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WEIRD K-ACTIONS ON U(g) FOR so(n, 1) AND su(n, 1)
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For Marko Tadić, with our admiration and appreciation

Abstract. Let g0 be either so(n, 1) or su(n, 1), g its complexification,
K a maximal compact subgroup of the adjoint group of g0, U(g) the uni-
versal enveloping algebra of g and U(g)K its subalgebra of K-invariants. A
consequence of our results in [2] is that besides the usual adjoint action of
K on U(g) there is another action of K commuting with the adjoint action
and leaving U(g)K pointwise invariant. The case g0 = so(2, 1) ≃ su(1, 1)
is trivial since K is commutative and the weird action of K coincides with
the inverse of adjoint action. We investigate closely the weird action of K
in the simplest nontrivial case g0 = so(3, 1).

1. Notation

Our notation is usual: C are complex numbers, R real numbers, Z inte-
gers, Z+ nonnegative integers, N = Z+ \ {0}, Mn,m(K) the space of n ×m
matrices with entries from a field K, Mn(K) = Mn,n(K), Aj,k is the (j, k)-
entry of a matrix A, In is the unit n × n matrix, At denotes the trans-
pose of a matrix A, A∗ is the adjoint (= transpose and complex conjugate)
of a matrix A ∈ Mn(C). Furthermore, gl(n,K) is the Lie algebra Mn(K)
with commutator [A,B] = AB − BA, sl(n,K) = {A ∈ gl(n,K); TrA = 0},
so(n, 1) = {A ∈Mn+1(R); At = −ΓAΓ} with Γ = diag(1, . . . , 1,−1), so(n) =
{B ∈ Mn(R); Bt = −B}, su(n, 1) = {A ∈ sl(n + 1,C); A∗ = −ΓAΓ}, and
u(n) = {B ∈ Mn(C); B∗ = −B}; the complexifications of the real Lie alge-
bras so(n, 1), so(n), su(n, 1) and u(n) are so(n, 1,C) = {A ∈ Mn+1(C); At =
−ΓAΓ}, so(n,C) = {B ∈ Mn(C); Bt = −B}, sl(n + 1,C) and gl(n,C). Fur-
thermore, GL(n,K) denotes the group of invertible matrices in Mn(K) and
SL(n,K) = {A ∈ GL(n,K); det A = 1}. The matrix Lie groups of the intro-
duced real Lie algebras are SO(n, 1) = {A ∈ SL(n + 1,R); AtΓA = Γ} with
the identity component SOe(n, 1) = {A ∈ SO(n, 1); An+1,n+1 ≥ 1}, SO(n) =
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{A ∈ SL(n,R); AtA = In}, SU(n, 1) = {A ∈ SL(n + 1,C); A∗ΓA = Γ} and
U(n) = {A ∈ GL(n,C); A∗A = In}. We have

so(n, 1) =
{[

B a
at 0

]
; B ∈ so(n), a ∈Mn,1(R)

}
,

and
su(n, 1) =

{[
B a
a∗ −TrB

]
; B ∈ u(n), a ∈Mn,1(C)

}
.

2. Preliminaries

Let g0 be either so(n, 1) (n ≥ 2) or su(n, 1), g its complexification, G
the adjoint group of g0, K its maximal compact subgroup, g0 = k0 ⊕ p0 the
corresponding Cartan decomposition and g = k⊕ p its complexification.

In the case g0 = so(n, 1) the adjoint group G can be identified with the
group SOe(n, 1) and the adjoint action of A ∈ SOe(n, 1) on g is given by
A.X = (AdA)X = AXA−1, X ∈ g. In this case we choose the maximal

compact subgroup K =
{[

B 0
0 1

]
; B ∈ SO(n)

}
≃ SO(n). Then

k0 =
{[

B 0
0 0

]
∈Mn+1(R); B ∈ so(n)

}
≃ so(n),

p0 =
{[

0 a
at 0

]
; a ∈Mn,1(R)

}
,

and
k =

{[
B 0
0 0

]
∈Mn+1(C); B ∈ so(n,C)

}
≃ so(n,C),

p =
{[

0 a
at 0

]
; a ∈Mn,1(C)

}
.

In the case g0 = su(n, 1) we have g = sl(n+ 1,C). We choose the Cartan
decomposition of g0

k0 =
{[

B 0
0 −TrB

]
∈Mn+1(C); B ∈ u(n)

}
≃ u(n),

and
p0 =

{[
0 a
a∗ 0

]
; a ∈Mn,1(C)

}
.

Then

k =
{[

B 0
0 −TrB

]
∈Mn+1(C); B ∈Mn(C)

}
≃ gl(n,C),

and
p =

{[
0 a
b 0

]
; a ∈Mn,1(C), b ∈M1,n(C)

}
.
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Now G is identified with SU(n, 1)/Z, where Z is the center of SU(n, 1) :

Z = {αIn+1; α ∈ C, αn+1 = 1} ≃ Zn+1 := Z/(n+ 1)Z.

