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Abstract. Let π stand for an essentially Speh representation of
the form L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])), where ρ is an
irreducible cuspidal representation of the general linear group over a
non-archimedean local field or its separable quadratic extension, a ≤ 0,
2a + k > 0, and n ≥ 1. Let σ denote a discrete series representation of
either symplectic, special odd-orthogonal, or unitary group. We determine
when the induced representation π ⋊ σ reduces.

1. Introduction

Let ρ stand for an irreducible cuspidal representation of the general linear
group over a non-archimedean local field or its separable quadratic extension,
and let δ([νaρ, νbρ]) stand for an irreducible essentially square-integrable rep-
resentation attached to the segment [νaρ, νbρ]. The induced representation

δ([νaρ, νa+kρ])× δ([νa+1ρ, νa+k+1ρ])× · · · × δ([νa+n−1ρ, νa+k+n−1ρ]),

where a is a real number, while k and n are non-negative integers such that
n ≥ 1, contains a unique irreducible subrepresentation, which is denoted
by L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) and called the essentially
Speh representation or shifted Speh representation. We note that, by [20,
Theorem 7.5], the essentially Speh representations have a crucial role in the
classification of the unitary dual of the general linear group.

We denote by σ a discrete series representation of either symplectic, spe-
cial odd-orthogonal, or unitary group, and remind the reader that by the
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Mœglin-Tadić classification σ is completely described by the so-called admis-
sible triple, consisting of the Jordan block, the partial cuspidal support, and
the ϵ-function.

We describe the reducibility of the induced representation

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ

under the assumptions a ≤ 0 and 2a+ k > 0.
In some restrictive cases an analogous reducibility problem is completely

solved. Taking n = 1 we obtain the generalized principal series case, for which
the reducibility has been described for general a and k in the symplectic and
special odd-orthogonal group case in [18], and in the unitary group case in
[13]. We note that all the results and proofs appearing in [13] can be used
without any change in the symplectic and special odd-orthogonal case. If we
additionally restrict ourselves to the case of the strongly positive σ, then the
complete composition series of the generalized principal series follow from [17]
and [9].

Taking k = 0 and general a and n, we obtain the case of representations
induced by the Zelevinsky segment representation and the discrete series,
which has been initially studied in [10], where the reducibility criterion has
been deduced. The complete composition series of the induced representation
of such a form have been described in [11], under an additional assumption
that a is half-integral.

In the case of cuspidal σ and positive a, a complete description of the
composition series of L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ]))⋊σ has
recently been obtained in [3]. We also note that for cuspidal σ reducibility
of the representations induced from the essentially Speh ones appears as a
particular case of a much more general and important contribution [8].

Finally, reducibility of the induced representations of the form

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ πA,

for general a, k and n, where πA stands for an irreducible representation of
Arthur type, is described in [2].

Our main result states that the induced representation L(δ([νaρ, νa+kρ]),
. . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ, under the mentioned conditions on a, k
and n, is irreducible if and only if δ([νa+iρ, νa+k+iρ])⋊σ is irreducible for all
i ∈ {0, 1, . . . , n− 1}.

One can use the results of [18] and [12] to describe the reducibility in
terms of ρ, k, n, and the admissible triple corresponding to σ.

To obtain the reducibility criterion, we adopt the strategy introduced in
[18] and further developed in [19], [10], [12], and [13].

First, if there is an i ∈ {0, 1, . . . , n− 1} such that δ([νa+iρ, νa+k+iρ]) ⋊ σ
reduces, we note that ρ is a self-dual representation and that the irreducible
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non-tempered representation
L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−kρ, ν−aρ]);σ)

is a subquotient of L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ.
Then, taking the minimal i ∈ {0, 1, . . . , n− 1} such that

δ([νa+iρ, νa+k+iρ]) ⋊ σ

reduces and starting from particular irreducible subquotients constructed in
the reducibility proofs appearing in [12], we provide an inductive construction
of an irreducible non-tempered subquotient of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ

which is non-isomorphic to
L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−kρ, ν−aρ]);σ).

We note that the mentioned inductive procedure is mostly based on the combi-
nation of the intertwining operators method and the calculation of the Jacquet
modules using the structural formula.

If δ([νa+iρ, νa+k+iρ]) ⋊ σ is irreducible for all i ∈ {0, 1, . . . , n− 1}, using
the reducibility criterion from [18] and [12], together with [22, Section 7], we
deduce a precise description of the Jacquet modules of σ. Such a description
enables us to determine the general form of possible irreducible subquotients
of L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ. Since such a form is
obtained by the calculation of the Jacquet modules, some rather complicated
cases, as the one appearing in Proposition 5.5, need to be handled. We note
that such a case presents one the main obstructions in this study. The ob-
tained general description of possible irreducible subquotients leads us, after
a rather involved calculation, to irreducibility of induced representation of the
studied form.

Let us now describe the content of the paper in more detail. In the
second section we introduce the notation and some preliminaries, while in
the third section we state and prove several technical results which are used
afterwards in the paper. In the fourth section we prove the reducibility of
L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ when there exists an i ∈
{0, 1, . . . , n − 1} such that δ([νa+iρ, νa+k+iρ]) ⋊ σ reduces, and several cases
are studied separately. In the fifth section we state and prove the irreducibility
results.

2. Preliminaries

Through the paper, we denote by F a non-archimedean local field. We
fix one of the following series {Gn} of classical groups over F .

In the odd orthogonal group case, we fix an anisotropic orthogonal vector
space Y0 over F of odd dimension and consider the Witt tower based on
Y0. For n such that 2n + 1 ≥ dimY0, there is exactly one space Vn in the
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tower of dimension 2n + 1. Let Gn stand for the special orthogonal group
of this space. If Vn stands for the symplectic space of dimension 2n in the
corresponding Witt tower, we denote by Gn the symplectic group of this
space. We also consider the unitary groups U(n, F ′/F ), where F ′ stands for
a separable quadratic extension of F . There is also an anisotropic unitary
space Y0 over F ′, and the Witt tower of unitary spaces Vn based on Y0. We
denote by Gn the unitary group of the space Vn of dimension either 2n+ 1 or
2n.

We fix a minimal parabolic subgroup in Gn and consider only the stan-
dard parabolic subgroups with respect to this fixed minimal parabolic sub-
group. When working with the unitary groups, we let F ′ denote a sepa-
rable quadratic extension of F , otherwise let F ′ denote F . For representa-
tions δi of GL(ni, F ′), i = 1, 2, . . . , k, and representation τ of Gn′ , we de-
note by δ1 × · · · × δk ⋊ τ the normalized parabolically induced representation
IndGn

M (δ1 ⊗ · · · ⊗ δk ⊗ τ). We use a similar notation to denote a parabolically
induced representation of GL(m,F ′).

By Irr(Gn) we denote the set of all irreducible admissible representations
of Gn. Let R(Gn) denote the Grothendieck group of admissible representa-
tions of finite length of Gn and define R(G) = ⊕n≥0R(Gn). In a similar way
we define Irr(GL(n, F ′)), R(GL(n, F ′)), and R(GL) = ⊕n≥0R(GL(n, F ′)).

Let n′ stand for the Witt index of Vn if Vn is symplectic or even-unitary
group, and n′ = n− 1

2 (dimF ′(Y0)−1) otherwise. For σ ∈ Irr(Gn) and 0 ≤ k ≤
n′ we denote by r(k)(σ) the normalized Jacquet module of σ with respect to the
parabolic subgroup P(k) having the Levi subgroup equal to GL(k, F ′)×Gn−k.
We identify r(k)(σ) with its semisimplification in R(GL(k, F ′))⊗R(Gn−k) and
consider

µ∗(σ) = 1⊗ σ +
n′∑
k=1

r(k)(σ) ∈ R(GL)⊗R(G).

For π ∈ Irr(GL(n, F ′)) we define m∗(π) =
∑n
k=0 r(k)(π) ∈ R(GL) ⊗

R(GL), where r(k)(π) denotes the normalized Jacquet module of π with re-
spect to the standard parabolic subgroup having the Levi factor equal to
GL(k, F ′) × GL(n − k, F ′). We identify r(k)(π) with its semisimplification,
and then extend m∗ linearly to the whole of R(GL).

Let ν stand for a composition of the determinant mapping with the
normalized absolute value on F . Let ρ ∈ R(GL) denote an irreducible
supercuspidal representation. By a segment we mean a set of the form
[ρ, νmρ] := {ρ, νρ, . . . , νmρ}, where m is a non-negative integer. The induced
representation νmρ × νm−1ρ × · · · × ρ has a unique irreducible subrepresen-
tation ([23]), denoted by δ([ρ, νmρ]). Representation δ([ρ, νmρ]) is essentially
square-integrable, and by [23] every irreducible essentially square-integrable
representation in R(GL) can be obtained in this way.
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The essentially Speh representations are irreducible representations of the
form L(δ1, δ2, . . . , δn), where δi ∼= δ([νa+i−1ρ, νa+k+i−1ρ]), for i = 1, 2, . . . , n,
a real number a, a non-negative integer k, and an irreducible cuspidal repre-
sentation ρ from R(GL).

For an irreducible smooth representation π ∈ R(GL), let π̃ stand for the
contragredient representation of π. If F = F ′, we say that π is F ′/F -selfdual
if π ∼= π̃. If F ̸= F ′, we denote by θ the non-trivial F -automorphism of F ′,
let π̂ denote the representation g 7→ π̃(θ(g)), and say that the representation
π is F ′/F -selfdual if π ∼= π̂.

One of the main ingredients in our Jacquet module calculations is the
following formula ([7, Theorem 2.1]):

Theorem 2.1. Let ρ ∈ Irr(GL(m,F )) be a supercuspidal representation.
Suppose that a1, b1, . . . , am, bm are real numbers such that bi − ai is a non-
negative integer for i = 1, 2, . . . ,m, and that for i = 1, 2, . . . ,m − 1 we have
ai < ai+1 and bi < bi+1. Then the following holds:

m∗(L(δ([νa1ρ, νb1ρ]), . . . , δ([νamρ, νbmρ]))) =∑
(c1,...,cm)∈Lad

L(δ([νc1+1ρ, νb1ρ]), . . . , δ([νcm+1ρ, νbmρ]))⊗

L(δ([νa1ρ, νc1ρ]), . . . , δ([νamρ, νcmρ])),

where Lad stands for the set of all ordered m-tuples (c1, . . . , cm) such that
c1 < · · · < cm, ai − 1 ≤ ci ≤ bi and ci − ai is an integer for all i = 1, . . . ,m.
We omit δ([νxρ, νyρ]) if x > y.

We also frequently use the following structural formulas, which follow
from [21], [16, Section 15], and Theorem 2.1:

Theorem 2.2. Let ρ ∈ Irr(GL(m,F )) be a supercuspidal representation.
If F = F ′, let ρ1 = ρ̃, otherwise let ρ1 = ρ̂. Let k, l ∈ R such that k+ l ∈ Z≥0,
and let σ denote an admissible representation of finite length of Gn. Write
µ∗(σ) =

∑
δ,σ′ δ ⊗ σ′. Then we have

µ∗(δ([ν−kρ, νlρ]) ⋊ σ) =
l∑

i=−k−1

l∑
j=i

∑
δ,σ′

δ([ν−iρ1, ν
kρ1])× δ([νj+1ρ, νlρ])× δ

⊗ δ([νi+1ρ, νjρ]) ⋊ σ′.

Suppose that a1, b1, . . . , am, bm are real numbers such that bi − ai is a non-
negative integer for i = 1, 2, . . . ,m, and that for i = 1, 2, . . . ,m − 1 we have
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ai < ai+1 and bi < bi+1. Then we have
µ∗(L(δ([νa1ρ, νb1ρ]), . . . , δ([νamρ, νbmρ]) ⋊ σ)) =∑

(c1,...,cm,d1,...,dm)∈Lad’

∑
δ,σ′

L(δ([νd1+1ρ, νb1ρ]), . . . , δ([νdm+1ρ, νbmρ]))×

L(δ([ν−cmρ1, ν
−amρ1]), . . . , δ([ν−c1ρ1, ν

−a1ρ1]))× δ
⊗L(δ([νc1+1ρ, νd1ρ]), . . . , δ([νcm+1ρ, νdmρ])) ⋊ σ′,

where Lad’ stands for the set of all ordered 2m-tuples (c1, . . . , cm, d1, . . . , dm)
such that c1 < · · · < cm, d1 < · · · < dm, ai − 1 ≤ ci ≤ di ≤ bi and ci − ai,
di − ai are integers for all i = 1, . . . ,m. We omit δ([νxρ′, νyρ′]) if x > y.

We briefly recall the subrepresentation version of the Langlands classifi-
cation for general linear groups.

For every essentially square-integrable representation δ ∈ Irr(R(GL)),
there is a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable. Note that
e(δ([νaρ, νbρ])) = (a+ b)/2. Suppose that δ1, δ2, . . . , δk are irreducible essen-
tially square-integrable representations such that e(δ1) ≤ e(δ2) ≤ . . . ≤ e(δk).
Then the induced representation δ1 × δ2 × · · · × δk has a unique irreducible
subrepresentation, which we denote by L(δ1, δ2, . . . , δk). This irreducible sub-
representation is called the Langlands subrepresentation, and it appears with
multiplicity one in the composition series of δ1×δ2×· · ·×δk. Every irreducible
representation π ∈ R(GL) is isomorphic to some L(δ1, δ2, . . . , δk) and, for a
given π, the representations δ1, δ2, . . . , δk are unique up to a permutation.

We also use the subrepresentation version of the Langlands classification
for classical groups, since it is more appropriate for our Jacquet module con-
siderations. We realize a non-tempered irreducible representation π of Gn as a
unique irreducible (Langlands) subrepresentation of an induced representation
of the form δ1 × δ2 × · · · × δk ⋊ τ , where τ is an irreducible tempered rep-
resentation of some Gt, and δ1, δ2, . . . , δk ∈ R(GL) are irreducible essentially
square-integrable representations such that e(δ1) ≤ e(δ2) ≤ · · · ≤ e(δk) < 0.
In this case, we write π = L(δ1, δ2, . . . , δk; τ).

We will use the following result ([5, Lemma 5.5]) several times.
Lemma 2.3. Suppose that π ∈ R(Gn) is an irreducible representation, λ

an irreducible representation of the Levi subgroup M of Gn, and π is a subrep-
resentation of IndGn

M (λ). If L > M , then there is an irreducible subquotient ρ
of IndLM (λ) such that π is a subrepresentation of IndGn

L (ρ).
By the Mœglin-Tadić classification of discrete series [14, 16], which holds

unconditionally, due to [1], [15, Théorème 3.1.1] and [4, Theorem 7.8], a dis-
crete series σ ∈ Gn corresponds to an admissible triple which consists of the
Jordan block, the partial cuspidal support, and the ϵ-function. More details
on this invariants can be found in [16, 18] and in [6], where slightly different
approach, which also covers the classical group case, has been used.
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Note that, if a twist by a character of the form νx, with x ∈ R, of some
irreducible unitarizable cuspidal representation ρ ∈ R(GL) appears in the
cuspidal support of a discrete series σ ∈ R(G), then ρ is an F ′/F -selfdual
representation.

Through the paper, we fix a discrete series σ and we denote the corre-
sponding admissible triple by (Jord(σ), σcusp, ϵσ). For an irreducible F ′/F -
selfdual cuspidal representation ρ1 of GL(n1, F

′), let Jordρ1(σ) = {x :
(x, ρ1) ∈ Jord(σ)}. If Jordρ1(σ) ̸= ∅ and x ∈ Jordρ1(σ), denote x_ =
max{y ∈ Jordρ1(σ) : y < x}, if it exists.

3. Some technical results

In this section we state and prove several technical results which are often
used in the paper.

Through this section we fix an irreducible F ′/F -selfdual cuspidal repre-
sentation ρ ∈ R(GL).

