x=-i e, \\
\omega(H) y=-4 i h y+4 i f z, & \omega(E) y=-i f, & \omega(F) y=i f .
\end{array}
$$

$$
\begin{aligned}
& \omega(H) h^{2}=0, \\
& \omega(H) f^{2}=0, \\
& \omega(H) h e=0, \\
& \omega(H) f z=-\frac{i}{2} y-2 i h^{2} y+2 i h f z+i e f y+i f^{2} x, \\
& \omega(H) h f=0, \\
& \omega(H) f x=-i z+2 i h e y+2 i h f x, \\
& \omega(H) h z=12 i h e y+12 i h f x, \\
& \omega(H) f y=-4 i h f y+4 i f^{2} z, \\
& \omega(H) h x=-\frac{i}{2} x+2 i h^{2} x+2 i h e z-i e^{2} y-i f x^{2}, \\
& \omega(H) z^{2}=4 i e z y+4 i f z x, \\
& \omega(H) h y=\frac{i}{2} y-2 i h^{2} y+2 i h f z+i e f y+i f^{2} x, \\
& \omega(H) z x=4 i h z x+4 i e z^{2}+2 i e x y+2 i f x^{2}, \\
& \omega(H) e^{2}=0, \\
& \omega(H) z y=-4 i h z y+4 i f z^{2}+2 i e y^{2}+2 i f x y, \\
& \omega(H) e f=0, \\
& \omega(H) x^{2}=8 i h x^{2}+8 i e z x, \\
& \omega(H) e z=i x-2 i h^{2} x-2 i h e z+i e^{2} y+i e f x, \\
& \omega(H) x y=4 i e z y+4 i f z x, \\
& \omega(H) e x=4 i h e x+4 i e^{2} z, \\
& \omega(H) y^{2}=-8 i h y^{2}+8 i f z y . \\
& \omega(H) e y=\frac{i}{2} y-2 i h e y-2 i h f x,
\end{aligned}
$$