Then K = K̃/Z, where K̃ is a maximal compact subgroup of SU(n, 1)

K̃ =
{[

B 0
0 (det B)−1

]
; B ∈ U(n)

}
≃ U(n).

Denote by U(g) and U(k) ⊆ U(g) the universal enveloping algebras of g
and k. Furthermore, let S(g) and S(k) ⊆ S(g) be the symmetric algebras over g
and k; using the invariant non-degenerate trace bilinear form (A,B) 7→ TrAB
one identifies g and k with its dual spaces g∗ and k∗, thus the symmetric
algebras S(g) and S(k) with the polynomial algebras P(g) = S(g∗) and P(k) =
S(k∗). The group G (and its subgroup K) acts by automorphisms on the
algebras U(g) and P(g) and K acts by automorphisms on U(k) and P(k).
Denote by U(g)G, P(g)G, U(g)K , P(g)K , U(k)K and P(k)K the subalgebras
of invariants. Then U(g)G is the center Z(g) of U(g) and U(k)K is the center
Z(k) of U(k). Knop has proved in [1] the following theorem.

Theorem 2.1. The multiplication induces an isomorphism of Z(g)⊗Z(k)
onto the algebra U(g)K and an isomorphism of P(g)G ⊗ P(k)K onto P(g)K .

Denote by NK the set of all nilpotent elements of g whose projection
onto k along p is nilpotent in the reductive Lie algebra k, and let H be the
subspace of U(g) spanned by all powers (in U(g) ) Ak, A ∈ NK , k ∈ Z+. The
subspace H of U(g) is invariant under the action of K. We have proved in [2]
the following theorem.

Theorem 2.2. Under above assumptions
(i) The multiplication induces an isomorphism of (U(g)K ,K)-modules
U(g)K ⊗H onto U(g).

(ii) Let K̂ be the set of equivalence classes of irreducible (finite-dimensional)
representations of K. The multiplicity of any δ ∈ K̂ in the K-module
H is equal to its degree d(δ).

3. Weird action of K on U(g)

We recall briefly the proof of (ii) which leads to a weird action of K
on U(g). The inverse of the symmetrization U(g) → S(g) = P(g) maps the
K-submodule H onto the space HK(g) of K-harmonic polynomials on g :

HK(g) = {f ∈ P(g); ∂(u)f = 0 ∀u ∈ S+(g)K}.

Here ∂ : S(g)→ D(g) is the usual isomorphism of the symmetric algebra S(g)
onto the algebra D(g) of linear differential operators on P(g) with constant
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coefficients: ∂(X) is the derivation in the direction X for any X ∈ g. Further-
more, we denote by S+(g)K and P+(g)K the maximal ideals (of codimension
1) of the algebras of K-invariants S(g)K and P(g)K :

S+(g)K =
⊕
k>0

Sk(g)K , P+(g)K =
⊕
k>0
Pk(g)K = {P ∈ P(g)k; P (0) = 0}.

Then the set NK of K-nilpotent elements of g is the zero set of the ideal
P(g)P+(g)K generated by P+(g)K in P(g), i.e.

NK = {X ∈ g; P (X) = 0 ∀P ∈ P+(g)K}.
Now, by the Knop’s theorem P(g)K ≃ P(g)G⊗P(k)K . By Harish-Chandra iso-
morphism and by Chevalley’s theorem on Weyl group invariants we know that
the algebra P(g)G is generated by ℓ = rank g homogeneous algebraically inde-
pendentG-invariant polynomials f1, . . . , fℓ and the algebra P(k)K is generated
by k = rank k homogeneous algebraically independent K-invariant polynomi-
als φ1, . . . , φk. Thus, P(g)K is generated by ℓ+ k homogeneous algebraically
independent polynomials f1, . . . , fℓ, φ1, . . . , φk and so

NK = {X ∈ g; f1(X) = · · · = fℓ(X) = φ1(X) = · · · = φk(X) = 0}
is a Zariski closed subset of g of dimension dim g − ℓ − k. More generally,
for any (ξ, η) = (ξ1, . . . , ξℓ, η1, . . . , ηk) in Cℓ+k we define a KC-stable Zariski
closed set of the same dimension (KC being the complexification of the group
K)
NK(ξ, η) = {X ∈ g; fj(X) = ξj , j = 1, . . . , ℓ, φi(X) = ηi, i = 1, . . . , k}.