Lemma 3.1. Let a, b denote real numbers such that b−a is a non-negative
integer, and let n stand for a positive integer. Suppose that π is an irreducible
subquotient of

L(δ([νaρ, νbρ]), . . . , δ([νa+n−1ρ, νb+n−1ρ]))× δ([νa+nρ, νb+nρ]).

Then either

π ∼= L(δ([νaρ, νbρ]), . . . , δ([νa+n−1ρ, νb+n−1ρ]), δ([νa+nρ, νb+nρ]))

or

π ∼= L(δ([νaρ, νbρ]), . . . , δ([νa+n−2ρ, νb+n−2ρ]),
δ([νa+nρ, νb+n−1ρ]), δ([νa+n−1ρ, νb+nρ])).

Proof. Using the Langlands classification, we write π as a unique irre-
ducible subrepresentation of

δ([νx1ρ, νy1ρ])× · · · × δ([νxlρ, νylρ]).

If xi > xi+1 for some i ∈ {1, 2, . . ., l−1}, then e(δ([νxiρ, νyiρ])) ≤ e(δ([νxi+1ρ,
νyi+1ρ])) implies yi < yi+1, so δ([νxiρ, νyiρ])×δ([νxi+1ρ, νyi+1ρ]) is irreducible
and isomorphic to δ([νxi+1ρ, νyi+1ρ]) × δ([νxiρ, νyiρ]). Thus, we can assume
x1 ≤ x2 ≤ · · · ≤ xl. It follows that x1 = a and m∗(π) ≥ δ([νaρ, νy1ρ]) ⊗
L(δ([νx2ρ, νy2ρ]), . . . , δ([νxlρ, νylρ])), so y1 ∈ {b, b+ n}.

Let us suppose that y1 = b+n. Using Theorem 2.1 we obtain that a+n ≤
b + 1 and L(δ([νx2ρ, νy2ρ]), . . . , δ([νxlρ, νylρ])) is an irreducible subquotient
of L(δ([νa+1ρ, νb+1ρ]), . . . , δ([νa+n−1ρ, νb+n−1ρ]))× δ([νa+nρ, νbρ]).

Now we have x2 = a+ 1 and m∗(L(δ([νx2ρ, νy2ρ]), . . . , δ([νxlρ, νylρ]))) ≥
δ([νa+1ρ, νy2ρ])⊗L(δ([νx3ρ, νy3ρ]), . . . , δ([νxlρ, νylρ])). It directly follows that
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y2 = b+ 1, which gives
π ∼= L(δ([νaρ, νb+nρ]), δ([νa+1ρ, νb+1ρ]), δ([νx3ρ, νy3ρ]), . . . , δ([νxlρ, νylρ]))
↪→ δ([νaρ, νb+nρ])× δ([νa+1ρ, νb+1ρ])× L(δ([νx3ρ, νy3ρ]), . . . , δ([νxlρ, νylρ]))
∼= δ([νa+1ρ, νb+1ρ])× δ([νaρ, νb+nρ])× L(δ([νx3ρ, νy3ρ]), . . . , δ([νxlρ, νylρ])),
and the Frobenius reciprocity implies that m∗(π) contains an irreducible con-
stituent of the form νb+1ρ⊗ π′, which is impossible for n ≥ 2.

Consequently, y1 = b and L(δ([νx2ρ, νy2ρ]), . . . , δ([νxlρ, νylρ])) is an irre-
ducible subquotient of

L(δ([νa+1ρ, νb+1ρ]), . . . , δ([νa+n−1ρ, νb+n−1ρ]))× δ([νa+nρ, νb+nρ]).
Continuing in the same way, we obtain xi = a+ i− 1 and yi = b+ i− 1

for i = 1, 2, . . . , n− 1, and
L(δ([νxnρ, νynρ]), . . . , δ([νxlρ, νylρ])) ≤

δ([νa+n−1ρ, νb+n−1ρ])× δ([νa+nρ, νb+nρ]).
From the composition series follows

L(δ([νxnρ, νynρ]), . . . , δ([νxlρ, νylρ])) ∈
{L(δ([νa+n−1ρ, νb+n−1ρ]), δ([νa+nρ, νb+nρ])),
δ([νa+nρ, νb+n−1ρ])× δ([νa+n−1ρ, νb+nρ])},

and hence l = n+ 1, so the lemma is proved.

Lemma 3.2. Suppose that x and y are such that x+y is a negative integer.
Suppose that L(δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ) is an irreducible subquo-
tient of L(δ([νz1ρ, νw1ρ]), . . . , δ([νzlρ, νwlρ])) ⋊ τ ′, where τ and τ ′ are irre-
ducible tempered representations, and for all i = 1, . . . , l we have zi +wi > 0,
wi < −x. Also, suppose that x+ y < x1 + y1. Then

L(δ([νxρ, νyρ]), δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ)
is an irreducible subquotient of

L(δ([νz1ρ, νw1ρ]), . . . , δ([νzlρ, νwlρ])) ⋊ L(δ([νxρ, νyρ]); τ ′).

Proof. In R(G) we have
L(δ([νxρ, νyρ]), δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ)
≤ δ([νxρ, νyρ]) ⋊ L(δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ)
≤ δ([νxρ, νyρ])× L(δ([νz1ρ, νw1ρ]), . . . , δ([νzlρ, νwlρ])) ⋊ τ ′

= L(δ([νz1ρ, νw1ρ]), . . . , δ([νzlρ, νwlρ]))× δ([νxρ, νyρ]) ⋊ τ ′.

From the semi-simplification in R(G) follows that there is an irreducible sub-
quotient π of δ([νxρ, νyρ]) ⋊ τ ′ such that

L(δ([νxρ, νyρ]), δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ)
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is a subquotient of L(δ([νz1ρ, νw1ρ]), . . . , δ([νzlρ, νwlρ])) ⋊ π.
Since L(δ([νxρ, νyρ]), δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ) is a subrepre-

sentation of
δ([νxρ, νyρ]) ⋊ L(δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ),

using the Frobenius reciprocity we conclude that
µ∗(L(δ([νxρ, νyρ]), δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ))

contains
δ([νxρ, νyρ])⊗ L(δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ).

Consequently, µ∗(L(δ([νz1ρ, νw1ρ]), . . ., δ([νzlρ, νwlρ])) ⋊ π) contains an irre-
ducible constituent of the form δ([νxρ, νyρ])⊗ π′. Since we have zi + wi > 0
and wi < −x for all i = 1, . . . , l, it follows that µ∗(π) contains an irreducible
constituent of the form δ([νxρ, νy′

ρ])⊗π′, for x ≤ y′ ≤ y. Using temperedness
of τ ′ and Theorem 2.2, one can easily see that only irreducible constituent of
such a form appearing in µ∗(δ([νxρ, νyρ])⋊ τ ′) is δ([νxρ, νyρ])⊗ τ ′, which ap-
pears with multiplicity one and is contained in µ∗(L(δ([νxρ, νyρ]); τ ′)). Thus,
π ∼= L(δ([νxρ, νyρ]); τ ′) and the lemma is proved.

Lemma 3.3. Suppose that L(δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ) is an
irreducible subquotient of

L(δ([νcρ, νdρ]), δ([νc+1ρ, νd+1ρ]), . . . , δ([νc+l−1ρ, νd+l−1ρ])) ⋊ τ ′,

where τ and τ ′ are irreducible tempered, l ≥ 1, and c+d > 0. If −d− c−2l <
x1 +y1, then L(δ([ν−d−lρ, ν−c−lρ]), δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ) is an
irreducible subquotient of

L(δ([νcρ, νdρ]), δ([νc+1ρ, νd+1ρ]), . . . , δ([νc+lρ, νd+lρ])) ⋊ τ ′.

Proof. In R(G) we have

L(δ([ν−d−lρ, ν−c−lρ]), δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ)
≤ δ([ν−d−lρ, ν−c−lρ]) ⋊ L(δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ)

≤ δ([ν−d−lρ, ν−c−lρ])× L(δ([νcρ, νdρ]), . . . , δ([νc+l−1ρ, νd+l−1ρ])) ⋊ τ ′

= L(δ([νcρ, νdρ]), . . . , δ([νc+l−1ρ, νd+l−1ρ]))× δ([ν−d−lρ, ν−c−lρ]) ⋊ τ ′

= L(δ([νcρ, νdρ]), . . . , δ([νc+l−1ρ, νd+l−1ρ]))× δ([νc+lρ, νd+lρ]) ⋊ τ ′.

Thus, there is an irreducible subquotient π of
L(δ([νcρ, νdρ]), . . . , δ([νc+l−1ρ, νd+l−1ρ]))× δ([νc+lρ, νd+lρ])

such that L(δ([ν−d−lρ, ν−c−lρ]), δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ) is a sub-
quotient of π ⋊ τ ′. By Lemma 3.1, either

π ∼= L(δ([νcρ, νdρ]), . . . , δ([νc+lρ, νd+lρ]))
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or

π ∼= L(δ([νcρ, νdρ]), . . . , δ([νc+l−2ρ, νd+l−2ρ]),
δ([νc+lρ, νd+l−1ρ]), δ([νc+l−1ρ, νd+lρ]))

If

π ∼= L(δ([νcρ, νdρ]), . . . , δ([νc+l−2ρ, νd+l−2ρ]),
δ([νc+lρ, νd+l−1ρ]), δ([νc+l−1ρ, νd+lρ])),

we have

L(δ([ν−d−lρ, ν−c−lρ]), δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ) ≤
L(δ([νcρ, νdρ]), . . . , δ([νc+l−2ρ, νd+l−2ρ]))×
δ([νc+lρ, νd+l−1ρ])× δ([νc+l−1ρ, νd+lρ]) ⋊ τ ′.

Using the Frobenius reciprocity, we obtain that

µ∗(L(δ([ν−d−lρ, ν−c−lρ]), δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ))

contains

δ([ν−d−lρ, ν−c−lρ])⊗ L(δ([νx1ρ, νy1ρ]), . . . , δ([νxlρ, νylρ]); τ).

Since −d − l < c, using Theorem 2.2, together with temperedness of τ ′, one
can conclude that

µ∗(L(δ([νcρ, νdρ]), . . . , δ([νc+l−2ρ, νd+l−2ρ]))×
δ([νc+lρ, νd+l−1ρ])× δ([νc+l−1ρ, νd+lρ]) ⋊ τ ′)

does not contain an irreducible constituent of the form δ([ν−d−lρ, ν−c−lρ])⊗π′,
a contradiction. Thus,

π ∼= L(δ([νcρ, νdρ]), δ([νc+1ρ, νd+1ρ]), . . . , δ([νc+lρ, νd+lρ]))

and the lemma is proved.

The following two lemmas are direct consequences of [22, Section 8] and
the proofs of [12, Lemmas 3.2, 5.2]:

Lemma 3.4. Let σ1 ∈ R(G) denote a discrete series such that Jordρ(σ1) ̸=
∅. Suppose that a and b are such that a+ b is a positive integer and a− x is
an integer for 2x+ 1 ∈ Jordρ(σ1).
(1) Suppose that a ≤ 0 and 2b + 1 /∈ Jordρ(σ). If ⟨−2a + 1, 2b + 1⟩ ∩

Jordρ(σ) ̸= ∅ and 2x + 1 = max(⟨−2a + 1, 2b + 1⟩ ∩ Jordρ(σ)), then
L(δ([ν−xρ, ν−aρ]);σ2) is an irreducible subquotient of δ([νaρ, νbρ]) ⋊ σ1,
where σ2 stands for the unique discrete series subrepresentation of
δ([νx+1ρ, νbρ]) ⋊ σ1.
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(2) Suppose that a ≤ 0, −2a + 1 ∈ Jordρ(σ), and ⟨−2a + 1, 2b + 1] ∩
Jordρ(σ) = ∅. Let σ2 stand for a unique discrete series subrepresenta-
tion of δ([ν−a+1ρ, νbρ])⋊ σ1, and let τ stand for an irreducible tempered
subrepresentation of δ([νaρ, ν−aρ]) ⋊ σ2 which is a subrepresentation of
an induced representation of the form δ([ν−a+1ρ, νbρ])⋊π. Then τ is an
irreducible subquotient of δ([νaρ, νbρ]) ⋊ σ1.

(3) Suppose that a > 0 and 2b+1 /∈ Jordρ(σ). If [2a−1, 2b+1⟩∩Jordρ(σ) ̸= ∅
and 2x+1 = max([2a−1, 2b+1⟩∩Jordρ(σ)), then L(δ([ν−xρ, ν−aρ]);σ2)
is an irreducible subquotient of δ([νaρ, νbρ])⋊σ1, where σ2 stands for the
unique discrete series subrepresentation of δ([νx+1ρ, νbρ]) ⋊ σ1.

Lemma 3.5. Let σ1 ∈ R(G) denote a discrete series such that Jordρ(σ1) ̸=
∅. Suppose that a and b are such that a + b is a positive integer, a ≤ 0, and
a−x is an integer for 2x+ 1 ∈ Jordρ(σ1). Suppose that −2a+ 1 /∈ Jordρ(σ1),
⟨−2a + 1, 2b + 1] ∩ Jordρ(σ1) ̸= ∅, and let 2x + 1 = min(⟨−2a + 1, 2b +
1] ∩ Jordρ(σ1)). Then there is a unique discrete series σ2 such that σ1 is a
subrepresentation of δ([νa+1ρ, νxρ]) ⋊ σ2.
(1) If x < b, then L(δ([ν−bρ, νxρ]);σ2) is an irreducible subquotient of δ([νaρ,

νbρ]) ⋊ σ1.
(2) Suppose that x = b, and let τ stand for an irreducible tempered subrepre-

sentation of δ([ν−bρ, νbρ])⋊σ2 which is a subrepresentation of an induced
representation of the form δ([νa+1ρ, νbρ])× δ([νa+1ρ, νbρ]) ⋊ π. Then τ
is an irreducible subquotient of δ([νaρ, νbρ]) ⋊ σ1.

In the following several lemmas we treat the tempered case. Through
the rest of this section, σ1 ∈ R(G) stands for a discrete series such that
Jordρ(σ1) ̸= ∅. Let a and b denote the real numbers such that a + b is a
positive integer and a− x is an integer for 2x+ 1 ∈ Jordρ(σ1).

Until said otherwise, let c > 0 be such that c− b is a positive integer and
2c+ 1 /∈ Jordρ(σ1). Let 2xm + 1 stand for the maximal element of Jordρ(σ1)
such that xm < c. We denote by τ a unique irreducible subrepresentation of
δ([ν−cρ, νcρ]) ⋊ σ1 which is not a subrepresentation of an induced represen-
tation of the form δ([νxm+1ρ, νcρ])× δ([νxm+1ρ, νcρ]) ⋊ π.

Lemma 3.6. Suppose that 2b + 1 /∈ Jordρ(σ1), but ⟨−2a + 1, 2b + 1⟩ ∩
Jordρ(σ1) ̸= ∅, and let 2y+1 = max(⟨−2a+1, 2b+1⟩∩Jordρ(σ1)). We denote
by σ2 a unique discrete series subrepresentation of δ([νy+1ρ, νbρ])⋊σ1, and let
τ ′ stand for a unique irreducible subrepresentation of δ([ν−cρ, νcρ])⋊σ2 which
is not a subrepresentation of an induced representation of the form δ([νz+1ρ,
νcρ]) × δ([νz+1ρ, νcρ]) ⋊ π for z = max{b, xm}. Then L(δ([ν−yρ, ν−aρ]); τ ′)
is an irreducible subquotient of δ([νaρ, νbρ]) ⋊ τ .

Proof. Note that τ ′ is a subrepresentation of

δ([νy+1ρ, νbρ])× δ([ν−cρ, νcρ]) ⋊ σ1.
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Since y > −a, a simple commuting argument implies that L(δ([ν−yρ,
ν−aρ]); τ ′) is a subrepresentation of

δ([νy+1ρ, νbρ])× δ([ν−yρ, ν−aρ])× δ([ν−cρ, νcρ]) ⋊ σ1.