$$
\begin{aligned}
& \omega(E) h^{2}=-\frac{4 i}{3} h z+\frac{i}{3} e y-\frac{i}{3} f x+2 h e y+2 h f x, \\
& \omega(E) e^{2}=2 i e x-4 h e x-4 e^{2} z, \\
& \omega(E) h e=i h x-i e z-2 h^{2} x-2 h e z+e^{2} y+e f x, \\
& \omega(E) e x=i e^{2}+i x^{2}-2 h x^{2}-2 e z x, \\
& \omega(E) h f=-i h y-i f z-2 h^{2} y+2 h f z+e f y+f^{2} x, \\
& \omega(E) f^{2}=-2 i f y-4 h f y+4 f^{2} z, \\
& \omega(E) h z=-\frac{2 i}{3} h^{2}+\frac{i}{3} e f-\frac{2 i}{3} z^{2}-\frac{i}{3} x y+e z y+f z x, \\
& \omega(E) f y=-i f^{2}-i y^{2}-2 h y^{2}+2 f z y, \\
& \omega(E) h x=-\frac{1}{4} e+i h e-i z x+h z x+e z^{2}+\frac{1}{2} e x y+\frac{1}{2} f x^{2}, \\
& \omega(E) z^{2}=-\frac{4 i}{3} h z+\frac{i}{3} e y-\frac{i}{3} f x, \\
& \omega(E) h y=-\frac{1}{4} f-i h f+i z y-h z y+\frac{1}{2} e y^{2}+f z^{2}+\frac{1}{2} f x y, \\
& \omega(E) z x=-i h x+i e z, \\
& \omega(E) e f=\frac{4 i}{3} h z-\frac{i}{3} e y+\frac{i}{3} f x-2 h e y-2 h f x, \\
& \omega(E) z y=-i h y-i f z, \\
& \omega(E) e z=-\frac{1}{4} e-i h e+i z x-h z x-e z^{2}-\frac{1}{2} e x y-\frac{1}{2} f x^{2}, \\
& \omega(E) x^{2}=2 i e x, \\
& \omega(E) e y=\frac{1}{2} h+\frac{2 i}{3} h^{2}-\frac{i}{3} e f+\frac{2 i}{3} z^{2}+\frac{i}{3} x y-e z y-f z x, \\
& \omega(E) x y=-\frac{4 i}{3} h z+\frac{i}{3} e y-\frac{i}{3} f x, \\
& \omega(E) f z=\frac{1}{4} f-i h f-i z y-h z y+\frac{1}{2} e y^{2}+f z^{2}+\frac{1}{2} f x y, \\
& \omega(E) y^{2}=-2 i f y . \\
& \omega(E) f x=\frac{1}{2} h-\frac{2 i}{3} h^{2}+\frac{i}{3} e f-\frac{2 i}{3} z^{2}-\frac{i}{3} x y+e z y+f z x, \\
& \omega(F) h^{2}=\frac{4 i}{3} h z-\frac{i}{3} e y+\frac{i}{3} f x+2 h e y+2 h f x, \\
& \omega(F) e^{2}=-2 i e x-4 h e x-4 e^{2} z, \\
& \omega(F) h e=-i h x+i e z-2 h^{2} x-2 h e z+e^{2} y+e f x, \\
& \omega(F) e x=-i e^{2}-i x^{2}-2 h x^{2}-2 e z x, \\
& \omega(F) h f=i h y+i f z-2 h^{2} y+2 h f z+e f y+f^{2} x, \\
& \omega(F) f^{2}=2 i f y-4 h f y+4 f^{2} z, \\
& \omega(F) h z=\frac{2 i}{3} h^{2}-\frac{i}{3} e f+\frac{2 i}{3} z^{2}+\frac{i}{3} x y+e z y+f z x, \\
& \omega(F) f y=i f^{2}+i y^{2}-2 h y^{2}+2 f z y, \\
& \omega(F) h x=-\frac{1}{4} e-i h e+i z x+h z x+e z^{2}+\frac{1}{2} e x y+\frac{1}{2} f x^{2}, \\
& \omega(F) z^{2}=\frac{4 i}{3} h z-\frac{i}{3} e y+\frac{i}{3} f x, \\
& \omega(F) h y=-\frac{1}{4} f+i h f-i z y-h z y+\frac{1}{2} e y^{2}+f z^{2}+\frac{1}{2} f x y, \\
& \omega(F) z x=i h x-i e z, \\
& \omega(F) e f=-\frac{4 i}{3} h z+\frac{i}{3} e y-\frac{i}{3} f x-2 h e y-2 h f x, \\
& \omega(F) z y=i h y+i f z, \\
& \omega(F) e z=-\frac{1}{4} e+i h e-i z x-h z x-e z^{2}-\frac{1}{2} e x y-\frac{1}{2} f x^{2}, \\
& \omega(F) x^{2}=-2 i e x, \\
& \omega(F) e y=\frac{1}{2} h-\frac{2 i}{3} h^{2}+\frac{i}{3} e f-\frac{2 i}{3} z^{2}-\frac{i}{3} x y-e z y-f z x, \\
& \omega(F) x y=\frac{4 i}{3} h z-\frac{i}{3} e y+\frac{i}{3} f x, \\
& \omega(F) f z=\frac{1}{4} f+i h f+i z y-h z y+\frac{1}{2} e y^{2}+f z^{2}+\frac{1}{2} f x y, \\
& \omega(F) y^{2}=2 i f y . \\
& \omega(F) f x=\frac{1}{2} h+\frac{2 i}{3} h^{2}+\frac{2 i}{3} z^{2}-\frac{i}{3} e f+\frac{i}{3} x y+e z y+f z x,
\end{aligned}
$$