For the Lie algebras so(n, 1) and su(n, 1) one finds that dim NK(ξ, η) =
dim KC. We saw in [2] that for every (ξ, η) ∈ Cℓ+k the restriction of polyno-
mials to NK(ξ, η) induces an isomorphism of K-modules

HK(g) ≈ P(NK(ξ, η)) = R(NK(ξ, η)).
Here P(S) = {f |S; f ∈ P(g)} for any subset S ⊆ g and R(T ) denotes the
algebra of regular functions on an algebraic variety T. In [2] we have proved
that there exists X0 ∈ g0 such that its stabilizer KC

X0
in KC is trivial. Then

the dimension of the KC-orbit OX0 = KC.X0 equals dim KC. For (ξ, η) =
(f1(X0), . . . , fℓ(X0), φ1(X0), . . . , φk(X0)) we have OX0 ⊆ NK(ξ, η) and the
equality of dimensions implies that OX0 is Zariski open in NK(ξ, η), Thus
the restriction to OX0 is an isomorphism of P(NK(ξ, η)) = R(NK(ξ, η)) onto
P(OX0). Using Peter-Weyl and Stone-Weierstrass theorems we have proved
in [2] that in fact P(OX0) = R(OX0) ≈ R(KC).

Thus, as a K-module, H ≈ HK(g) is isomorphic to the left regular repre-
sentation of K on R(KC). Now R(KC) carries also the right regular represen-
tation of K commuting with the left one. By the isomorphism R(KC) ≈ H
we transfer this action of K to H and expand it to U(g) = U(g)K ⊗ H by
leaving U(g)K pointwise invariant. The obtained representation of K on U(g)



WEIRD K-ACTIONS FOR so(n, 1) AND su(n, 1) 249

we call weird action of K on U(g). In the simplest case so(2, 1) ≈ su(1, 1)
the compact group K is commutative and thus the weird action coincides with
the adjoint action composed with the inverse map x 7→ x−1 in K.

In the cases so(n, 1), n ≥ 3, and su(n, 1), n ≥ 2, when K is not commu-
tative, the weird action is not unique: it depends on the choice of X0 ∈ g0
such that its stabilizer KC

X0
in KC is trivial. Furthermore, in general the

operators of the weird action are not automorphims of the algebra U(g). One
gets automorphisms if the weird action is trivially extended to the localization
U(g)U(g)K \{0} and if we consider this localization as an algebra over the field
of fractions U(g)KU(g)K \{0} of the integral domain U(g)K .

4. Weird action for g0 = so(3, 1)

We will compute the weird action in the simplest nontrivial case g0 =
so(3, 1). Computation will be on P(g) instead of U(g); one passes to U(g) by
symmetrization P(g) = S(g)→ U(g).

We choose a basis of g = so(3, 1,C) = k⊕ p as follows:

H =

 0 2i 0 0
−2i 0 0 0

0 0 0 0
0 0 0 0

 , E =

 0 0 −1 0
0 0 i 0
1 −i 0 0
0 0 0 0

 , F =

 0 0 1 0
0 0 i 0

−1 −i 0 0
0 0 0 0

 ,

Z =

 0 0 0 0
0 0 0 0
0 0 0 −2
0 0 −2 0

 , X =

 0 0 0 1
0 0 0 −i
0 0 0 0
1 −i 0 0

 , Y =

 0 0 0 −1
0 0 0 −i
0 0 0 0

−1 −i 0 0

 .
Then {H,E, F} is a basis of k and {Z,X, Y } is a basis of p. The commutators
are
[H,E] = 2E, [H,X] = 2X, [E,X] = 0, [F,X] = Z, [Z,X]=−2E,
[H,F ] = −2F, [H,Z] = 0, [E,Z] = 2X, [F,Z] = 2Y, [Z, Y ]=−2F,
[E,F ] = H, [H,Y ] = −2Y, [E, Y ] = Z, [F, Y ] = 0, [X,Y ]=−H.

The algebra of G-invariants S(g)G is generated by two algebraically indepen-
dent homogeneous elementsD1, D2 ∈ S2(g) chosen as multiples of two Casimir
elements corresponding to two simple factors so(4,C) ≃ sl(2,C)× sl(2,C) :

D1 = 1
4H

2 + 1
4Z

2 + 1
2HZ + EF + EY − FX −XY,

D2 = 1
4H

2 + 1
4Z

2 − 1
2HZ + EF − EY + FX −XY.

The algebra of K-invariants S(k)K is generated by a multiple Ω = H2 + 4EF
of the Casimir element in S(k). Instead of generators Ω, D1, D2 ∈ S2(g) of the
algebra S(g)K = S(k)K ⊗ S(g)G we use Ω,∆,Σ ∈ S2(g), where

Ω = H2 + 4EF,
∆ = Z2 − 4XY = 2D1 + 2D2 − Ω,
Σ = HZ + 2EY − 2FX = D1 −D2.
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Thus, generators of the algebra D(g)K of K-invariant linear differential oper-
ators on P(g) with constant coefficients are

∂(Ω) = ∂2

∂h2 + 4 ∂2

∂e∂f ,

∂(∆) = ∂2

∂z2 − 4 ∂2

∂x∂y ,

∂(Σ) = ∂2

∂h∂z + 2 ∂2

∂e∂y − 2 ∂2

∂f∂x .