Thus, µ∗(L(δ([ν−yρ, ν−aρ]); τ ′)) contains an irreducible constituent of the
form δ([νy+1ρ, νbρ])⊗ π.

On the other hand, by Lemma 2.3, there is an irreducible subquotient τ ′′

of δ([ν−cρ, νcρ])⋊σ1 such that τ ′ is a subrepresentation of δ([νy+1ρ, νbρ])⋊τ ′′.
It is well-known that δ([ν−cρ, νcρ]) ⋊ σ1 is a direct sum of two mutually
non-isomorphic irreducible tempered representations, and by [22, Section 4],
exactly one of them is a subrepresentation of an induced representation of the
form
(3.1) δ([νxm+1ρ, νcρ])× δ([νxm+1ρ, νcρ]) ⋊ π.

Suppose that τ ′′ is a subrepresentation of an induced representation of the
form (3.1). Then we have

τ ′ ↪→ δ([νy+1ρ, νbρ])× δ([νxm+1ρ, νcρ])× δ([νxm+1ρ, νcρ]) ⋊ π.

If xm > b, we have z = xm, xm + 1 > b+ 1, so
δ([νy+1ρ, νbρ])× δ([νxm+1ρ, νcρ])× δ([νxm+1ρ, νcρ]) ⋊ π ∼=
δ([νxm+1ρ, νcρ])× δ([νxm+1ρ, νcρ])× δ([νy+1ρ, νbρ]) ⋊ π,

contradicting the definition of τ ′.
If xm < b, we have y = xm and z = b, so

δ([νy+1ρ, νbρ])× δ([νxm+1ρ, νcρ])× δ([νxm+1ρ, νcρ]) ⋊ π ∼=
δ([νxm+1ρ, νcρ])× δ([νxm+1ρ, νcρ])× δ([νxm+1ρ, νbρ]) ⋊ π ↪→

δ([νb+1ρ, νcρ])× δ([νb+1ρ, νcρ])× δ([νxm+1ρ, νbρ])×
δ([νxm+1ρ, νbρ])× δ([νxm+1ρ, νbρ]) ⋊ π,

which again contradicts the definition of τ ′. Consequently, τ ′′ ∼= τ . This leads
to

L(δ([ν−yρ, ν−aρ]); τ ′) ≤ δ([νaρ, νyρ]) ⋊ τ ′

≤ δ([νaρ, νyρ])× δ([νy+1ρ, νbρ]) ⋊ τ.

Thus, there is a π ∈ {δ([νaρ, νbρ]), L(δ([νaρ, νyρ]), δ([νy+1ρ, νbρ]))} such that
L(δ([ν−yρ, ν−aρ]); τ ′) is an irreducible subquotient of π ⋊ τ .

Obviously, m∗(L(δ([νaρ, νyρ]), δ([νy+1ρ, νbρ]))) does not contain an irre-
ducible constituent of the form δ([νy+1ρ, νtρ])⊗ π′, for y + 1 ≤ t.

On the other hand, if δ([νy+1ρ, νtρ])⊗ π′, for y + 1 ≤ t, is an irreducible
constituent of µ∗(δ([ν−cρ, νcρ]) ⋊ σ1), using Theorem 2.2, we conclude that
either t = c or 2t + 1 ∈ Jordρ(σ1). From the description of Jordρ(σ1) we get
t > b.
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Consequently, µ∗(L(δ([νaρ, νyρ]), δ([νy+1ρ, νbρ])) ⋊ τ) does not contain
an irreducible constituent of the form δ([νy+1ρ, νbρ])⊗ π′.

Since µ∗(L(δ([ν−yρ, ν−aρ]); τ ′)) contains an irreducible constituent of
such a form, we obtain π ∼= δ([νaρ, νbρ]). This ends the proof.

Lemma 3.7. Suppose that a ≤ 0 and [−2a + 1, 2b + 1] ∩ Jordρ(σ1) =
{−2a+ 1}. Let σ2 be a unique discrete series subrepresentation of δ([ν−a+1ρ,
νbρ]) ⋊ σ1, and let τ ′ stand for a unique irreducible subrepresentation of
δ([νaρ, ν−aρ])× δ([ν−cρ, νcρ])⋊σ2 which is a subrepresentation of an induced
representation of the form δ([ν−a+1ρ, νbρ])⋊π and is not a subrepresentation
of an induced representation of the form δ([νz+1ρ, νcρ])× δ([νz+1ρ, νcρ]) ⋊ π
for z = max{b, xm}. Then τ ′ is an irreducible subquotient of δ([νaρ, νbρ])⋊τ .

Proof. Since −2a+1, 2c+1 /∈ Jordρ(σ2), it follows from [19, Section 1] or
[13, Theorem 2.2.(i)], that δ([νaρ, ν−aρ])× δ([ν−cρ, νcρ])⋊ σ2 is a direct sum
of four mutually non-isomorphic irreducible tempered representations. We
denote by τ ′′ an irreducible tempered subrepresentation of δ([ν−cρ, νcρ])⋊σ2
such that τ ′ is a subrepresentation of δ([νaρ, ν−aρ]) ⋊ τ ′′.

Using [19, Section 1], or [13, Theorem 2.2.(iii), (iv)] we deduce that
δ([νaρ, ν−aρ])⋊τ ′′ is a direct sum of two mutually non-isomorphic irreducible
tempered representations.

Note that τ ′′ is a subrepresentation of δ([ν−a+1ρ, νbρ])× δ([ν−cρ, νcρ])⋊
σ1. Since τ ′ is not a subrepresentation of an induced representation of the
form δ([νz+1ρ, νcρ])× δ([νz+1ρ, νcρ]) ⋊ π, in the same way as in the proof of
the previous lemma we deduce that τ ′′ is an irreducible subrepresentation of
δ([ν−a+1ρ, νbρ]) ⋊ τ .

Since [−2a + 1, 2b + 1] ∩ Jordρ(σ1) = {−2a + 1}, it follows that µ∗(σ1)
does not contain an irreducible constituent of the form νyρ⊗π for y ∈ {−a+
1,−a + 2, . . . , b}. Using c > b and the structural formula, we conclude that
δ([ν−a+1ρ, νbρ])⊗τ is a unique irreducible constituent of µ∗(δ([ν−a+1ρ, νbρ])⋊
τ) of the form δ([ν−a+1ρ, νbρ])⊗ π, and appears there with multiplicity one.

It follows from [19, Section 1] or [13, Theorem 2.2.(iii)], that the induced
representation δ([νaρ, ν−aρ]) ⋊ τ is irreducible, so τ ′ is a unique irreducible
tempered subrepresentation of δ([νaρ, ν−aρ]) ⋊ τ ′′ which contains an irre-
ducible constituent of the form δ([ν−a+1ρ, νbρ]) ⊗ π in the Jacquet module
with respect to the appropriate parabolic subgroup.

From
τ ′ ↪→ δ([νaρ, ν−aρ])× δ([ν−a+1ρ, νbρ]) ⋊ τ

we conclude that either

τ ′ ↪→ δ([νaρ, νbρ]) ⋊ τ

or

τ ′ ↪→ L(δ([νaρ, ν−aρ]), δ([ν−a+1ρ, νbρ])) ⋊ τ.



296 I. MATIĆ

Since µ∗(τ ′) contains an irreducible constituent of the form δ([ν−a+1ρ, νbρ])⊗
π, c > b, and [−2a + 1, 2b + 1] ∩ Jordρ(σ1) = {−2a + 1}, we obtain τ ′ ≤
δ([νaρ, νbρ]) ⋊ τ . This ends the proof.

In the rest of the section, suppose that a ≤ 0, and let c > 0 be such that
−a − c is a positive integer and 2c + 1 /∈ Jordρ(σ1). Also, let 2xm + 1 stand
for the minimal element of Jordρ(σ1) such that xm > c, and denote by τ a
unique irreducible subrepresentation of δ([ν−cρ, νcρ])⋊σ1 such that τ is not a
subrepresentation of an induced representation of the form δ([νc+1ρ, νxmρ])⋊
π.

Lemma 3.8. Suppose that 2a + 1 /∈ Jordρ(σ1), but ⟨−2a + 1, 2b + 1⟩ ∩
Jordρ(σ1) ̸= ∅, and let 2y + 1 = min(⟨−2a + 1, 2b + 1⟩ ∩ Jordρ(σ1)). Let
σ2 stand for a unique discrete series such that σ1 is a subrepresentation of
δ([ν−a+1ρ, νyρ]) ⋊ σ2, and let τ ′ stand for a unique irreducible subrepresen-
tation of δ([ν−cρ, νcρ]) ⋊ σ2 which is not a subrepresentation of an induced
representation of the form δ([νc+1ρ, νzρ]) ⋊ π for 2z + 1 = min{2x + 1 ∈
Jordρ(σ2) : x > c}. Then L(δ([ν−bρ, νyρ]); τ ′) is an irreducible subquotient of
δ([νaρ, νbρ]) ⋊ τ .

Proof. Note that z = xm if xm < y, and z = −a otherwise, i.e., if
xm = y.

Since −a > c, we have the following embeddings and an isomorphism:
τ ↪→ δ([ν−cρ, νcρ]) ⋊ σ1

↪→ δ([ν−cρ, νcρ])× δ([ν−a+1ρ, νyρ]) ⋊ σ2

∼= δ([ν−a+1ρ, νyρ])× δ([ν−cρ, νcρ]) ⋊ σ2.

By Lemma 2.3, there is an irreducible subquotient π of δ([ν−cρ, νcρ]) ⋊ σ2
such that τ is a subrepresentation of δ([ν−a+1ρ, νyρ]) ⋊ π. Let us prove that
π ∼= τ ′. Otherwise, π ∼= τ ′′, where τ ′′ is a unique irreducible subrepresen-
tation of δ([ν−cρ, νcρ]) ⋊ σ2 which is also a subrepresentation of an induced
representation of the form δ([νc+1ρ, νzρ]) ⋊ π′. This gives an embedding

τ ↪→ δ([ν−a+1ρ, νyρ])× δ([νc+1ρ, νzρ]) ⋊ π′.

If xm < y, we have z = xm and z < −a, so
δ([ν−a+1ρ, νyρ])× δ([νc+1ρ, νzρ]) ∼= δ([νc+1ρ, νzρ])× δ([ν−a+1ρ, νyρ]),

and τ is a subrepresentation of δ([νc+1ρ, νzρ])× δ([ν−a+1ρ, νyρ]) ⋊ π′, a con-
tradiction.

If xm = y, we have z = −a and, by Lemma 2.3, either
τ ↪→ δ([νc+1ρ, νxmρ]) ⋊ π′

or
τ ↪→ L(δ([νc+1ρ, ν−aρ]), δ([ν−a+1ρ, νxmρ])) ⋊ π′.
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If τ is a subrepresentation of L(δ([νc+1ρ, ν−aρ]), δ([ν−a+1ρ, νxmρ]) ⋊ π′, it
follows that µ∗(τ) contains an irreducible constituent of the form ν−aρ⊗ π′′,
which is impossible since c < −a and −2a + 1 /∈ Jordρ(σ1). Thus, τ is a
subrepresentation of δ([νc+1ρ, νxmρ]) ⋊ π′, a contradiction.

Consequently, τ is a subrepresentation of δ([ν−a+1ρ, νyρ]) ⋊ τ ′.
Since τ ′ is a subrepresentation of δ([ν−cρ, νcρ]) ⋊ σ2, c < −a, and

[−2a + 3, 2y + 1] ∩ Jordρ(σ2) = ∅, it follows from Theorem 2.2 and [16,
Lemma 3.6] that µ∗(τ ′) does not contain an irreducible constituent of the
form νdρ ⊗ π′ for d ∈ [−a + 1, y]. It is now easy to see, using Theorem 2.2
again, that δ([ν−a+1ρ, νyρ])⊗τ ′ is a unique irreducible constituent of the form
δ([ν−a+1ρ, νyρ]) ⊗ π′ appearing in µ∗(δ([ν−a+1ρ, νyρ]) ⋊ τ ′), and it appears
there with multiplicity one. Thus, τ is a unique irreducible subquotient of
δ([ν−a+1ρ, νyρ]) ⋊ τ ′ which contains an irreducible constituent of the form
δ([ν−a+1ρ, νyρ]) ⊗ π′ in the Jacquet module with respect to the appropriate
parabolic subgroup.

We have
L(δ([ν−bρ, νyρ]); τ ′) ↪→ δ([ν−a+1ρ, νyρ])× δ([ν−bρ, ν−aρ]) ⋊ τ ′

= δ([νaρ, νbρ])× δ([ν−a+1ρ, νyρ]) ⋊ τ ′,

so the Frobenius reciprocity implies that µ∗(L(δ([ν−bρ, νyρ]); τ ′)) contains
an irreducible constituent of the form δ([ν−a+1ρ, νyρ])⊗ π′. There is an irre-
ducible subquotient π′′ of δ([ν−a+1ρ, νyρ])⋊τ ′ such that L(δ([ν−bρ, νyρ]); τ ′) ≤
δ([νaρ, νbρ]) ⋊ π′′. Since b > y, Theorem 2.2 implies that µ∗(π′′) contains an
irreducible constituent of the form δ([ν−a+1ρ, νyρ]) ⊗ π′, so π′′ ∼= τ , and the
lemma is proved.

Lemma 3.9. Suppose that [−2a + 1, 2b + 1] ∩ Jordρ(σ1) = {2b + 1}. Let
σ2 stand for a unique discrete series such that σ1 is a subrepresentation of
δ([ν−a+1ρ, νbρ])⋊ σ2, and let τ ′ stand for a unique irreducible subrepresenta-
tion of δ([ν−bρ, νbρ])× δ([ν−cρ, νcρ]) ⋊ σ2 which is a subrepresentation of an
induced representation of the form δ([ν−a+1ρ, νbρ]) × δ([ν−a+1ρ, νbρ]) ⋊ π,
and is not a subrepresentation of an induced representation of the form
δ([νc+1ρ, νzρ]) ⋊ π for 2z + 1 = min{2x + 1 ∈ Jordρ(σ2) : x > c}. Then
τ ′ is an irreducible subquotient of δ([νaρ, νbρ]) ⋊ τ .

Proof. By [22, Theorem 8.2.], there is a discrete series σ3 such that σ2
is an irreducible subrepresentation of δ([νc+1ρ, νzρ])⋊σ3. Note that 2c+ 1 ∈
Jordρ(σ3), so δ([ν−cρ, νcρ])⋊ σ3 is irreducible. Since µ∗(σ3) does not contain
an irreducible constituent of the form νyρ ⊗ π for y ∈ {c + 1, c + 2, . . . , z},
Theorem 2.2 implies that δ([νc+1ρ, νzρ])⊗ δ([ν−cρ, νcρ])⋊σ3 is a unique irre-
ducible constituent of µ∗(δ([ν−cρ, νcρ])⋊σ2) of the form δ([νc+1ρ, νzρ])⊗π and
appears there with multiplicity one. Thus, there is a unique irreducible tem-
pered subrepresentation of δ([ν−cρ, νcρ]) ⋊ σ2 which contains an irreducible
constituent of the form δ([νc+1ρ, νzρ])⊗π in the Jacquet module with respect
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to the appropriate parabolic subgroup. It can be seen in the same way as in
the proof of [22, Lemma 4.1] that such an irreducible tempered subrepresen-
tation is also a subrepresentation of an induced representation of the form
δ([νc+1ρ, νzρ]) ⋊ π.

Since τ ′ is a subrepresentation of δ([ν−bρ, νbρ])× δ([ν−cρ, νcρ]) ⋊ σ2, by
Lemma 2.3 there is an irreducible tempered subrepresentation τ ′′ of δ([ν−cρ,
νcρ]) ⋊ σ2 such that τ ′ is a subrepresentation of δ([ν−bρ, νbρ]) ⋊ τ ′′.