Finally, we note that when inspecting K-invariant linear differential operators on $\mathcal{P}(\mathfrak{g})$ with polynomial coefficients we found another representation κ of \mathfrak{k} on $\mathcal{P}(\mathfrak{g})$ commuting with π. It is given by the following derivations of
the algebra $\mathcal{P}(\mathfrak{g})$:

$$
\begin{aligned}
& \kappa(H)=-h \frac{\partial}{\partial h}-e \frac{\partial}{\partial e}-f \frac{\partial}{\partial f}+z \frac{\partial}{\partial z}+x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}, \\
& \kappa(E)=z \frac{\partial}{\partial h}-x \frac{\partial}{\partial e}+y \frac{\partial}{\partial f} \\
& \kappa(F)=h \frac{\partial}{\partial z}-e \frac{\partial}{\partial x}+f \frac{\partial}{\partial y} .
\end{aligned}
$$

This representation does not commute with $\partial(\Omega), \partial(\Delta)$ and $\partial(\Sigma)$, but the space of K-harmonic polynomials is nevertheless κ-invariant since the commutators are

$$
\begin{array}{lll}
{[\kappa(H), \partial(\Omega)]=2 \partial(\Omega),} & {[\kappa(E), \partial(\Omega)]=0,} & {[\kappa(F), \partial(\Omega)]=-2 \partial(\Sigma),} \\
{[\kappa(H), \partial(\Delta)]=-2 \partial(\Delta),} & {[\kappa(E), \partial(\Delta)]=-2 \partial(\Sigma),} & {[\kappa(F), \partial(\Delta)]=0,} \\
{[\kappa(H), \partial(\Sigma)]=0,} & {[\kappa(E), \partial(\Sigma)]=-\partial(\Omega),} & {[\kappa(F), \partial(\Sigma)]=-\partial(\Delta) .}
\end{array}
$$

The homogeneous subspaces $\mathcal{P}^{n}(\mathfrak{g})$, thus also $\mathcal{H}_{K}^{n}(\mathfrak{g})$, are evidently κ invariant. The action on the vectors A_{j}^{n} and B_{j}^{n} is:

$$
\begin{aligned}
& \kappa(H) A_{j}^{n}=(2 j-n) A_{j}^{n}, \quad \kappa(E) A_{j}^{n}=(n-j) A_{j+1}^{n}, \quad \kappa(F) A_{j}^{n}=j A_{j-1}^{n}, 0 \leq j \leq n, \\
& \kappa(H) B_{j}^{n}=(2 j-n-1) B_{j}^{n}, \kappa(E) B_{j}^{n}=(n-j) B_{j+1}^{n}, \quad \kappa(F) B_{j}^{n}=(j-1) B_{j-1}^{n}, 1 \leq j \leq n .
\end{aligned}
$$

Thus, we see that the subspace $\operatorname{span}\left\{A_{j}^{n} ; 0 \leq j \leq n\right\}$ is κ-invariant and the corresponding subrepresentation is irreducible of degree $n+1$. The same holds for the subspaces $\operatorname{span}\left\{\pi(F)^{k} A_{j}^{n} ; 0 \leq j \leq n\right\}, 1 \leq k \leq 2 n$. Similarly, the subspace span $\left\{B_{j}^{n} ; 1 \leq j \leq n\right\}$ (and also span $\left\{\pi(F)^{k} B_{j}^{n} ; 1 \leq j \leq n\right\}, 1 \leq$ $k \leq 2 n)$ is κ-invariant and the corresponding subrepresentation is irreducible of degree n.