Here we have identified P(g) with C[h, e, f, z, x, y], where {h, e, f, z, x, y} is
the basis of the dual space g∗ which is dual with respect to the chosen basis
{H,E, F, Z,X, Y } of g.

The adjoint representation of k on g extends to representation by deriva-
tions of the symmetric algebra S(g). Denote by π the represention of k on
P(g) obtained by identification P(g) = S(g) via the nondegenerate trace
form (A,B) 7→ TrAB on g = so(3, 1,C). The operators of the representation
π on P(g) can be expressed as linear differential operators of first order:

π(H) = −2e ∂∂e + 2f ∂
∂f − 2x ∂

∂x + 2y ∂
∂y ,

π(E) = −f ∂
∂h + 2h ∂

∂e − y
∂
∂z − 2z ∂

∂x ,
π(F ) = e ∂∂h − 2h ∂

∂f − x
∂
∂z − 2z ∂

∂y .

Let us now determine the K-harmonic polynomials on g :

HK(g) = {P ∈ P(g); ∂(Ω)P = ∂(∆)P = ∂(Σ)P = 0} =
⊕
n∈Z+

HnK(g),

where HnK(g) = HK(g) ∩ Pn(g).
By our results in [2] we have P(g) ≈ P(g)K ⊗HK(g), thus

dim Pn(g) =
n∑
k=0

(dim Pk(g)K)(dim Hn−k
K (g)).

Since g is 6-dimensional, we have

dim Pn(g) = dim Sn(g) =
(
n+ 5

5

)
.

Furthermore, we know that the subalgebra of K-invariants S(g)K ≈ P(g)K is
generated by three algebraically independent homogeneous elements Ω,∆,Σ ∈
S2(g). Thus, the dimensions of homogeneous spaces of K-invariants are

dim Pn(g)K =
{

0 n odd
1
2 (k + 1)(k + 2) n = 2k.

By induction on n ∈ Z+ one gets from these formulas:
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Proposition 4.1. The dimensions of homogeneous spaces of K-harmonic
polynomials on g are

dimHnK(g) =
{

1 n = 0
4n2 + 2 n ≥ 1.

Lemma 4.2. For any n ∈ Z+ define 2n linearly independent homogeneous
polynomials of degree n :

Anj = fn−jyj , 0 ≤ j ≤ n, Bn−1
j = fn−j−1yj−1(hy−fz), 1 ≤ j ≤ n−1.

Then all these polynomials are in HnK(g) and

π(H)Anj = 2nAnj , π(E)Anj = 0, 0 ≤ j ≤ n,
π(H)Bn−1

j = (2n− 2)Bn−1
j , π(E)Bn−1

j = 0, 1 ≤ j ≤ n− 1.

The proof is by direct calculations with differential operators ∂(Ω), ∂(∆),
∂(Σ), π(H) and π(E).

Now, from the representation theory of k ≃ sl(2,C) we see that Anj are
highest weight vectors of (2n+ 1)-dimensional irreducible subrepresentations
of π and bases of the corresponding invariant subspaces are {π(F )kAnj ; 0 ≤
k ≤ 2n}, 0 ≤ j ≤ n. Furthermore, Bn−1

j−1 are highest weight vectors of (2n−1)-
dimensional irreducible subrepresentions of π and bases of the corresponding
invariant subspaces are {π(F )kBn−1

j−1 ; 0 ≤ k ≤ 2n − 2}, 1 ≤ j ≤ n − 1. Since
the homogeneous subspaces HnK(g) are invariant under the representation π
we conclude that all these subspaces are contained in HnK(g). The sum of their
dimensions (for n ≥ 1) is

(n+ 1)(2n+ 1) + (n− 1)(2n− 1) = 4n2 + 2 = dimHnK(g).

Thus, if we denote by πn the equivalence class of (2n + 1)-dimensional irre-
ducible representations of K, we conclude:

Proposition 4.3. In the representation of K on HnK(g) the multiplicity
of the class πn is n+ 1 and the multiplicity of the class πn−1 is n− 1. Other
classes do not appear in HnK(g).

Note that we have reproved (ii) of Theorem 2.2 in the case g0 = so(3, 1) :
the multiplicity of πn is n + 1 in HnK(g) and n in Hn+1

K (g), so all together
2n+ 1 = d(πn) in HK(g) ≈ H.