If τ ′′ is a subrepresentation of an induced representation of the form
δ([νc+1ρ, νzρ]) ⋊ π, using z ≤ b and an easy commuting argument we obtain
that τ ′ is also a subrepresentation of an induced representation of such a
form, contrary to our assumption. Thus, τ ′′ is a unique irreducible tempered
subrepresentation of δ([ν−cρ, νcρ]) ⋊ σ2 which is not a subrepresentation of
an induced representation of the form δ([νc+1ρ, νzρ]) ⋊ π.

We have

τ ′ ≤ δ([ν−bρ, νbρ]) ⋊ τ ′′ ≤ δ([νaρ, νbρ])× δ([ν−a+1ρ, νbρ]) ⋊ τ ′′

and there is an irreducible subquotient π1 of δ([ν−a+1ρ, νbρ]) ⋊ τ ′′ such that
τ ′ is contained in δ([νaρ, νbρ]) ⋊ π1. Since µ∗(τ ′) contains an irreducible
constituent of the form δ([ν−a+1ρ, νbρ])×δ([ν−a+1ρ, νbρ])⊗π, we deduce that
µ∗(π1) contains an irreducible constituent of the form δ([ν−a+1ρ, νbρ])⊗ π.

On the other hand, we have the following embeddings and an isomor-
phism:

τ ↪→ δ([ν−cρ, νcρ]) ⋊ σ1

↪→ δ([ν−cρ, νcρ])× δ([ν−a+1ρ, νbρ]) ⋊ σ2

∼= δ([ν−a+1ρ, νbρ])× δ([ν−cρ, νcρ]) ⋊ σ2,

and there is an irreducible subquotient π2 of δ([ν−cρ, νcρ]) ⋊ σ2 such that τ
is a subrepresentation of δ([ν−a+1ρ, νbρ]) ⋊ π2.

Suppose that π2 ̸∼= τ ′′. Then we have

τ ↪→ δ([ν−a+1ρ, νbρ])× δ([νc+1ρ, νzρ]) ⋊ π,

for some irreducible representation π.
If z < −a, we have z = xm and

δ([ν−a+1ρ, νbρ])× δ([νc+1ρ, νxmρ]) ∼= δ([νc+1ρ, νxmρ])× δ([ν−a+1ρ, νbρ]),

which contradicts the definition of τ .
If z = −a, we have xm = b and either

τ ↪→ L(δ([νc+1ρ, ν−aρ]), δ([ν−a+1ρ, νxmρ])) ⋊ π

or

τ ↪→ δ([νc+1ρ, νxmρ]) ⋊ π.
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Since τ is a subrepresentation of δ([ν−cρ, νcρ]) ⋊ σ1, c < −a, and −2a+ 1 /∈
Jordρ(σ1), it follows that µ∗(τ) does not contain an irreducible constituent of
the form ν−aρ⊗π′. This leads to τ ↪→ δ([νc+1ρ, νxmρ])⋊π, contradicting the
definition of τ . Consequently, τ is a subrepresentation of δ([ν−a+1ρ, νbρ])⋊τ ′′.

Since [−2a + 1, 2b + 1] ∩ Jordρ(σ2) = ∅, we obtain that µ∗(τ ′′) does not
contain an irreducible constituent of the form νyρ⊗ π′ for y ∈ {−a+ 1,−a+
2, . . . , b}. An easy application of Theorem 2.2 implies that δ([ν−a+1ρ, νbρ])⊗
τ ′′ is a unique irreducible constituent of µ∗(δ([ν−a+1ρ, νbρ])⋊ τ ′′) of the form
δ([ν−a+1ρ, νbρ])⊗ π, and appears there with multiplicity one.

Using the Frobenius reciprocity we conclude that τ is a unique irreducible
subquotient of δ([ν−a+1ρ, νbρ])⋊τ ′′ which contains an irreducible constituent
of the form δ([ν−a+1ρ, νbρ]) ⊗ π in the Jacquet module with respect to the
appropriate parabolic subgroup, so π1 ∼= τ and the lemma is proved.

4. Reducibility

Through this section we fix an irreducible cuspidal F ′/F -selfdual repre-
sentation ρ ∈ R(GL), and a discrete series σ ∈ R(G). Let α ≥ 0 be such that
ναρ⋊ σcusp reduces. We also fix a negative real number a such that a− α is
an integer, and positive integers k and n such that a+ k > −a.

Note that in R(G) we have

L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−kρ, ν−aρ]);σ) ↪→
L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−kρ, ν−aρ])) ⋊ σ =

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ.

In this section we prove that the induced representation

L(δ([νaρ, νa+kρ]), δ([νa+1ρ, νa+k+1ρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ

reduces when there is an i ∈ {0, 1, . . . , n−1} such that δ([νa+iρ, νa+k+iρ])⋊σ
reduces, by showing that in such a case there is an irreducible subquotient of
L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ different than

L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−kρ, ν−aρ]);σ).

Thus, suppose that there is an i ∈ {0, 1, . . . , n− 1} such that the induced
representation δ([νa+iρ, νa+k+iρ]) ⋊ σ reduces and let us denote the minimal
such i by m.

Let us first consider the case m = 0. This is handled in the following
proposition:

Proposition 4.1. Suppose that δ([νaρ, νa+kρ])⋊σ reduces. Then the in-
duced representation L(δ([νaρ, νa+kρ]), . . ., δ([νa+n−1ρ, νa+k+n−1ρ]))⋊σ also
reduces.
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Proof. We construct an irreducible subquotient of
L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ,

different than
L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−kρ, ν−aρ]);σ),

using a case-by-case consideration.
• Suppose that [−2a+ 1, 2(a+ k) + 1] ∩ Jordρ(σ) = ∅.

By the classification of discrete series, δ([νaρ, νa+kρ]) ⋊ σ contains two mu-
tually non-isomorphic discrete series, which we denote by σ1 and σ2. Let π
stand for

L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−1ρ, ν−a−1ρ]);σ1).
• Suppose that [−2a + 1, 2(a + k) + 1] ∩ Jordρ(σ) ̸= ∅ and −2a + 1 /∈

Jordρ(σ).
Let 2xm + 1 = min([−2a + 1, 2(a + k) + 1] ∩ Jordρ(σ)), and let σ′ denote
a discrete series such that σ is a unique irreducible subrepresentation of
δ([ν−a+1ρ, νxmρ]) ⋊ σ′. If xm < a+ k, let π stand for

L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−1ρ, ν−a−1ρ]), δ([ν−a−kρ, νxmρ]);σ′).
By the proof of [12, Lemma 3.2], L(δ([ν−a−kρ, νxmρ]);σ′) ≤ δ([νaρ, νa+kρ])⋊
σ.

If xm = a+ k, let π stand for
L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−1ρ, ν−a−1ρ]); τ),

where τ is an irreducible subrepresentation of δ([ν−a−kρ, νa+kρ]) ⋊ σ′ such
that µ∗(τ) contains an irreducible constituent of the form δ([ν−a+1ρ, νa+kρ])×
δ([ν−a+1ρ, νa+kρ])⊗π′. By the proof of [12, Lemma 3.2], τ ≤ δ([νaρ, νa+kρ])⋊
σ.

• Suppose that [−2a+1, 2(a+k)+1]∩Jordρ(σ) ̸= ∅ and −2(a+k)+1 /∈
Jordρ(σ).

Let 2xM + 1 = max([−2a + 1, 2(a + k) + 1] ∩ Jordρ(σ)), and let σ′ stand
for a unique discrete series subrepresentation of δ([νxM +1ρ, νa+kρ]) ⋊ σ. If
xM > −a, let π stand for
L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−1ρ, ν−a−1ρ]), δ([ν−xMρ, ν−aρ]);σ′).
By the proof of [12, Lemma 3.2], L(δ([ν−xMρ, ν−aρ]);σ′) ≤ δ([νaρ, νa+kρ])⋊σ.

If xM = −a, let π stand for
L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−1ρ, ν−a−1ρ]); τ),

where τ is an irreducible tempered subrepresentation of δ([νaρ, ν−aρ]) ⋊ σ′

such that µ∗(τ) contains an irreducible constituent of the form δ([ν−a+1ρ,
νa+kρ])⊗ π′. By the proof of [12, Lemma 3.2], τ ≤ δ([νaρ, νa+kρ]) ⋊ σ.
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• Suppose that {−2a+ 1, 2(a+ k) + 1} ⊆ Jordρ(σ) and there is 2x+ 1 ∈
Jordρ(σ) ∩ ⟨−2a+ 1, 2(a+ k) + 1] such that (2x+ 1)_ is defined and
ϵσ(((2x+ 1)_, ρ), (2x+ 1, ρ)) = 1.

We denote by 2y+1 the minimal element of Jordρ(σ)∩⟨−2a+1, 2(a+k)+1]
such that (2y + 1)_ is defined and ϵσ(((2y + 1)_, ρ), (2y + 1, ρ)) = 1.

If (2y+1)_ = −2a+1, let τ denote an irreducible tempered representation
such that σ is a subrepresentation of δ([ν−a+1ρ, νyρ]) ⋊ τ . If y < a+ k, let π
stand for
L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−1ρ, ν−a−1ρ]), δ([ν−a−kρ, νyρ]); τ),
By the proof of [12, Lemma 3.4], L(δ([ν−a−kρ, νyρ]); τ) ≤ δ([νaρ, νa+kρ])⋊σ.

If (2y+1)_ = −2a+1 and y = a+k, let τ denote an irreducible tempered
representation such that σ is a subrepresentation of δ([ν−a+1ρ, νa+kρ]) ⋊ τ
and let τ ′ stand for a unique irreducible tempered subrepresentation of
δ([ν−a−kρ, νa+kρ]) ⋊ τ such that µ∗(τ ′) contains an irreducible constituent
of the form δ([ν−a+1ρ, νa+kρ])× δ([ν−a+1ρ, νa+kρ])⊗ π′. We define

π = L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−1ρ, ν−a−1ρ]); τ ′).
By the proof of [12, Lemma 3.4], we have τ ′ ≤ δ([νaρ, νa+kρ]) ⋊ σ.

Let us now suppose that (2y + 1)_ > −2a + 1 and let (2y + 1)_ =
2x + 1. We denote by σ′ a discrete series such that σ is a subrepresentation
of δ([ν−xρ, νyρ]) ⋊ σ′. If y < a+ k, let π stand for

L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−1ρ, ν−a−1ρ]),
δ([ν−a−kρ, νyρ]), δ([ν−xρ, ν−aρ]);σ′),

By the proof of [12, Lemma 3.4], L(δ([ν−a−kρ, νyρ]), δ([ν−xρ, ν−aρ]);σ′) ≤
δ([νaρ, νa+kρ]) ⋊ σ.

If y = a+k, let τ denote a unique irreducible tempered subrepresentation
of δ([νx+1ρ, νa+kρ]) ⋊ σ, given by [12, Lemma 3.3], and let π stand for

L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−1ρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]); τ),
By the proof of [12, Lemma 3.4], L(δ([ν−xρ, ν−aρ]); τ) ≤ δ([νaρ, νa+kρ]) ⋊ σ.

It can be seen, using a repeated application of Lemma 3.3, that π is an
irreducible subquotient of L(δ([νaρ, νa+kρ]), . . ., δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊
σ, details being left to the reader.

Let us now consider the more interesting case m ≥ 1. It follows that
Jordρ(σ) ̸= ∅, since otherwise δ([νaρ, νa+kρ])⋊σ reduces by the classification
of discrete series.

Using [12, Theorems 3.5, 4.6, 5.4], we deduce the following:
(1) 2(a+k+i)+1 ∈ Jordρ(σ) for i = 0, 1, . . . ,m−1 and−2(a+i)+1 ∈ Jordρ(σ)

for i = 0, 1, . . . ,m− 1 such that a+ i ≤ 0,
(2) ϵσ(2(a+ k + i) + 1, 2(a+ k + i) + 3) = −1 for i = 0, 1, . . . ,m− 2,
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(3) ϵσ(−2(a + i) + 1,−2(a + i) + 3) = −1 for i = 0, 1, . . . ,m − 2 such that
a+ i ≤ 0,

(4) ϵσ((2(a+ k) + 1)_, 2(a+ k) + 1) = −1,
(5) ϵσ(−2a + 1, 2x + 1) = −1 for 2x + 1 ∈ Jordρ(σ) such that (2x + 1)_ =
−2a+ 1.
Since δ([νa+mρ, νa+k+mρ]) ⋊ σ reduces, some of the following also holds:

(1) 2(a+ k +m) + 1 /∈ Jordρ(σ),
(2) −2(a+m) + 1 /∈ Jordρ(σ) and a+m ≤ 0,
(3) 2(a+k+m)+1 ∈ Jordρ(σ) and ϵσ(2(a+k+m)−1, 2(a+k+m)+1) = 1,
(4) −2(a+m)+1 ∈ Jordρ(σ), a+m ≤ 0, and ϵσ(−2(a+m)+1,−2(a+m)+3) =

1.
In the sequel, we prove that the induced representation

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ

reduces considering each of the cases (1)− (4) separately.

Proposition 4.2. Suppose that 2(a + k + m) + 1 /∈ Jordρ(σ). Then
L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ reduces.

Proof. Let us denote (2(a + k) + 1)_ by 2x + 1. We consider two
possibilities separately.

First we assume that 2x+ 1 > −2a+ 1.
We define σ(0) = σ and, for i = 1, 2, . . . ,m let σ(i) stand for a

unique discrete series subrepresentation of νa+k+m−i+1ρ ⋊ σ(i−1), which
can be obtained using the proof of [13, Lemma 3.2], based on [22, Theo-
rem 8.2]. Also, let σ(m+1) denote a unique discrete series subrepresentation
of δ([νx+1ρ, νa+kρ]) ⋊ σ(m), also given by the proof of [13, Lemma 3.2].

It follows that σ(i) is a subrepresentation of
νa+k+m−i+1ρ× · · · × νa+k+mρ⋊ σ

for i = 1, 2, . . . ,m, and that σ(m+1) is a subrepresentation of
δ([νx+1ρ, νa+kρ])× νa+k+1ρ× · · · × νa+k+mρ⋊ σ.

Using ϵσ(2(a+k+ i)+1, 2(a+k+ i)+3) = −1 for i = 0, 1, . . . ,m−2, ϵσ((2x+
1, ρ), (2(a+k)+1, ρ)) = −1, together with [22, Theorem 8.2, Proposition 7.2],
we obtain that for j = 1, 2, . . . ,m, µ∗(σ(j)) contains neither an irreducible
constituent of the form δ([νx+1ρ, νa+kρ]) ⊗ π nor an irreducible constituent
of the form νyρ⊗ π for y ∈ {a+ k + 1, a+ k + 2, . . . , a+ k +m− j}.

We prove that
L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−m−1ρ, ν−a−m−1ρ]),

δ([ν−a−k−m+1ρ, ν−a−mρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]);σ(m+1))
is an irreducible subquotient of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ.
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First, it follows from the first part of Lemma 3.4 that L(δ([ν−xρ, ν−aρ]);
σ(m+1)) is an irreducible subquotient of δ([νaρ, νa+kρ]) ⋊ σ(m). We proceed
inductively, and suppose that for every l ∈ {0, 1, . . . ,m− 1} we have

L(δ([ν−a−k−l+1ρ, ν−a−lρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]);σ(m+1))

≤ L(δ([νaρ, νa+kρ]), δ([νa+1ρ, νa+k+1ρ]), . . . , δ([νa+lρ, νa+k+lρ])) ⋊ σ(m−l).

Using Lemma 3.2 we obtain

L(δ([ν−a−k−lρ, ν−a−l−1ρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]);σ(m+1))
≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+lρ, νa+k+lρ]))⋊

L(δ([ν−a−k−lρ, ν−a−l−1ρ]);σ(m−l)).

Since σ(m−l) is a subrepresentation of νa+k+l+1ρ ⋊ σ(m−l−1), it follows from
parts (1) and (2) of Lemma 3.4 that L(δ([ν−a−k−lρ, ν−a−l−1ρ]); σ(m−l)) is an
irreducible subquotient of δ([νa+l+1ρ, νa+k+l+1ρ]) ⋊ σ(m−l−1).