The subalgebra $\mathcal{P}(\mathfrak{g})^{K}$ of K-invariants is κ-invariant. We have $\mathcal{P}(\mathfrak{g})^{K}=$ $\mathbb{C}[\omega, \delta, \sigma]$, where ω, δ and σ are quadratic polynomials:

$$
\omega=h^{2}+e f, \quad \delta=z^{2}-x y, \quad \sigma=2 h z+e y-f x .
$$

κ acts on them as follows

$$
\begin{array}{lll}
\kappa(H) \omega=-2 \omega, & \kappa(E) \omega=\sigma, & \kappa(F) \omega=0 \\
\kappa(H) \delta=2 \delta, & \kappa(E) \delta=0, & \kappa(F) \delta=\sigma \\
\kappa(H) \sigma=0, & \kappa(E) \sigma=2 \delta, & \kappa(F) \sigma=2 \omega .
\end{array}
$$

Therefore, the subrepresention of κ on the 3 -dimensional invariant subspace $\mathbb{C}^{1}[\omega, \delta, \sigma]=\operatorname{span}\{\omega, \delta, \sigma\}$ is irreducible. Since the representation κ of \mathfrak{k} acts by derivations, we conclude that all irreducible constituents of κ in $\mathcal{P}(\mathfrak{g})^{K}$ are of odd degree.

The representation κ on $\mathcal{P}(\mathfrak{g})$ is locally finite, thus the corresponding represention of \mathfrak{k}_{0} integrates to a representation of a simply connected compact Lie group with the Lie algebra \mathfrak{k}_{0}. Since among the irreducible constituents of κ are not only those of odd degree but also those of even degree, this group is not $K \approx \mathrm{SO}(3)$ but its 2 -fold covering group $\approx \mathrm{SU}(2)$. Finally, since \mathfrak{k}_{0} acts by derivations, the action of the integrated representation on $\mathcal{P}(\mathfrak{g})$ is by automorphisms.

Acknowledgements.

The author was supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).

References

[1] F. Knop, Der Zentralisator einer Liealgebra in einer einhülende Algebra, J. Reine Angew. Math. 406 (1990), 5-9.
[2] H. Kraljević, The structure of the algebra $(\mathcal{U}(\mathfrak{g}) \otimes C(\mathfrak{p}))^{K}$ for the groups $\mathrm{SU}(n, 1)$ and $\mathrm{SO}_{e}(n, 1)$, Math. Commun. 27 (2022), 11-18.

Neobično K-djelovanje na $\mathcal{U}(\mathfrak{g})$ za $\mathfrak{s o}(n, 1)$ i $\mathfrak{s u}(n, 1)$

Hrvoje Kraljević

SAžEtak. Neka je \mathfrak{g}_{0} ili $\mathfrak{s o}(n, 1)$ ili $\mathfrak{s u}(n, 1), \mathfrak{g}$ njezina kompleksifikacija, K maksimalna kompaktna podgrupa adjungirane grupe od $\mathfrak{g}_{0}, \mathcal{U}(\mathfrak{g})$ univerzalna omotačka algebra od \mathfrak{g} i $\mathcal{U}(\mathfrak{g})^{K}$ njezina podalgebra K-invarijanata. Posljedica rezultata iz [2] je da osim uobičajenog adjungiranog djelovanja od K na $\mathcal{U}(\mathfrak{g})$ postoji i drugo djelovanje od K koje komutira s adjungiranim djelovanjem i ostavlja $\mathcal{U}(\mathfrak{g})^{K}$ po točkama invarijantnim. Slučaj $\mathfrak{g}_{0}=\mathfrak{s o}(2,1) \simeq \mathfrak{s u}(1,1)$ je trivijalan jer je K komutativna i neobično djelovanje od K podudara se s inverzom adjungiranog djelovanja. U ovom članku detaljno smo proučili neobično djelovanje od K u najjednostavnijem netrivijalnom slučaju $\mathfrak{g}_{0}=\mathfrak{s o}(3,1)$.

Department of Mathematics
University of Zagreb
10000 Zagreb, Croatia
E-mail: hrvoje.kraljevic@math.hr
Received: 29.5.2023.
Revised: 16.9.2023.
Accepted: 17.10.2023.

[^0]: 2020 Mathematics Subject Classification. 16S30, 20G05.
 Key words and phrases. Universal enveloping algebra, K-types, adjoint action, K invariants, K-harmonic polynomials.