Now we calculate weird action ω of k on P(g). We choose the following
X0 ∈ g0 = so(3, 1) whose stabilizer KC

X0
in KC is trivial:

X0 =


0 1 0 1
−1 0 0 0
0 0 0 0
1 0 0 0

 .
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The group KC consists of all complex matrices of the form

k =


a1 a2 a3 0
b1 b2 b3 0
c1 c2 c3 0
0 0 0 1


such that kkt = ktk = I4 and det k = 1. This means that

a2
1 + a2

2 + a2
3 = 1, a2

1 + b2
1 + c2

1 = 1,
a1b1 + a2b2 + a3b3 = 0, a1a2 + b1b2 + c1c2 = 0,
b2

1 + b2
2 + b2

3 = 1, a2
2 + b2

2 + c2
2 = 1,

a1c1 + a2c2 + a3c3 = 0, a1a3 + b1b3 + c1c3 = 0,
c2

1 + c2
2 + c2

3 = 1, a2
3 + b2

3 + c2
3 = 1,

b1c1 + b2c2 + b3c3 = 0, a2a3 + b2b3 + c2c3 = 0,

and
a1b2 − a2b1 = c3, a1c2 − a2c1 = −b3, b1c2 − b2c1 = a3,
a1b3 − a3b1 = −c2, a1c3 − a3c1 = b2, b1c3 − b3c1 = −a2,
a2b3 − a3b2 = c1, a2c3 − a3c2 = −b1, b2c3 − b3c2 = a1.

Thus we find

(Ad k)X0 = kX0k
−1 =


0 c3 −b3 a1
−c3 0 a3 b1
b3 −a3 0 c1
a1 b1 c1 0

 .
We consider the restrictions of polynomials on g to the KC-orbit of the element
X0. We get

h((Ad k)X0) = − i
2c3, e((Ad k)X0) = − i

2 (a3 + ib3),
f((Ad k)X0) = − i

2 (a3 − ib3), z((Ad k)X0) = − 1
2c1,

x((Ad k)X0) = 1
2 (a1 + ib1), y((Ad k)X0) = − 1

2 (a1 − ib1).

For C = hy − fz ∈ P2(g) we get

C((Ad k)X0) = − 1
4 (a2 − ib2).

The restriction to the KC-orbit KC.X0 is an isomorphism of the space HK(g)
of K-harmonic polynomials onto the space R(KC.X0) of regular functions
on KC.X0. As the stabilizer of X0 in KC is trivial, the action of KC gives
rise to the isomorphism k 7→ (Ad k)X0 of algebraic varieties KC → KC.X0.
Thus we can consider the restriction to the orbit KC.X0 as an isomorphism
of HK(g) onto R(KC). This isomorphism transfers the adjoint representation
of K to the left regular representation of K on R(KC). We want to compute
the representation ω of K on HK(g) obtained by the inverse isomorphism
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R(KC) → HK(g) from the right regular representation of K on R(KC). For
X ∈ k0 and for a K-harmonic polynomial P ∈ HK(g) we have

(ω(X)P )((Ad k)X0) = d
dtP ((Ad ketX)X0)

∣∣∣∣
t=0

, k ∈ KC.

To describe the action ω of k on HK(g) it is enough to compute this action
only on the highest weight vectors Anj and Bnj for the adjoint representation π
which are defined in Lemma 1. With the introduced notation C = hy − fz ∈
P2(g) we have

Anj = fn−jyj , 0 ≤ j ≤ n, Bnj = fn−jyj−1C, 1 ≤ j ≤ n.

Explicit calculation from the definition of the representation ω onHK(g) leads
to:

Lemma 4.4. The operators ω(H), ω(E) and ω(F ) act on the polynomials
f, y and C = hy − fz as follows:

ω(H)f = 0, ω(E)f = −iy − 2C, ω(F )f = iy − 2C,
ω(H)y = −4iC, ω(E)y = −if, ω(F )y = if,
ω(H)C = iy, ω(E)C = − 1

2f, ω(F )C = − 1
2f.

From the relations among the matrix elements of k ∈ KC we have

(a1 − ib1)2 + (a2 − ib2)2 + (a3 − ib3)2 =
(a2

1 + a2
2 + a2

3)− (b2
1 + b2

2 + b2
3)− 2i(a1b1 + a2b2 + a3b3) = 0.

Using the formulas for the restriction of the polynomials to the orbit KC.X0
we find that on this orbit

4C2 − f2 + y2 = 1
4 (a2 − ib2)2 + 1

4 (a3 − ib3)2 + 1
4 (a1 − ib1)2 = 0.

Therefore, we conclude:

Lemma 4.5. Restricted to the orbit KC.X0 one has the identity

C2 = 1
4f

2 − 1
4y

2.