Thus,

L(δ([ν−a−k−lρ, ν−a−l−1ρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]);σ(m+1))

is an irreducible subquotient of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+lρ, νa+k+lρ]))×δ([νa+l+1ρ, νa+k+l+1ρ])⋊σ(m−l−1).

Consequently, there is an irreducible subquotient π of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+lρ, νa+k+lρ]))× δ([νa+l+1ρ, νa+k+l+1ρ])

such that
(4.1)
L(δ([ν−a−k−lρ, ν−a−l−1ρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]);σ(m+1))

is an irreducible subquotient of π⋊σ(m−l−1), and Lemma 3.1 implies that we
have either

π ∼= L(δ([νaρ, νa+kρ]), . . . , δ([νa+lρ, νa+k+lρ]), δ([νa+l+1ρ, νa+k+l+1ρ]))

or

π ∼= L(δ([νaρ, νa+kρ]), . . . , δ([νa+l−1ρ, νa+k+l−1ρ]),
δ([νa+lρ, νa+k+l+1ρ]), δ([νa+l+1ρ, νa+k+lρ])).

Since σ(m+1) is a subrepresentation of an induced representation of the
form δ([νx+1ρ, νa+kρ])×νa+k+1ρ×· · ·×νa+k+mρ⋊π′ and x+1 > −a+1, using
standard commuting argument and the Frobenius reciprocity we conclude that
the Jacquet module of the representation (4.1) with respect to the appropriate
parabolic subgroup contains an irreducible representation of the form

δ([ν−a−k−lρ, ν−a−l−1ρ])⊗ δ([νx+1ρ, νa+kρ])⊗ νa+k+1ρ⊗ · · · ⊗ νa+k+mρ⊗ π′.
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Suppose that

π ∼= L(δ([νaρ, νa+kρ]), . . . , δ([νa+l−1ρ, νa+k+l−1ρ]),
δ([νa+lρ, νa+k+l+1ρ]), δ([νa+l+1ρ, νa+k+lρ]))

≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+l−1ρ, νa+k+l−1ρ]))×
δ([νa+lρ, νa+k+l+1ρ])× δ([νa+l+1ρ, νa+k+lρ])

Then the Jacquet module of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+l−1ρ, νa+k+l−1ρ]))×

δ([νa+lρ, νa+k+l+1ρ])× δ([νa+l+1ρ, νa+k+lρ]) ⋊ σ(m−l−1)

with respect to the appropriate parabolic subgroup contains an irreducible
representation of the form

δ([ν−a−k−lρ, ν−a−l−1ρ])⊗ δ([νx+1ρ, νa+kρ])⊗ νa+k+1ρ⊗ · · · ⊗ νa+k+mρ⊗ π′.

Applying the structural formulas appearing in Theorem 2.2, together with
the square-integrability of σ(m−l−1), on the induced representation

L(δ([νaρ, νa+kρ]), . . . , δ([νa+l−1ρ, νa+k+l−1ρ]))×

δ([νa+lρ, νa+k+l+1ρ])× δ([νa+l+1ρ, νa+k+lρ]) ⋊ σ(m−l−1)

we deduce that an irreducible representation of the form

δ([νx+1ρ, νa+kρ])⊗ νa+k+1ρ⊗ · · · ⊗ νa+k+mρ⊗ π′

is contained in the Jacquet module of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+l−1ρ, νa+k+l−1ρ]))×

δ([νa+lρ, νa+k+l+1ρ]) ⋊ σ(m−l−1)

with respect to the appropriate parabolic subgroup. Since −a < a + k,
µ∗(σ(m−l−1)) contains neither an irreducible constituent of the form δ([νx+1ρ,
νa+kρ])⊗π′′ nor of the form νyρ⊗π′ for y ∈ {a+k+1, a+k+2, . . . , a+k+l+1},
and a repeated application of Theorem 2.2 implies that an irreducible repre-
sentation of the form

νa+k+lρ⊗ · · · ⊗ νa+k+mρ⊗ π′

is contained in the Jacquet module of

L(δ([νaρ, νx−1ρ]), δ([νa+1ρ, νa+kρ]), . . . , δ([νa+l−1ρ, νa+k+l−1ρ]))×

δ([νa+lρ, νa+k+l+1ρ]) ⋊ σ(m−l−1),

with respect to the appropriate parabolic subgroup, which is impossible.
Thus,

π ∼= L(δ([νaρ, νa+kρ]), . . . , δ([νa+lρ, νa+k+lρ]), δ([νa+l+1ρ, νa+k+l+1ρ])).
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It follows that

L(δ([ν−a−k−m+1ρ, ν−a−mρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]);σ(m+1))

is an irreducible subquotient of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+mρ, νa+k+mρ])) ⋊ σ,

and the claim of the proposition can be obtained using a repeated application
of Lemma 3.3.

Now we consider the second possibility, 2x + 1 = −2a + 1, i.e., x = −a.
Again we define σ(0) = σ and, for i = 1, 2, . . . ,m let σ(i) stand for a unique
discrete series subrepresentation of νa+k+m−i+1ρ⋊σ(i−1). Let σ(m+1) denote
a unique discrete series subrepresentation of δ([ν−a+1ρ, νa+kρ])⋊σ(m) and let
τ be an irreducible tempered subrepresentation of δ([νaρ, ν−aρ])⋊σ(m+1) such
that µ∗(τ) contains an irreducible constituent of the form δ([ν−a+1ρ, νa+kρ])⊗
π. Then we have τ ↪→ δ([ν−a+1ρ, νa+kρ])× δ([νaρ, ν−aρ]) ⋊ σ(m).

From the part (2) of Lemma 3.4 follows that τ is an irreducible subquo-
tient of δ([νaρ, νa+kρ])⋊σ(m) and it can be proved in the same way as in the
case 2x+ 1 > −2a+ 1 that

L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−m−1ρ, ν−a−m−1ρ]),
δ([ν−a−k−m+1ρ, ν−a−mρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]); τ)

is an irreducible subquotient of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ.

Proposition 4.3. Suppose that a+m ≤ 0 and −2(a+m)+1 /∈ Jordρ(σ).
Then L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ reduces.

Proof. We denote (2(a+k)+1)_ by 2x+1 and consider two possibilities
separately.

First we assume that 2x+ 1 > −2a+ 1.
Let us define σ(0) = σ and, for i = 1, 2, . . . ,m, let σ(i) denote a unique

discrete series such that σ(i−1) is a subrepresentation of ν−a−m+iρ ⋊ σ(i),
which can be easily obtained using the proof of [13, Lemma 3.2]. Also,
let σ(m+1) denote a discrete series such that σ(m) is a subrepresentation of
δ([ν−a+1ρ, νxρ]) ⋊ σ(m+1), which can also be obtained using the proof of [13,
Lemma 3.2].

Using ϵσ(−2(a+i)+1,−2(a+i)+3) = −1 for i = 0, 1, . . . ,m−2, ϵσ((−2a+
1, ρ), (2x + 1, ρ)) = −1, together with [22, Theorem 8.2, Proposition 7.2], we
obtain that for i = 0, 1, 2, . . . ,m− 1, µ∗(σ(i)) contains neither an irreducible
constituent of the form δ([ν−a+1ρ, νxρ])⊗ π nor an irreducible constituent of
the form νyρ⊗ π for y ∈ {−a−m+ i+ 2,−a−m+ i+ 3, . . . ,−a}.



306 I. MATIĆ

We prove that
L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−m−1ρ, ν−a−m−1ρ]),

δ([ν−a−k−mρ, ν−a−m+1ρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]), δ([ν−a−kρ, νxρ]);σ(m+1))
is an irreducible subquotient of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ.

First, it follows from the first part of Lemma 3.5 that L(δ([ν−a−kρ, νxρ]);
σ(m+1)) is an irreducible subquotient of δ([νaρ, νa+kρ]) ⋊ σ(m).

We proceed inductively, and suppose that for every l ∈ {0, 1, . . . ,m− 1}
we have
L(δ([ν−a−k−lρ, ν−a−l+1ρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]), δ([ν−a−kρ, νxρ]);σ(m+1))

≤ L(δ([νaρ, νa+kρ]), δ([νa+1ρ, νa+k+1ρ]), . . . , δ([νa+lρ, νa+k+lρ])) ⋊ σ(m−l).

Using Lemma 3.2 we obtain
L(δ([ν−a−k−l−1ρ, ν−a−lρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]), δ([ν−a−kρ, νxρ]);σ(m+1))

≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+lρ, νa+k+lρ]))

⋊L(δ([ν−a−k−l−1ρ, ν−a−lρ]);σ(m−l)),
and, using the first part of Lemma 3.5,
L(δ([ν−a−k−l−1ρ, ν−a−lρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]), δ([ν−a−kρ, νxρ]);σ(m+1))

≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+lρ, νa+k+lρ]))×

δ([νa+l+1ρ, νa+k+l+1ρ]) ⋊ σ(m−l−1).

Using Lemma 3.1, we deduce that there is a
π ∈ {L(δ([νaρ, νa+kρ]), . . . , δ([νa+l+1ρ, νa+k+l+1ρ])),

L(δ([νaρ, νa+kρ]), . . . , δ([νa+l−1ρ, νa+k+l−1ρ]),
δ([νa+l+1ρ, νa+k+lρ]), δ([νa+lρ, νa+k+l+1ρ]))}

such that
(4.2)
L(δ([ν−a−k−l−1ρ, ν−a−lρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]), δ([ν−a−kρ, νxρ]);σ(m+1))

is an irreducible subquotient of π ⋊ σ(m−l−1).
Using Frobenius reciprocity and a standard commuting argument, we

obtain that the Jacquet module of the representation (4.2) with respect to
the appropriate parabolic subgroup contains an irreducible representation of
the form

δ([ν−a−k−l−1ρ, ν−a−lρ])⊗ ν−a−l+1ρ⊗ ν−a−l+2ρ⊗ · · · ⊗ ν−aρ⊗
δ([ν−a+1ρ, νxρ])⊗ π′.
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Suppose that
π ∼= L(δ([νaρ, νa+kρ]), . . . , δ([νa+l−1ρ, νa+k+l−1ρ]),

δ([νa+l+1ρ, νa+k+lρ]), δ([νa+lρ, νa+k+l+1ρ]))
≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+l−1ρ, νa+k+l−1ρ]))×
δ([νa+l+1ρ, νa+k+lρ])× δ([νa+lρ, νa+k+l+1ρ]).

Using Theorem 2.2, the square-integrability of σ(m−l−1), and the fact that
µ∗(σ(m−l−1)) does not contain an irreducible constituent of the form νyρ⊗π′′

for y ∈ {−a− l + 1,−a− l + 2, . . . ,−a}, we conclude that

µ∗(L(δ([νa+1ρ, νa+kρ]), . . . , δ([νa+lρ, νa+k+l−1ρ]))×

δ([νa+l+1ρ, νa+k+lρ]) ⋊ σ(m−l−1))

contains an irreducible representation of the form δ([ν−a+1ρ, νxρ])⊗π′, which
is impossible since −a − l − 1 < −a + 1, x < a + k, and µ∗(σ(m−l−1)) does
not contain an irreducible constituent of the form δ([ν−a+1ρ, νxρ])⊗ π′′.

Consequently, π ∼= L(δ([νaρ, νa+kρ]), . . . , δ([νa+l+1ρ, νa+k+l+1ρ])), and it
follows that

L(δ([ν−a−k−mρ, ν−a−m+1ρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]),

δ([ν−a−kρ, νxρ]);σ(m+1))

is an irreducible subquotient of L(δ([νaρ, νa+kρ]), . . . , δ([νa+mρ, νa+k+mρ]))⋊
σ. Now a repeated application of Lemma 3.3 can be used to prove our claim.

Let us comment on the case 2x+ 1 = −2a+ 1. Again we define σ(0) = σ
and, for i = 1, 2, . . . ,m, let σ(i) denote a unique discrete series such that
σ(i−1) is a subrepresentation of ν−a−m+iρ⋊ σ(i).

Let σ(m+1) denote a discrete series such that σ(m) is a subrepresentation
of δ([ν−a+1ρ, νa+kρ]) ⋊ σ(m+1), and let τ denote an irreducible tempered
subrepresentation of δ([ν−a−kρ, νa+kρ])⋊σ(m+1) such that µ∗(τ) contains an
irreducible constituent of the form δ([ν−a+1ρ, νa+kρ])×δ([ν−a+1ρ, νa+kρ])⊗π.
By [22, Corollary 4.2], this is equivalent to the fact that τ embeds into an
induced representation of the form δ([ν−a+1ρ, νa+kρ])×δ([ν−a+1ρ, νa+kρ])⋊π.

We prove that
L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−m−1ρ, ν−a−m−1ρ]),

δ([ν−a−k−mρ, ν−a−m+1ρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]); τ)
is an irreducible subquotient of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ.

By the second part of Lemma 3.5, τ is an irreducible subquotient of δ([νaρ,
νa+kρ])⋊ σ(m). Note that, for i = 0, 1, 2, . . . ,m− 1, µ∗(σ(i)) contains neither
an irreducible constituent of the form δ([ν−a+1ρ, νa+kρ])⊗π nor an irreducible
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constituent of the form νyρ⊗π, for y ∈ {−a−m+i+2,−a−m+i+3, . . . ,−a}.
Now the rest of the proof can be obtained following the same lines as in the
proof of the previously considered case 2x+ 1 > −2a+ 1, using the fact that
the Jacquet module of

L(δ([ν−a−k−l−1ρ, ν−a−lρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]); τ)

with respect to the appropriate parabolic subgroup contains an irreducible
representation of the form

δ([ν−a−k−l−1ρ, ν−a−lρ])⊗ ν−a−l+1ρ⊗ · · · ⊗ ν−aρ⊗

δ([ν−a+1ρ, νa+kρ])× δ([ν−a+1ρ, νa+kρ])⊗ π′.

Proposition 4.4. Suppose that 2(a + k + m) + 1 ∈ Jordρ(σ) and
ϵσ((2(a+k+m)−1, ρ), (2(a+k+m)+1, ρ)) = 1. Then L(δ([νaρ, νa+kρ]), . . .,
δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ reduces.

Proof. We denote (2(a+k)+1)_ by 2x+1 and consider two possibilities
separately. First we consider that case 2x+ 1 > −2a+ 1.

Let σ(1) stand for a discrete series such that σ is a subrepresentation of
δ([ν−a−k−m+1ρ, νa+k+mρ]) ⋊ σ(1).

If m = 1, we denote by τ (1) a unique irreducible tempered subrepre-
sentation of δ([ν−a−k−1ρ, νa+k+1ρ]) ⋊ σ(1) such that τ (1) is not a subrep-
resentation of an induced representation of the form δ([νx+1ρ, νa+k+1ρ]) ×
δ([νx+1ρ, νa+k+1ρ]) ⋊ π.

If m ≥ 2, we denote by τ (1) a unique irreducible tempered subrepresen-
tation of δ([ν−a−k−mρ, νa+k+mρ]) ⋊ σ(1) such that τ (1) is not a subrepresen-
tation of an induced representation of the form δ([νa+k+m−1ρ, νa+k+mρ]) ×
δ([νa+k+m−1ρ, νa+k+mρ]) ⋊ π.