From Lemmas 4.4 and 4.5 we compute the action ω on the π-highest
weight vectors in HK(g) :

Theorem 4.6. The weird representation ω of k on HK(g) acts on the
π-highest weight vectors Anj , Bnj as follows:

ω(H)Anj = −4ijBnj ,
ω(H)Bnj = −i(j − 1)Anj−2 + ijAnj ,
ω(E)Anj = −i(n− j)Anj+1 − ijAnj−1 − 2(n− j)Bnj+1,
ω(E)Bnj = − 1

2 (n− j + 1)Anj−1 + 1
2 (n− j)Anj+1 − i(j − 1)Bnj−1 − i(n− j)Bnj+1,

ω(F )Anj = i(n− j)Anj+1 + ijAnj−1 − 2(n− j)Bnj+1,
ω(F )Bnj = − 1

2 (n− j + 1)Anj−1 + 1
2 (n− j)Anj+1 + i(j − 1)Bnj−1 + i(n− j)Bnj+1.
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As the weird action ω commutes with the adjoint action π, one obtains
from Theorem 4.6 the action of the operators ω(H), ω(E) and ω(F ) on the
basis of HK(g) :

{π(F )kAnj ; n ∈ Z+, 0 ≤ j ≤ n, 0 ≤ k ≤ 2n}∪
{π(F )kBnj ; n ∈ N, 1 ≤ j ≤ n, 0 ≤ k ≤ 2n}.

The irreducible constituents of the representation ω of degree (2n+1) are
acting on the subspaces

HK(g)n = span {An0 , An1 , . . . , Ann, Bn1 , . . . , Bnn}, π(F )kHK(g)n, 1 ≤ k ≤ 2n.

To find the highest vector for the action ω on HK(g)n (and thus also for
π(F )kHK(g)n) one has to solve the equation

ω(H)P = 2nP, P =
n∑
j=0

αjA
n
j +

n∑
j=1

βjB
n
j ,

or, equivalently, ω(E)P = 0. Using the formulas in Theorem 4.6 one obtains
recursive equations for calculating the coefficients αj and βj . It turns out that
in the case of even n = 2m the coefficients αj and βj vanish for odd j and

α2j = (−1)j22jm
(m+ j − 1)!
(m− j)!(2j)!α0,

β2j = (−1)j+1i22jj
(m+ j − 1)!

(m− j)!(2j − 1)!α0,

1 ≤ j ≤ m. In the case of odd n = 2m + 1 the coefficients αj and βj vanish
for even j, and

α2j+1 = (−1)j22j (m+ j)!
(m− j)!(2j + 1)!α1,

β2j+1 = (−1)j+1i22j+1 (m+ j)!
(2m+ 1)(m− j)!(2j)!α1,

0 ≤ j ≤ m. Thus

Proposition 4.7. In the irreducible constituents π(F )kHK(g)n, n ∈ Z+,
0 ≤ k ≤ 2n, the highest weight vectors for the weird action ω are π(F )kPn,
where

P2m =
m∑
j=0

(−1)j22jm
(m+ j − 1)!
(m− j)!(2j)!A

2m
2j +

+
m∑
j=1

(−1)j+1i22jj
(m+ j − 1)!

(m− j)!(2j − 1)!B
2m
2j ,
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and

P2m+1 =
m∑
j=0

(−1)j22j (m+ j)!
(m− j)!(2j + 1)!A

2m+1
2j+1 +

+
m∑
j=0

(−1)j+1i22j+1 (m+ j)!
(2m+ 1)(m− j)!(2j)!B

2m+1
2j+1 .

Thus, expressed through variables h, e, f, z, x, y and C = hy−fz we have
P0 = 1, P1 = y−2iC, P2 = f2−2y2 +4iyC, P3 = f2y− 4

3y
3− 2i

3 f
2C+ 8i

3 y
2C,

P4 = f4−8f2y2 +8y4 +8if2yC−32iy3C, P5 = f4y−4f2y3 + 16
5 y

5− 2i
5 f

4C+
24i
5 f

2y2C − 32i
5 y

4C etc.
The weird action ω is extended to P(g) = P(g)K ⊗ HK(g) trivially on

P(g)K , i.e. ω(k)P(g)K = 0. Our aim was to try to express this action using
some K-invariant linear differential operators on P(g) with polynomial coef-
ficients. Unfortunately, it does not seem possible. Here is the action of the
operators ω(H), ω(E) and ω(F ) on the monomial bases of P1(g) and P2(g) :

ω(H)h = 0, ω(E)h = −iz + ey + fx, ω(F )h = iz + ey + fx,
ω(H)e = 0, ω(E)e = ix− 2hx− 2ez, ω(F )e = −ix− 2hx− 2ez,
ω(H)f = 0, ω(E)f = −iy − 2hy + 2fz, ω(F )f = iy − 2hy + 2fz,
ω(H)z = 2iey + 2ifx, ω(E)z = −ih, ω(F )z = ih,
ω(H)x = 4ihx+ 4iez, ω(E)x = ie, ω(F )x = −ie,
ω(H)y = −4ihy + 4ifz, ω(E)y = −if, ω(F )y = if.