We note that uniqueness of τ (1) can be obtained using [22, Section 4].
By [12, Theorem 5.4], the induced representation νa+k+mρ⋊ σ(1) is irre-

ducible, so we have

τ (1) ↪→ δ([ν−a−k−mρ, νa+k+mρ]) ⋊ σ(1)

↪→ δ([ν−a−k−m+1ρ, νa+k+mρ])× ν−a−k−mρ⋊ σ(1)

∼= δ([ν−a−k−m+1ρ, νa+k+mρ])× νa+k+mρ⋊ σ(1)

∼= νa+k+mρ× δ([ν−a−k−m+1ρ, νa+k+mρ]) ⋊ σ(1),

so there is an irreducible subquotient π of δ([ν−a−k−m+1ρ, νa+k+mρ]) ⋊ σ(1)

such that τ (1) is contained in νa+k+mρ⋊π. Since τ (1) is also a subrepresenta-
tion of νa+k+mρ× νa+k+mρ× δ([ν−a−k−m+1ρ, νa+k+m−1ρ])⋊ σ(1), it follows
that µ∗(π) contains an irreducible constituent of the form νa+k+mρ⊗ π′.
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Since δ([ν−a−k−m+1ρ, νa+k+m−1ρ])⋊σ(1) is a length two representation, it
easily follows that µ∗(δ([ν−a−k−m+1ρ, νa+k+mρ])⋊σ(1)) contains exactly two
irreducible constituents of the form νa+k+mρ⊗π′. By the classification of dis-
crete series, δ([ν−a−k−m+1ρ, νa+k+mρ])⋊σ(1) has two irreducible subrepresen-
tations, which are both in discrete series. Frobenius reciprocity implies that
π is a discrete series subrepresentation of δ([ν−a−k−m+1ρ, νa+k+mρ]) ⋊ σ(1).

Also, by the classification of discrete series, if σ′ is a discrete series sub-
representation of δ([ν−a−k−m+1ρ, νa+k+mρ])⋊ σ(1) such that ϵσ′(((2(a+ k+
m)− 1)_, ρ), (2(a+ k +m)− 1, ρ)) = −1, we have σ′ ∼= σ.

Using a definition of τ (1), following the same lines as in the proof of
[13, Lemma 3.5], we conclude that ϵπ(((2(a+k+m)−1)_, ρ), (2(a+k+m)−
1, ρ)) = −1. Consequently, π ∼= σ, i.e., τ (1) is an irreducible subquotient of
νa+k+mρ⋊ σ.

For m ≥ 2 and i = 2, 3, . . . ,m, we let σ(i) denote a unique discrete series
subrepresentation of νa+k+m−i+1ρ⋊ σ(i−1) and let τ (i) denote an irreducible
tempered subrepresentation of δ([ν−a−k−mρ, νa+k+mρ])⋊σ(i) such that τ (i) is
not a subrepresentation of an induced representation of the form νa+k+mρ×
νa+k+mρ⋊ π.

Let σ(m+1) stand for a unique discrete series subrepresentation of
δ([νx+1ρ, νa+kρ]) ⋊ σ(m), and let τ (m+1) denote an irreducible tempered
subrepresentation of δ([ν−a−k−mρ, νa+k+mρ]) ⋊ σ(m+1) such that τ (m+1) is
not a subrepresentation of an induced representation of the form νa+k+mρ×
νa+k+mρ⋊ π.

It can be seen in the same way as in the proof of Proposition 4.2 that,
for j = 1, 2, . . . ,m, µ∗(τ (j)) contains neither an irreducible constituent of the
form δ([νx+1ρ, νa+kρ])⊗π nor an irreducible constituent of the form νyρ⊗π,
for y ∈ {a+ k + 1, a+ k + 2, . . . , a+ k +m− j}.

We prove that

L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−m−1ρ, ν−a−m−1ρ]),

δ([ν−a−k−m+1ρ, ν−a−mρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]); τ (m+1))

is an irreducible subquotient of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ.

First, by Lemma 3.6 we have L(δ([ν−xρ, ν−aρ]); τ (m+1)) ≤ δ([νaρ, νa+kρ]) ⋊
τ (m).

Note that τ (m+1) is a subrepresentation of an induced representation of
the form

δ([νx+1ρ, νa+kρ])× νa+k+1ρ× νa+k+2ρ× · · · × νa+k+m−1ρ⋊ π.
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Following the same lines as in the proof of Proposition 4.2, just using Lemma
3.6 instead of Lemma 3.4, we deduce that for l = 0, 1, . . . ,m− 1 we have

L(δ([ν−a−k−l+1ρ, ν−a−lρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]); τ (m+1))

≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+lρ, νa+k+lρ])) ⋊ τ (m−l).

In particular, for l = m− 1 we get
L(δ([ν−a−k−m+2ρ, ν−a−m+1ρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]); τ (m+1))

≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ])) ⋊ τ (1)

≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ])) × νa+k+mρ⋊ σ,

so there is an irreducible subquotient π of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]))× νa+k+mρ

such that
(4.3)
L(δ([ν−a−k−m+2ρ, ν−a−m+1ρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]); τ (m+1))

is an irreducible subquotient of π ⋊ σ. Obviously, either

π∼=L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]), νa+k+mρ)

or

π∼=L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−2ρ, νa+k+m−2ρ]), δ([νa+m−1ρ, νa+k+mρ])).

Since µ∗(σ) contains neither an irreducible constituent of the form δ([νx+1ρ,
νa+kρ]) ⊗ π′ nor an irreducible constituent of the form νyρ ⊗ π′, for y ∈
{a+ k + 1, a+ k + 2, . . . , a+ k +m− 1}, a repeated application of Theorem
2.2 can be used to see that the Jacquet module of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−2ρ, νa+k+m−2ρ]), δ([νa+m−1ρ, νa+k+mρ]))⋊ σ

with respect to the appropriate parabolic subgroup does not contain an irre-
ducible representation of the form

δ([νx+1ρ, νa+kρ])⊗ νa+k+1ρ⊗ νa+k+2ρ⊗ · · · ⊗ νa+k+m−1ρ⊗ π′.

Consequently, π∼=L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]), νa+k+mρ).
This leads to

L(δ([ν−a−k−m+1ρ, ν−a−mρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]); τ (m+1))

≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]), νa+k+mρ)×

δ([νa+mρ, νa+k+m−1ρ]) ⋊ σ,

and there is an irreducible subquotient π′ of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]), νa+k+mρ)×
δ([νa+mρ, νa+k+m−1ρ])
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such that
(4.4)
L(δ([ν−a−k−m+1ρ, ν−a−mρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]), δ([ν−xρ, ν−aρ]); τ (m+1))

is contained in π′ ⋊ σ. Since the Jacquet module of the representation (4.4)
with respect to the appropriate parabolic subgroup contains an irreducible
constituent of the form δ([ν−a−k−m+1ρ, ν−a−mρ]) ⊗ π′′, and π′ is contained
in

L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]), νa+k+mρ)×
δ([νa+mρ, νa+k+m−1ρ]) ≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]))×

νa+k+mρ× δ([νa+mρ, νa+k+m−1ρ]) =
L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]))× δ([νa+mρ, νa+k+mρ])+

L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]))×
L(δ([νa+mρ, νa+k+m−1ρ]), νa+k+mρ),

using Theorem 2.2 we obtain
π′ ≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]))×δ([νa+mρ, νa+k+mρ]).
Using the same reasoning as before, we conclude
π′ ∼= L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]), δ([νa+mρ, νa+k+mρ])).
Now the rest of the proof in the case 2x+ 1 > −2a+ 1 follows by a repeated
application of Lemma 3.3.

Let us shortly comment on the case 2x + 1 = −2a + 1. We define
σ(1), σ(2), . . ., σ(m+1) and τ (1), τ (2), . . . , τ (m) in the same way as in the previ-
ously considered case 2x+ 1 > −2a+ 1.

We denote by τ (m+1) an irreducible tempered subrepresentation of

δ([ν−a−k−mρ, νa+k+mρ])× δ([νaρ, ν−aρ]) ⋊ σ(m+1)

which is a subrepresentation of an induced representation of the form
δ([ν−a+1ρ, νa+kρ]) ⋊ π and is not a subrepresentation of an induced rep-
resentation of the form νa+k+mρ× νa+k+mρ⋊ π.

By Lemma 3.7, τ (m+1) is an irreducible subquotient of δ([νaρ, νa+kρ]) ⋊
τ (m). It can now be proved in the same way as in the previously considered
case 2x+ 1 > −2a+ 1 that

L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−m−1ρ, ν−a−m−1ρ]),

δ([ν−a−k−m+1ρ, ν−a−mρ]), . . . , δ([ν−a−kρ, ν−a−1ρ]); τ (m+1))
is an irreducible subquotient of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ.

This ends the proof.
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Proposition 4.5. Suppose that a + m ≤ 0, −2(a + m) + 1 ∈ Jordρ(σ),
and ϵσ((−2(a+m)+1, ρ), (−2(a+m)+3, ρ)) = 1. Then L(δ([νaρ, νa+kρ]), . . .,
δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ reduces.

Proof. Let us denote by 2x+ 1 an element of Jordρ(σ) such that (2x+
1)_ = −2a + 1. Then 2x + 1 ≤ 2(a + k) + 1. First we discuss the case
2x+ 1 < 2(a+ k) + 1.

From ϵσ(−2(a + m) + 1,−2(a + m) + 3) = 1, by the classification of
discrete series follows that there is an irreducible tempered representation
τ (1) such that σ is a subrepresentation of ν−a−m+1ρ ⋊ τ (1). Then τ (1) is
a subrepresentation of δ([νa+mρ, ν−a−mρ]) ⋊ σ(1), for a discrete series σ(1)

such that σ is a subrepresentation of δ([νa+mρ, ν−a−m+1ρ]) ⋊ σ(1). Since
−2(a + m) + 3 /∈ Jordρ(σ(1)), it follows that ν−a−m+1ρ ⊗ τ (1) is a unique
irreducible constituent of µ∗(ν−a−m+1ρ ⋊ τ (1)) of the form ν−a−m+1ρ ⊗ π.
Thus, σ is a unique irreducible subquotient of ν−a−m+1ρ⋊τ (1) which contains
an irreducible constituent of the form ν−a−m+1ρ ⊗ π in the Jacquet module
with respect to the appropriate parabolic subgroup.

Let 2y + 1 denote an element of Jordρ(σ) such that (2y + 1)_ = −2(a+
m) + 3. Note that y = x if m = 1, and y = −a−m+ 2 otherwise. Then τ (1)

is an irreducible tempered subrepresentation of δ([νa+mρ, ν−a−mρ]) ⋊ σ(1)

which is not a subrepresentation of an induced representation of the form
δ([ν−a−m+1ρ, νyρ]) ⋊ π, since otherwise we would have

σ ↪→ ν−a−m+1ρ× δ([ν−a−m+1ρ, νyρ]) ⋊ π

∼= δ([ν−a−m+1ρ, νyρ])× ν−a−m+1ρ⋊ π,

leading to ϵσ((−2(a+m) + 3, ρ), (2y + 1, ρ)) = 1, a contradiction.
For i = 2, 3, . . . ,m, we define σ(i) as a unique discrete series such that

σ(i−1) is a subrepresentation of ν−a−m+iρ ⋊ σ(i). Also, let σ(m+1) denote
a discrete series such that σ(m) is a subrepresentation of δ([ν−a+1ρ, νxρ]) ⋊
σ(m+1).

Note that for i = 2, 3, . . . ,m + 1 we have −2(a + m) + 3 ∈ Jordρ(σ(i)),
and let τ (i), for i = 2, 3, . . . ,m+ 1, denote an irreducible tempered subrepre-
sentation of δ([νa+mρ, ν−a−mρ])⋊σ(i) which is not a subrepresentation of an
induced representation of the form ν−a−m+1ρ⋊ π.

It can be observed directly from the definitions of σ and σ(i) that, for
i = 1, 2, . . . ,m− 1, µ∗(σ(i)) contains neither an irreducible constituent of the
form δ([ν−a+1ρ, νxρ])⊗ π nor an irreducible constituent of the form νyρ⊗ π,
for y ∈ {−a−m+ i+ 2,−a−m+ i+ 3, . . . ,−a}.

We prove that

L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−m−1ρ, ν−a−m−1ρ]),

δ([ν−a−k−mρ, ν−a−m+1ρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]), δ([ν−a−kρ, νxρ]); τ (m+1))
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is an irreducible subquotient of
L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ.

First, by Lemma 3.8 we have

L(δ([ν−a−kρ, νxρ]); τ (m+1)) ≤ δ([νaρ, νa+kρ]) ⋊ τ (m).

Following the same lines as in the proof of Proposition 4.3, just using
Lemma 3.8 instead of Lemma 3.5, we deduce that for l = 1, 2, . . . ,m − 1 we
have
L(δ([ν−a−k−lρ, ν−a−l+1ρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]), δ([ν−a−kρ, νxρ]); τ (m+1))

≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+lρ, νa+k+lρ])) ⋊ τ (m−l).

In particular, for l = m− 1 ≥ 1 we have
L(δ([ν−a−k−m+1ρ, ν−a−m+2ρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]),

δ([ν−a−kρ, νxρ]); τ (m+1)) ≤

L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ])) ⋊ τ (1).

Consequently, using Lemma 3.2 we deduce
L(δ([ν−a−k−mρ, ν−a−m+1ρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]),

δ([ν−a−kρ, νxρ]); τ (m+1)) ≤
L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]))

⋊L(δ([ν−a−k−mρ, ν−a−m+1ρ]); τ (1)).

Note that L(δ([ν−a−k−mρ, ν−a−m+1ρ]); τ (1)) is an irreducible subquotient of

δ([νa+mρ, νa+k+mρ])× ν−a−m+1ρ⋊ τ (1).

Thus, there is an irreducible subquotient π1 of ν−a−m+1ρ ⋊ τ (1) such that
L(δ([ν−a−k−mρ, ν−a−m+1ρ]); τ (1)) is an irreducible subquotient of δ([νa+mρ,
νa+k+mρ]) ⋊ π1.

Since µ∗(L(δ([ν−a−k−mρ, ν−a−m+1ρ]); τ (1))) contains an irreducible con-
stituent of the form ν−a−m+1ρ ⊗ π, it follows that µ∗(π1) also contains an
irreducible constituent of such a form. Thus, π1 ∼= σ and

L(δ([ν−a−k−mρ, ν−a−m+1ρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]),

δ([ν−a−kρ, νxρ]); τ (m+1)) ≤
L(δ([νaρ, νa+kρ]), . . . , δ([νa+m−1ρ, νa+k+m−1ρ]))× δ([νa+mρ, νa+k+mρ]) ⋊ σ.

Since µ∗(σ) contains neither an irreducible constituent of the form δ([ν−a+1ρ,
νxρ])⊗π nor an irreducible constituent of the form νyρ⊗π, for −a−m+2 ≤
y ≤ −a, and the Jacquet module of
L(δ([ν−a−k−mρ, ν−a−m+1ρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]), δ([ν−a−kρ, νxρ]); τ (m+1))
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with respect to the appropriate parabolic subgroup contains an irreducible
representation of the form

δ([ν−a−k−mρ, ν−a−m+1ρ])⊗ ν−a−m+2ρ⊗ · · · ⊗ ν−aρ⊗ δ([ν−a+1ρ, νxρ])⊗ π,

it can be concluded in the same way as in the proof of Proposition 4.3 that

L(δ([ν−a−k−mρ, ν−a−m+1ρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]), δ([ν−a−kρ, νxρ]); τ (m+1))

≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+mρ, νa+k+mρ])) ⋊ σ.

The rest of the proof in the case 2x+ 1 < 2(a+ k) + 1 follows by a repeated
application of Lemma 3.3.

Let us comment on the case 2x + 1 = 2(a + k) + 1. We define discrete
series representations σ(1), . . . , σ(m) and irreducible tempered representations
τ (1), . . . , τ (m) in the same way as in the case 2x+ 1 < 2(a+ k) + 1.

Let σ(m+1) denote a discrete series such that σ(m) is a subrepresentation of
δ([ν−a+1ρ, νa+kρ])⋊σ(m+1), and let τ (m+1) stand for an irreducible tempered
subrepresentation of

δ([νa+mρ, ν−a−mρ])× δ([ν−a−kρ, νa+kρ]) ⋊ σ(m+1)

which is a subrepresentation of an induced representation of the form

δ([ν−a+1ρ, νa+kρ])× δ([ν−a+1ρ, νa+kρ]) ⋊ π

and is not a subrepresentation of an induced representation of the form
ν−a−m+1ρ⋊ π.