ω(H)h2 = 0,
ω(H)f2 = 0,
ω(H)he = 0,
ω(H)fz = − i

2y − 2ih2y + 2ihfz + iefy + if2x,
ω(H)hf = 0,
ω(H)fx = −iz + 2ihey + 2ihfx,
ω(H)hz = 12ihey + 12ihfx,
ω(H)fy = −4ihfy + 4if2z,
ω(H)hx = − i

2x+ 2ih2x+ 2ihez − ie2y − ifx2,
ω(H)z2 = 4iezy + 4ifzx,
ω(H)hy = i

2y − 2ih2y + 2ihfz + iefy + if2x,
ω(H)zx = 4ihzx+ 4iez2 + 2iexy + 2ifx2,
ω(H)e2 = 0,
ω(H)zy = −4ihzy + 4ifz2 + 2iey2 + 2ifxy,
ω(H)ef = 0,
ω(H)x2 = 8ihx2 + 8iezx,
ω(H)ez = ix− 2ih2x− 2ihez + ie2y + iefx,
ω(H)xy = 4iezy + 4ifzx,
ω(H)ex = 4ihex+ 4ie2z,
ω(H)y2 = −8ihy2 + 8ifzy.
ω(H)ey = i

2y − 2ihey − 2ihfx,
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ω(E)h2 = − 4i
3 hz + i

3ey − i
3fx+ 2hey + 2hfx,

ω(E)e2 = 2iex− 4hex− 4e2z,
ω(E)he = ihx− iez − 2h2x− 2hez + e2y + efx,
ω(E)ex = ie2 + ix2 − 2hx2 − 2ezx,
ω(E)hf = −ihy − ifz − 2h2y + 2hfz + efy + f2x,
ω(E)f2 = −2ify − 4hfy + 4f2z,
ω(E)hz = − 2i

3 h
2 + i

3ef − 2i
3 z

2 − i
3xy + ezy + fzx,

ω(E)fy = −if2 − iy2 − 2hy2 + 2fzy,
ω(E)hx = − 1

4e+ ihe− izx+ hzx+ ez2 + 1
2exy + 1

2fx
2,

ω(E)z2 = − 4i
3 hz + i

3ey − i
3fx,

ω(E)hy = − 1
4f − ihf + izy − hzy + 1

2ey
2 + fz2 + 1

2fxy,
ω(E)zx = −ihx+ iez,
ω(E)ef = 4i

3 hz − i
3ey + i

3fx− 2hey − 2hfx,
ω(E)zy = −ihy − ifz,
ω(E)ez = − 1

4e− ihe+ izx− hzx− ez2 − 1
2exy − 1

2fx
2,

ω(E)x2 = 2iex,
ω(E)ey = 1

2h+ 2i
3 h

2 − i
3ef + 2i

3 z
2 + i

3xy − ezy − fzx,
ω(E)xy = − 4i

3 hz + i
3ey − i

3fx,
ω(E)fz = 1

4f − ihf − izy − hzy + 1
2ey

2 + fz2 + 1
2fxy,

ω(E)y2 = −2ify.
ω(E)fx = 1

2h− 2i
3 h

2 + i
3ef − 2i

3 z
2 − i

3xy + ezy + fzx,

ω(F )h2 = 4i
3 hz − i

3ey + i
3fx+ 2hey + 2hfx,

ω(F )e2 = −2iex− 4hex− 4e2z,
ω(F )he = −ihx+ iez − 2h2x− 2hez + e2y + efx,
ω(F )ex = −ie2 − ix2 − 2hx2 − 2ezx,
ω(F )hf = ihy + ifz − 2h2y + 2hfz + efy + f2x,
ω(F )f2 = 2ify − 4hfy + 4f2z,
ω(F )hz = 2i

3 h
2 − i

3ef + 2i
3 z

2 + i
3xy + ezy + fzx,

ω(F )fy = if2 + iy2 − 2hy2 + 2fzy,
ω(F )hx = − 1

4e− ihe+ izx+ hzx+ ez2 + 1
2exy + 1

2fx
2,

ω(F )z2 = 4i
3 hz − i

3ey + i
3fx,

ω(F )hy = − 1
4f + ihf − izy − hzy + 1

2ey
2 + fz2 + 1

2fxy,
ω(F )zx = ihx− iez,
ω(F )ef = − 4i

3 hz + i
3ey − i

3fx− 2hey − 2hfx,
ω(F )zy = ihy + ifz,
ω(F )ez = − 1

4e+ ihe− izx− hzx− ez2 − 1
2exy − 1

2fx
2,

ω(F )x2 = −2iex,
ω(F )ey = 1

2h− 2i
3 h

2 + i
3ef − 2i

3 z
2 − i

3xy − ezy − fzx,
ω(F )xy = 4i

3 hz − i
3ey + i

3fx,
ω(F )fz = 1

4f + ihf + izy − hzy + 1
2ey

2 + fz2 + 1
2fxy,

ω(F )y2 = 2ify.
ω(F )fx = 1

2h+ 2i
3 h

2 + 2i
3 z

2 − i
3ef + i

3xy + ezy + fzx,

Finally, we note that when inspecting K-invariant linear differential op-
erators on P(g) with polynomial coefficients we found another representation
κ of k on P(g) commuting with π. It is given by the following derivations of
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the algebra P(g) :