By Lemma 3.9, τ (m+1) is an irreducible subquotient of δ([νaρ, νa+kρ]) ⋊
τ (m). It can now be proved following the same lines as in the case 2x + 1 <
2(a+ k) + 1 that

L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−k−m−1ρ, ν−a−m−1ρ]),

δ([ν−a−k−mρ, ν−a−m+1ρ]), . . . , δ([ν−a−k−1ρ, ν−aρ]); τ (m+1))

is an irreducible subquotient of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ.

This ends the proof.

From Propositions 4.1 - 4.5 we deduce the main result of this section.

Theorem 4.6. If there is an i ∈ {0, 1, . . . , n − 1} such that the induced
representation δ([νa+iρ, νa+k+iρ]) ⋊ σ reduces, then the induced representa-
tion L(δ([νaρ, νa+kρ]), δ([νa+1ρ, νa+k+1ρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ
reduces.
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5. Irreducibility

We fix an irreducible cuspidal representation ρ ∈ R(GL), a negative real
number a, and positive integers k and n such that a+ k > −a.

The aim of this section is to prove that

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ

is irreducible if δ([νa+iρ, νa+k+iρ])⋊σ is irreducible for all i ∈ {0, 1, . . . , n−1}.
We start with the following lemma:

Lemma 5.1. Suppose that τ ∈ R(G) is an irreducible tempered repre-
sentation and let δi stand for δ([νxiρi, ν

yiρi]), where ρi ∈ R(GL) is an ir-
reducible cuspidal representation and xi + yi < 0, for i = 1, 2, . . . ,m. If
δ1 × · · · × δm ⋊ τ has an irreducible subrepresentation π, which is also an ir-
reducible subquotient of L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ,
then for i = 1, 2, . . . ,m we have ρi ∼= ρ̃ if F ′ = F , and ρi ∼= ρ̂ otherwise.

Proof. We comment only the case F ′ = F , since the other case can
be treated in a completely analogous manner. Suppose that there is an
i ∈ {1, 2, . . . ,m} such that ρi ̸∼= ρ̃, and let us denote the minimal such i
by imin. Then for j ∈ {1, . . . , imin − 1} we have δj × δimin

∼= δimin × δj ,
and using a commuting argument, together with the Frobenius reciprocity,
we get that µ∗(L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ]))⋊ σ) contains
an irreducible constituent of the form δ([νximinρimin , ν

yiminρimin ]) ⊗ π′. Since
ximin + yimin < 0, using the square-integrability of σ and Theorem 2.2, we
obtain ρimin

∼= ρ̃, a contradiction.

The following lemma is a direct consequence of the square-integrability
criterion, [12, Theorems 3.5, 4.6, 5.4] and [22, Proposition 7.2]:

Lemma 5.2. Suppose that ρ is F ′/F -selfdual and that δ([νa+iρ, νa+k+iρ])⋊
σ is irreducible for all i ∈ {0, 1, . . . , n − 1}. If µ∗(σ) contains an irreducible
constituent of the form δ([νcρ, νdρ]) ⊗ π, then c + d > 0, 2d + 1 ∈ Jordρ(σ),
and one of the following holds:
(1) d > a+ k + n− 1,
(2) d ≤ −a− n+ 1,
(3) −a+ 2 ≤ d ≤ a+ k, c ≥ (2d+1)_+3

2 .

First we consider the more complicated case and, until said otherwise, we
assume that ρ is F ′/F -selfdual and a − α ∈ Z for a unique non-negative α
such that ναρ⋊ σcusp reduces.

Proposition 5.3. Suppose that δ([νa+iρ, νa+k+iρ])⋊ σ is irreducible for
all i ∈ {0, 1, . . . , n − 1}. If δ([νxρ, νyρ]) ⊗ π is an irreducible constituent of
µ∗(L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ), where x + y < 0,
then one of the following holds:
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(1) y = −a− n+ 1, −x ≤ a+ k + n− 1,

π ≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−2ρ, νa+k+n−2ρ]),
δ([ν−x+1ρ, νa+k+n−1ρ])) ⋊ σ

(2) y = a+ k, a+ n− 1 ≤ −x ≤ a+ k + n− 1,

π ≤ L(δ([νaρ, ν−a−n+1ρ]), δ([νa+1ρ, νa+k+1ρ]), . . . , δ([νa+n−2ρ, νa+k+n−2ρ]),
δ([ν−x+1ρ, νa+k+n−1ρ])) ⋊ σ

Proof. Since the Jacquet module of δ([νxρ, νyρ]) with respect to the
appropriate parabolic subgroup contains νyρ ⊗ νy−1ρ ⊗ · · · ⊗ νxρ, it follows
directly from Theorem 2.2 that there are c and d such that a + n − 2 ≤ c ≤
a + k + n − 1, a − 1 ≤ d ≤ a + k, and an irreducible constituent δ′ ⊗ σ′ of
µ∗(σ) such that

δ([νxρ, νyρ]) ≤ δ([ν−cρ, ν−a−n+1ρ])× δ([νd+1ρ, νa+kρ])× δ′

and

π ≤ L(δ([νaρ, νdρ]), δ([νa+1ρ, νa+k+1ρ]), . . . , δ([νa+n−2ρ, νa+k+n−2ρ]),
δ([νc+1ρ, νa+k+n−1ρ])) ⋊ σ′.

Since, by the square-integrability criterion, there is no constituent of µ∗(σ) of
the form νtρ⊗π′ for t ≤ 0, we obtain c > a+n−2, so x = −c ≥ −a−k−n+1
and y ≥ −a− n+ 1.

If y > a + k, it follows that µ∗(σ) contains an irreducible constituent of
the form δ([νx′

ρ, νyρ])⊗π′. From Lemma 5.2 follows y > a+k+n−1, which
is impossible since x+ y < 0.

If −a − n + 1 < y < a + k, we have d = a + k, so µ∗(σ) contains an
irreducible constituent of the form δ([ν−a−n+2ρ, νyρ])⊗ π′, contradicting the
third part of Lemma 5.2. Thus, y ∈ {−a− n+ 1, a+ k}.

If y = −a−n+1, we have d = a+k and σ′ ∼= σ. If y = a+k, then d < a+k
and, using the third part of Lemma 5.2 again, we deduce d = −a− n+ 2 and
σ′ ∼= σ. This ends the proof.

Proposition 5.4. Suppose that δ([νa+iρ, νa+k+iρ])⋊ σ is irreducible for
all i ∈ {0, 1, . . . , n − 1}. Suppose that δ([νxρ, νyρ]) ⊗ π, x + y < 0, is an
irreducible constituent of

µ∗(L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−t−1ρ, νa+k+n−t−1ρ]),
δ([ν−xt+1ρ, νa+k+n−tρ]), . . . , δ([ν−x1+1ρ, νa+k+n−1ρ])) ⋊ σ),

where 1 ≤ t < n, y ≥ −a − n + t, −a − k − n + i ≤ xi < a + n − i for
i = 1, 2, . . . , t, and xi < xi+1 for i = 1, 2, . . . , t− 1. Then one of the following
holds:
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(1) y = −a− n+ t+ 1, xt < a+ n− t− 2, xt < x,

π ≤ L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−t−2ρ, νa+k+n−t−2ρ]),
δ([ν−x+1ρ, νa+k+n−t−1ρ]), δ([ν−xt+1ρ, νa+k+n−tρ]), . . . ,

δ([ν−x1+1ρ, νa+k+n−1ρ])) ⋊ σ,

(2) y = a + k, there is an i ∈ {1, 2, . . . , t} such that a − 1 ≤ xi − 1 < a + k,
xi−1 < −a− k − 1 if i ≥ 2, xi−1 < x,

π ≤ L(δ([νaρ, νxi−1ρ]), δ([νa+1ρ, νa+k+1ρ]), . . . , δ([νa+n−t−1ρ, νa+k+n−t−1ρ]),
δ([ν−xt+1ρ, νa+k+n−tρ]), . . . , δ([ν−xi+1+1ρ, νa+k+n−i−1ρ]),
δ([ν−x+1ρ, νa+k+n−iρ]), δ([ν−xi−1+1ρ, νa+k+n−i+1ρ]), . . . ,

δ([ν−x1+1ρ, νa+k+n−1ρ])) ⋊ σ,

(3) y = a+ k, a− 1 ≤ −a− n+ t+ 1 < a+ k, −xt − 1 > a+ k, xt < x,

π ≤ L(δ([νaρ, ν−a−n+tρ]), δ([νa+1ρ, νa+k+1ρ]), . . . ,
δ([νa+n−t−2ρ, νa+k+n−t−2ρ]), δ([ν−x+1ρ, νa+k+n−t−1ρ]),

δ([ν−xt+1ρ, νa+k+n−tρ]), . . . , δ([ν−x1+1ρ, νa+k+n−1ρ])) ⋊ σ.

Proof. Since the Jacquet module of δ([νxρ, νyρ]) with respect to the
appropriate parabolic subgroup contains νyρ⊗ · · · ⊗ νxρ, using Theorems 2.1
and 2.2 we deduce that there is an irreducible representation π1 of the form

L(δ([νy1ρ, νx1−1ρ]), . . . , δ([νytρ, νxt−1ρ]), δ([νyt+1ρ, ν−a−n+t+1ρ])),

where yi < yi+1 for i = 1, 2, . . . , t, a d such that a − 1 ≤ d ≤ a + k, and an
irreducible constituent δ′ ⊗ σ′ of µ∗(σ) such that

δ([νxρ, νyρ]) ≤ π1 × δ([νd+1ρ, νa+kρ])× δ′.

Since x+ y < 0 and σ is square-integrable, some of the segments

[νy1ρ, νx1−1ρ], . . . , [νytρ, νxt−1ρ], [νyt+1ρ, ν−a−n+t+1ρ]

have to be non-empty. Lemma 5.2 implies that µ∗(σ) contains neither
an irreducible constituent of the form δ([νxiρ, νyρ]) ⊗ σ′′ for xi ≤ y ≤
xi+1 − 2, i ∈ {1, 2, . . . , t − 1}, nor an irreducible constituent of the form
δ([νxtρ, νyρ])⊗ σ′′ for xt ≤ y ≤ −a− n+ t. Consequently, exactly one of the
segments [νy1ρ, νx1−1ρ], . . ., [νytρ, νxt−1ρ], [νyt+1ρ, ν−a−n+t+1ρ] is non-empty,
since otherwise m∗(π1×δ([νd+1ρ, νa+kρ])×δ′) does not contain νyρ⊗· · ·⊗νxρ,
by Theorem 2.1 and multiplicativity of m∗.

Thus, either there are c and d such that a+ n− t− 1 ≤ c ≤ −xt − 1 and
a− 1 ≤ d ≤ a+ k, and an irreducible constituent δ′ ⊗ σ′ of µ∗(σ) such that

(5.1) δ([νxρ, νyρ]) ≤ δ([ν−cρ, ν−a−n+t+1ρ])× δ([νd+1ρ, νa+kρ])× δ′
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and

π ≤ L(δ([νaρ, νdρ]), δ([νa+1ρ, νa+k+1ρ]), . . . , δ([νa+n−t−2ρ, νa+k+n−t−2ρ]),
δ([νc+1ρ, νa+k+n−t−1ρ]), δ([ν−xt+1ρ, νa+k+n−tρ]), . . . ,

δ([ν−x1+1ρ, νa+k+n−1ρ])) ⋊ σ′,

or there is an i ∈ {1, 2, . . . , t}, c and d such that −xi − 1 ≤ c ≤ −xi−1 − 1,
with x0 = −a−k−n, a−1 ≤ d ≤ a+k, and an irreducible constituent δ′⊗σ′

of µ∗(σ) such that

(5.2) δ([νxρ, νyρ]) ≤ δ([ν−cρ, νxi−1ρ])× δ([νd+1ρ, νa+kρ])× δ′

and

π ≤ L(δ([νaρ, νdρ]), δ([νa+1ρ, νa+k+1ρ]), . . . , δ([νa+n−t−1ρ, νa+k+n−t−1ρ]),
δ([ν−xt+1ρ, νa+k+n−tρ]), . . . , δ([ν−xi+1+1ρ, νa+k+n−i−1ρ]),
δ([νc+1ρ, νa+k+n−iρ]), δ([ν−xi−1+1ρ, νa+k+n−i+1ρ]), . . . ,

δ([ν−x1+1ρ, νa+k+n−1ρ])) ⋊ σ′.

In the same way as in the proof of Proposition 5.3 we deduce −a−n+ t+1 ≤
y ≤ a + k. If y = −a − n + t + 1, we conclude at once that d = a + k and
σ′ ∼= σ. If −a− n+ t+ 1 < y < a+ k, then d = a+ k and µ∗(σ) contains an
irreducible constituent of the form δ([νzρ, νyρ])⊗ σ′′ for z ≤ −a− n+ t+ 2,
which contradicts the third part of Lemma 5.2.

It remains to consider the case y = a + k. Using Lemma 5.2 we deduce
d < a+ k.

If (5.1) holds, d > −a−n+ t+1 implies δ′ ∼= δ([ν−a−n+t+2ρ, νdρ]), which
is impossible by the third part of Lemma 5.2. Thus d = −a − n + t + 1 and
σ′ ∼= σ. Note that this case appears when xt < −a− k − 1.

Suppose that (5.2) holds and note that there is a unique i ∈ {1, 2, . . . , t}
such that xi − 1 ≥ a − 1 and a + k < −xi−1 − 1. Let us suppose that
d > xi − 1. This implies δ ∼= δ([νxiρ, νdρ]), so 2d + 1 ∈ Jordρ(σ). Since σ is
square-integrable, we have d > −xi.

If a+n−1 > 0, we have 2z+1 /∈ Jordρ(σ) for z ≤ −a and, by Lemma 5.2
and [22, Proposition 7.2], µ∗(σ) does not contain an irreducible constituent
of the form δ([νxiρ, νdρ])⊗ σ′ for xi ≤ 0 and d ≤ a+ k.

On the other hand, if a + n − 1 < 0, we have d > −a − n + i, and
2d + 1 ∈ Jordρ(σ) implies d > −a. Since d < a + k and xi ≤ 0, this is
impossible by the third part of Lemma 5.2. Thus, d = xi − 1 and σ′ ∼= σ.