κ(H) = −h ∂
∂h − e

∂
∂e − f

∂
∂f + z ∂

∂z + x ∂
∂x + y ∂

∂y ,

κ(E) = z ∂
∂h − x

∂
∂e + y ∂

∂f ,

κ(F ) = h ∂
∂z − e

∂
∂x + f ∂

∂y .

This representation does not commute with ∂(Ω), ∂(∆) and ∂(Σ), but
the space of K-harmonic polynomials is nevertheless κ-invariant since the
commutators are
[κ(H), ∂(Ω)] = 2∂(Ω), [κ(E), ∂(Ω)] = 0, [κ(F ), ∂(Ω)] = −2∂(Σ),
[κ(H), ∂(∆)] = −2∂(∆), [κ(E), ∂(∆)] = −2∂(Σ), [κ(F ), ∂(∆)] = 0,
[κ(H), ∂(Σ)] = 0, [κ(E), ∂(Σ)] = −∂(Ω), [κ(F ), ∂(Σ)] = −∂(∆).

The homogeneous subspaces Pn(g), thus also HnK(g), are evidently κ-
invariant. The action on the vectors Anj and Bnj is:

κ(H)Anj =(2j − n)Anj , κ(E)Anj =(n− j)Anj+1, κ(F )Anj =jAnj−1, 0 ≤ j ≤ n,
κ(H)Bnj =(2j−n−1)Bnj , κ(E)Bnj =(n−j)Bnj+1, κ(F )Bnj =(j−1)Bnj−1, 1 ≤ j ≤ n.

Thus, we see that the subspace span {Anj ; 0 ≤ j ≤ n} is κ-invariant and
the corresponding subrepresentation is irreducible of degree n+ 1. The same
holds for the subspaces span{π(F )kAnj ; 0 ≤ j ≤ n}, 1 ≤ k ≤ 2n. Similarly, the
subspace span {Bnj ; 1 ≤ j ≤ n} (and also span {π(F )kBnj ; 1 ≤ j ≤ n}, 1 ≤
k ≤ 2n) is κ-invariant and the corresponding subrepresentation is irreducible
of degree n.

The subalgebra P(g)K of K-invariants is κ-invariant. We have P(g)K =
C[ω, δ, σ], where ω, δ and σ are quadratic polynomials:

ω = h2 + ef, δ = z2 − xy, σ = 2hz + ey − fx.

κ acts on them as follows
κ(H)ω = −2ω, κ(E)ω = σ, κ(F )ω = 0,
κ(H)δ = 2δ, κ(E)δ = 0, κ(F )δ = σ,
κ(H)σ = 0, κ(E)σ = 2δ, κ(F )σ = 2ω.

Therefore, the subrepresention of κ on the 3-dimensional invariant subspace
C1[ω, δ, σ] = span {ω, δ, σ} is irreducible. Since the representation κ of k acts
by derivations, we conclude that all irreducible constituents of κ in P(g)K are
of odd degree.

The representation κ on P(g) is locally finite, thus the corresponding rep-
resention of k0 integrates to a representation of a simply connected compact
Lie group with the Lie algebra k0. Since among the irreducible constituents of
κ are not only those of odd degree but also those of even degree, this group
is not K ≈ SO(3) but its 2-fold covering group ≈ SU(2). Finally, since k0
acts by derivations, the action of the integrated representation on P(g) is by
automorphisms.
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Neobično K-djelovanje na U(g) za so(n, 1) i su(n, 1)

Hrvoje Kraljević

Sažetak. Neka je g0 ili so(n, 1) ili su(n, 1), g njezina komp-
leksifikacija, K maksimalna kompaktna podgrupa adjungirane
grupe od g0, U(g) univerzalna omotačka algebra od g i U(g)K

njezina podalgebra K-invarijanata. Posljedica rezultata iz [2]
je da osim uobičajenog adjungiranog djelovanja od K na U(g)
postoji i drugo djelovanje od K koje komutira s adjungiranim
djelovanjem i ostavlja U(g)K po točkama invarijantnim. Slučaj
g0 = so(2, 1) ≃ su(1, 1) je trivijalan jer je K komutativna i neo-
bično djelovanje od K podudara se s inverzom adjungiranog djelo-
vanja. U ovom članku detaljno smo proučili neobično djelovanje
od K u najjednostavnijem netrivijalnom slučaju g0 = so(3, 1).
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