Proposition 5.5. Suppose that δ([νa+iρ, νa+k+iρ])⋊ σ is irreducible for
all i ∈ {0, 1, . . . , n − 1}. Suppose that δ([νxρ, νyρ]) ⊗ π, x + y < 0, is an
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irreducible constituent of

µ∗(L(δ([νaρ, νx1ρ]), . . . , δ([νa+t−1ρ, νxtρ]), δ([νa+tρ, νa+k+tρ]), . . . ,
δ([νa+n−t−r−s−1ρ, νa+k+n−t−r−s−1ρ]), δ([ν−ys+1ρ, νa+k+n−t−r−sρ]), . . . ,

δ([ν−y1+1ρ, νa+k+n−t−r−1ρ]), δ([ν−zt+1ρ, νa+k+n−t−rρ]), . . . ,
δ([ν−z1+1ρ, νa+k+n−r−1ρ]), δ([ν−wr+1ρ, νa+k+n−rρ]), . . . ,

δ([ν−w1+1ρ, νa+k+n−1ρ])) ⋊ σ),

where y ≥ a + k + t − 1, r, s, t are non-negative integers such that t ≥ 1 and
2t+ s+ r < n, and
(1) a + i − 2 ≤ xi < a + k + i − 1 for i = 1, 2, . . . , t, xi < xi+1 for i =

1, 2, . . . , t − 1, if xi ≥ 0 then xi = −a − n + r + i, and if xi < 0 then
xi < a+ n− r − i− 1,

(2) −a− k−n+ t+ r+ i ≤ yi < a+n− t− r− i for i = 1, 2, . . . , s, yi < yi+1
for i = 1, 2, . . . , s− 1,

(3) −a− k − n+ r + i ≤ zi < −a− k − i+ 1 for i = 1, 2, . . . , t, zi < zi+1 for
i = 1, 2, . . . , t− 1, zi ≤ xi for i = 1, 2, . . . , t,

(4) −a − k − n + i ≤ wi < a + n − i for i = 1, 2, . . . , r, wi < wi+1 for
i = 1, 2, . . . , r − 1,

(5) z1 > wr if r ≥ 1, and y1 > xt + 1 if s ≥ 1.
Then y = a+ k + t, and one of the following holds:

• s = 0, a+ t−1 ≤ −a−n+ t+r+1 < a+k+ t, zt < −a−n+ t+r+2,
and

π ≤ L(δ([νaρ, νx1−1ρ]), . . . , δ([νa+t−1ρ, νxt−1ρ]), δ([νa+tρ, ν−a−n+t+r+1ρ]),
δ([νa+t+1ρ, νa+k+t+1ρ]), . . . , δ([νa+n−t−r−2ρ, νa+k+n−t−r−2ρ]),
δ([ν−x+1ρ, νa+k+n−t−r−1ρ]), δ([ν−zt+1ρ, νa+k+n−t−rρ]), . . . ,
δ([ν−z1+1ρ, νa+k+n−r−1ρ]), δ([ν−wr+1ρ, νa+k+n−rρ]), . . . ,

δ([ν−w1+1ρ, νa+k+n−1ρ])) ⋊ σ,

• s ≥ 1, a+ t ≤ y1 < a+ k + t, and

π ≤ L(δ([νaρ, νx1−1ρ]), . . . , δ([νa+t−1ρ, νxt−1ρ]), δ([νa+tρ, νy1−1ρ]),
δ([νa+t+1ρ, νa+k+t+1ρ]), . . . , δ([νa+n−t−r−s−1ρ, νa+k+n−t−r−s−1ρ]),
δ([ν−ys+1ρ, νa+k+n−t−r−sρ]), . . . , δ([ν−y2+1ρ, νa+k+n−t−r−2ρ]),
δ([ν−x+1ρ, νa+k+n−t−r−1ρ]), δ([ν−zt+1ρ, νa+k+n−t−rρ]), . . . ,
δ([ν−z1+1ρ, νa+k+n−r−1ρ]), δ([ν−wr+1ρ, νa+k+n−rρ]), . . . ,

δ([ν−w1+1ρ, νa+k+n−1ρ])) ⋊ σ.
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Proof. In the same way as in the proofs of previous two propositions we
conclude y = a+ k + t. Using Theorems 2.1 and 2.2, we obtain that there is
an irreducible representation π1 of the form

L(δ([νb1ρ, νx1ρ]), . . . , δ([νbtρ, νxtρ]), δ([νbt+1ρ, νa+k+tρ])),
where bi < bi+1 for i = 1, 2, . . . , t, an irreducible representation π2 of the form
L(δ([νc1ρ, νw1−1ρ]), . . . , δ([νcr+t+sρ, νys−1ρ]), δ([νcr+s+t+1ρ, ν−a−n+t+r+s+1ρ])),
where ci < ci+1 for i = 1, 2, . . . , r + s + t + 1, and an irreducible constituent
δ′ ⊗ σ′ of µ∗(σ) such that

δ([νxρ, νa+k+tρ]) ≤ π1 × π2 × δ′.

The segment [νbt+1ρ, νa+k+tρ] is obviously non-empty, and since x + a +
k + t < 0 and σ is square-integrable it follows that at least one of the
segments [νc1ρ, νw1−1ρ], . . ., [νcr+t+sρ, νys−1ρ], [νcr+s+t+1ρ, ν−a−n+t+r+s+1ρ]
is also non-empty.

Conditions (1)− (5), together with Lemma 5.2, imply that if µ∗(σ) con-
tains an irreducible constituent of the form δ([νd1ρ, νd2ρ]) ⊗ σ′′ for d1 ≤ d2
and d1 ∈ {w1, . . . , wr, z1, . . . , zt, y1, . . . , ys}, then d2 > a + k + t. Using the
condition (1) and Lemma 5.2 we conclude that µ∗(σ) does not contain an irre-
ducible constituent of the form δ([νxi+1ρ, νdρ])⊗σ′′ for xi+ 1 ≤ d ≤ a+k+ t
and i ∈ {1, 2, . . . , t}. Consequently, σ′ ∼= σ.

Also, for all i ∈ {1, 2, . . . , t} we have zi < −a − k and xi ≥ a − 1 >
−a−k−1. Thus, all the segments [νc1ρ, νw1−1ρ], . . ., [νcr+tρ, νzt−1ρ] are also
empty.

If s ≥ 1, then conditions (1) and (5) imply y1 − 1 ≥ a+ t− 1 and bi > xi
for i = 1, 2, . . . , t. Consequently,

δ([νxρ, νa+k+tρ]) ≤ L(δ([νcr+t+1ρ, νy1−1ρ]), . . . , δ([νcr+t+sρ, νys−1ρ]),
δ([νcr+s+t+1ρ, ν−a−n+t+r+s+1ρ]))× δ([νbt+1ρ, νa+k+tρ]),

and the claim directly follows.
If s = 0, we have at once
δ([νxρ, νa+k+tρ]) ≤ δ([νcr+t+1ρ, ν−a−n+t+r+1ρ])× δ([νbt+1ρ, νa+k+tρ]),

and it is easy to see that the claim also holds in this case.

Theorem 5.6. Suppose that δ([νa+iρ, νa+k+iρ]) ⋊ σ is irreducible for all
i ∈ {0, 1, . . . , n−1}. Then L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ]))⋊
σ is irreducible.

Proof. Suppose that δ([νa1ρ, νb1ρ]) and δ([νa2ρ, νb2ρ]) are irreducible
representations such that a1 + b1 ≤ a2 + b2 and b1 ≥ b2. Then we have
a1 ≤ a2, so

δ([νa1ρ, νb1ρ])× δ([νa2ρ, νb2ρ]) ∼= δ([νa2ρ, νb2ρ])× δ([νa1ρ, νb1ρ]).
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Let us denote an irreducible subquotient of L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ,
νa+k+n−1ρ])) ⋊ σ by π. If π is tempered, using the cuspidal support con-
siderations and the fact that 2(a + k + n − 1) + 1 ∈ Jordρ(σ), we con-
clude that π is a subrepresentation of an induced representation of the form
δ([ν−a−k−n+1ρ, νa+k+n−1ρ]) ⋊ τ , which is impossible since

µ∗(L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ)

does not contain an irreducible constituent of the form νa+k+n−1ρ⊗ π′.
Using the Langlands classification, together with Lemma 5.1 and the dis-

cussion from the beginning of the proof, we conclude that there are δ1, δ2, . . .,
δm, δi ∼= δ([νciρ, νdiρ]) such that ci + di < 0 for i = 1, 2, . . . ,m, di ≤ di+1
for i = 1, 2, . . . ,m− 1, and an irreducible tempered representation τ ∈ R(G)
such that π is a unique irreducible subrepresentation of δ1× δ2×· · ·× δm⋊ τ .

Let π(m) ∼= τ . Using the Frobenius reciprocity, together with the tran-
sitivity of Jacquet modules, we deduce that there exist irreducible represen-
tations π(1), . . . , π(m−1) ∈ R(G) such that µ∗(π) contains δ1 ⊗ π(1), µ∗(π(i))
contains δi+1 ⊗ π(i+1), for i = 1, . . . ,m − 2, and the Jacquet module of π(i)

with respect to the appropriate parabolic subgroup contains δi+1⊗· · ·⊗δm⊗τ ,
for i = 1, . . . ,m− 1.

Using Proposition 5.3, we obtain an irreducible representation L1 ∈
R(GL) such that π(1) ≤ L1 ⋊ σ. If m ≥ 2, using either Proposition 5.4
or Proposition 5.5, we obtain an irreducible representation L2 ∈ R(GL) such
that π(2) ≤ L2 ⋊ σ.

Continuing in the same way, using a repeated application of Propositions
5.4 and 5.5, we conclude that τ is an irreducible subquotient of the induced
representation Lm ⋊ σ, where Lm is a representation of the form

L(δ([νaρ, νx1ρ]), . . . , δ([νa+t−1ρ, νxtρ]), δ([νa+tρ, νa+k+tρ]), . . . ,
δ([νa+n−s−1ρ, νa+k+n−s−1ρ]), δ([ν−ys+1ρ, νa+k+n−sρ]), . . . ,

δ([ν−y1+1ρ, νa+k+n−1ρ])),

where s and t are non-negative integers such that s + t ≥ n, a + t − 1 ≤ 0,
a− i− 2 ≤ xi ≤ a+ k + i− 1, and if xi < a+ k + i− 1 then xi < −a+ i+ 2
for i = 1, 2, . . . , t, xi < xi+1, for i = 1, 2, . . . , t− 1, −a− k − n+ i+ 1 ≤ yi ≤
−a− n+ i+ 2, for i = 1, 2, . . . , s, yi < yi+1 for i = 1, 2, . . . , s− 1.

Suppose that τ ̸∼= σ and let x be such that νxρ appears in the cuspidal
support of Lm and for every νyρ appearing in the cuspidal support of Lm we
have |y| ≤ |x|. Then |x| ∈ {a+ k, , . . . , a+ k + n− 1,−a, . . . ,−a− n+ 1}, so
2|x| + 1 ∈ Jordρ(σ). Using the cuspidal support considerations we conclude
that τ can be written as a subrepresentation of an induced representation of
the form δ([ν−|x|ρ, ν|x|ρ])⋊τ ′. Using Theorem 2.2, the square-integrability of
σ, and Theorem 2.1, we conclude at once that µ∗(σ) contains an irreducible
constituent of the form δ([νzρ, ν|x|ρ])⊗ π′, for −|x| < z ≤ |x|. By Lemma 5.2
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this is possible only if |x| = a+k, and Theorem 2.2 implies z ≤ −a+1, which
contradicts the part (3) of Lemma 5.2. Thus, τ ∼= σ.

If ci = −a− n+ i for i = 1, 2, . . . ,m, using a repeated application of the
first part of Proposition 5.4 we get

π ∼= L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−kρ, ν−aρ]);σ).
If there is an i ∈ {1, 2, . . . ,m} such that ci ̸= −a−n+ i, using the second

and the third part of Proposition 5.4, and Proposition 5.5 repeatedly, we de-
duce that di < di+1 for i = 1, 2, . . . ,m−1, and there are non-negative integers
t1, t2, 0 ≤ t1 < t2 ≤ n−1 such that cm = −a−k− t2 and dm = a+k+ t1. By
[12, Theorem 3.2], the induced representation δ([ν−a−k−t2ρ, νa+k+t1ρ])⋊σ is
irreducible so

δ([ν−a−k−t2ρ, νa+k+t1ρ]) ⋊ σ ∼= δ([ν−a−k−t1ρ, νa+k+t2ρ]) ⋊ σ.

Since di < a + k + t2 ≤ a + k + t1 − 1, an easy commuting argument
shows that π is a subrepresentation of an induced representation of the form
νa+k+t2ρ⋊ π′′, but it follows directly from Theorem 2.2 and Lemma 5.2 that
µ∗(L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ) does not contain an
irreducible constituent of the form νa+k+t2ρ⊗ π′′.

Consequently, every irreducible subquotient of
L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ

is isomorphic to L(δ([ν−a−k−n+1ρ, ν−a−n+1ρ]), . . . , δ([ν−a−kρ, ν−aρ]);σ), and
it is an easy consequence of Theorem 2.2 that it appears in the composition
series of L(δ([νaρ, νa+kρ]), . . ., δ([νa+n−1ρ, νa+k+n−1ρ]))⋊σ with multiplicity
one. Thus, L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ]))⋊σ is irreducible.

In the rest of this section we shortly comment the remaining cases. We
begin by recalling a well-known result.

Lemma 5.7. (1) If µ∗(σ) contains an irreducible constituent of the form
νxρ1 ⊗ π, for an irreducible cuspidal representation ρ1 ∈ R(GL), then ρ1
is F ′/F -selfdual.

(2) Suppose that ρ1 ∈ R(GL) is an irreducible cuspidal F ′/F -selfdual repre-
sentation and let α be such that ναρ1 ⋊ σcusp reduces. If µ∗(σ) contains
an irreducible constituent of the form νxρ1 ⊗ π then x− α ∈ Z.

Theorem 5.8. Suppose that ρ is not F ′/F -selfdual. Then

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ

is irreducible.

Proof. Inspecting the cuspidal support of
L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ
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we conclude that it does not contain an irreducible tempered subquotient.
Using Lemma 5.1, in the same way as in the proof of Theorem 5.6 we

write an irreducible non-tempered subquotient π of L(δ([νaρ, νa+kρ]), . . .,
δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ as a unique irreducible subrepresentation of
δ1 × δ2 × · · · × δm ⋊ τ , for δ1, δ2, . . . , δm, δi ∼= δ([νciρ1, ν

diρ1]) such that
ci + di < 0 for i = 1, 2, . . . ,m, di ≤ di+1 for i = 1, 2, . . . ,m − 1, and an
irreducible tempered representation τ ∈ R(G). Here ρ1 = ρ̃ if F = F ′, and
ρ1 = ρ̂ otherwise.

Using the first part of Lemma 5.7, in the same way as in the proof of
Propositions 5.3 and 5.4 we deduce that for i = 1, 2, . . . ,m we have di =
−a − n + i and ci < ci+1 for i = 1, 2, . . . ,m − 1. Thus, m ≤ n and τ is an
irreducible subquotient of

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−m−1ρ, νa+k+n−m−1ρ]),
δ([ν−cm+1ρ, νa+k+n−mρ]), . . . , δ([ν−c1+1ρ, νa+k+n−1ρ])) ⋊ σ.

Using the cuspidal support considerations again, we conclude m = n and ci =
−a− k− n+ i for i = 1, 2, . . . , n. Now irreducibility of L(δ([νaρ, νa+kρ]), . . .,
δ([νa+n−1ρ, νa+k+n−1ρ]))⋊σ can be obtained in the same way as in the proof
of Theorem 5.6.

Theorem 5.9. Suppose that ρ is F ′/F -selfdual and for α such that ναρ⋊
σcusp reduces we have a− α /∈ Z. Then

L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ

is irreducible.

Proof. If 2a /∈ Z, the proof follows in the same way as the one of Theo-
rem 5.8.

Suppose that 2a ∈ Z. Then the induced representation L(δ([νaρ, νa+kρ]),
. . . , δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ does not contain a discrete series subquo-
tient.

Since νa+k+n−1ρ appears in the cuspidal support of L(δ([νaρ, νa+kρ]), . . .,
δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ exactly once, and for x ̸= a + k + n − 1 such
that νxρ appears in the cuspidal support of L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ,
νa+k+n−1ρ])) we have |x| < a+k+n−1, it follows that L(δ([νaρ, νa+kρ]), . . .,
δ([νa+n−1ρ, νa+k+n−1ρ])) ⋊ σ does not contain an irreducible tempered sub-
quotient.

We note that in the considered case the statements of Propositions 5.3,
5.4 and 5.5 also hold, and can be proved in an analogous way, just more easily,
using the second part of Lemma 5.7 instead of Lemma 5.2. Now the rest of
the proof follows in the same way as in the one of Theorem 5.6, details being
left to the reader.
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O reducibilnosti reprezentacija induciranih iz esencijalno Spehinih
reprezentacija i diskretnih serija

Ivan Matić

Sažetak. Neka je π esencijalno Spehina reprezentacija
oblika L(δ([νaρ, νa+kρ]), . . . , δ([νa+n−1ρ, νa+k+n−1ρ])), pri čemu
je ρ ireducibilna kuspidalna reprezentacija opće linearne grupe
nad nearhimedskim lokalnim poljem ili njegovim separabilnim
kvadratnim proširenjem, a ≤ 0, 2a + k > 0 te n ≥ 1. Neka je
σ diskretna serija simplektičke grupe, specijalne neparno ortogo-
nalne grupe ili unitarne grupe. Proučavamo kada se inducirana
reprezentacija π ⋊ σ reducira.
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