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SHARPENING THE DIRAC INEQUALITY

Pavle Pandžić and Ana Prlić

Dedicated to Marko Tadić

Abstract. We explain an idea towards a possible proof of a con-
jecture of Salamanca-Riba and Vogan. This conjecture, also called the
Convex hull conjecture, sharpens the well known Dirac inequality of Parta-
hasarathy, which has been useful in several partial classifications of unitary
representations of real reductive groups. The idea we present originates
from collaboration with David Renard.

1. Introduction

Let G be a connected real reductive Lie group with Cartan involution Θ
and let K = GΘ be the corresponding maximal compact subgroup of G. Let
g0 = k0⊕p0 be the Cartan decomposition of the Lie algebra ofG corresponding
to Θ and let g, k, p denote the complexifications of g0, k0 and p0. Let B be a
nondegenerate invariant symmetric bilinear form on g; for example, we can
take the Killing form extended over the center, or the trace form.

The main problem in the representation theory of real reductive Lie
groups is the so-called unitary dual problem: determining the set Ĝ of equiv-
alence classes of the irreducible unitary representations of G. This problem is
still considered unsolved in general, although there has been a lot of progress
over the past decades. For example, let us mention that there is an algorithm
implemented by the atlas software; see [1].

In [14] Salamanca Riba and Vogan conjectured that the study of Ĝ can be
reduced to the study of (g,K)–modules with unitarily small lowest K-types.
The Salamanca-Vogan conjecture was recently proved for the case G = U(p, q)
(see [17]). After introducing some basic definitions and results, we will explain
our idea that could be helpful for proving the Salamanca-Vogan conjecture in
general. Our approach is completely different from the approach used in [17].
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The algebraic Dirac operator D is an element of the tensor product of
the universal enveloping algebra U(g) and the Clifford algebra C(p) of p with
respect to B. It is defined as

D =
∑
i

bi ⊗ di ∈ U(g)⊗ C(p),

where bi is any basis of p and di is the dual basis with respect to B. Then D
is independent of the choice of bi, and K-invariant for the adjoint action on
both factors. The (geometric version of the) Dirac operator was introduced
by Parthasarathy [12]. It was used for the construction of the discrete series
representations as sections of certain spinor bundles on the homogeneous space
G/K.

The Dirac operator is very useful in representation theory; see for example
[3], [4]. One of the main uses of the Dirac operator is Parthasarathy’s Dirac
inequality [13] which we explain below.

Let M be a unitary (g,K)–module, with an invariant inner product
⟨· | ·⟩M , and let S be a spin module for C(p). Then the Dirac operator acts
on M ⊗ S. There is a standard inner product ⟨· | ·⟩S on S such that elements
of p0 are skew self-adjoint (see [4, 2.3.9] for more details).

Since the elements of p0 are skew self-adjoint with respect to ⟨· | ·⟩M and
with respect to ⟨· | ·⟩S , it follows that D is self-adjoint with respect to the
inner product on M ⊗ S defined by

(1.1) ⟨m1⊗s1 |m2⊗s2⟩ = ⟨m1 |m2⟩M ⟨s1 | s2⟩S , m1,m2 ∈M, s1, s2 ∈ S.

In particular, we have D2 ≥ 0 (Parthasarathy’s Dirac inequality). This in-
equality can be written more explicitly. To do that, we recall a formula for
D2 due to Parthasarathy.

Let Casg, Cask∆ denote the Casimir elements of U(g), U(k∆). Here k∆ =
∆(k) is the diagonal copy of k in U(g)⊗ C(p) defined by

∆(X) = X ⊗ 1 + 1⊗ α(X), X ∈ k,

where the map α : k→ C(p) is given by

k
ad−→ so(p) ∼=

∧2
p

q
↪→ C(p).

(The map q is the Chevalley map, i.e., the skew symmetrization. It is also
called the quantization map.)

Let h = t ⊕ a be a fundamental Cartan subalgebra of g. We choose
compatible systems of positive roots for (g, h) and (k, t), and denote by ρ
respectively ρk the corresponding half sums of positive roots. The announced
formula for D squared is

D2 = −(Casg⊗1 + ∥ρ∥2) + (Cask∆ +∥ρk∥2).
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Suppose thatM has infinitesimal character corresponding to Λ ∈ h∗ under
the Harish-Chandra isomorphism, and let τ be the highest weight of a K̃-
type Eτ appearing in M ⊗ S. (K̃ is the spin double cover of K.) Then by
the relation between Casimir actions and infinitesimal characters, the Dirac
inequality D2 ≥ 0 on Eτ can be rewritten as

∥Λ∥2 ≤ ∥τ + ρk∥2.

Dirac inequality was crucial for several partial classifications of unitary
modules. For example, Vogan and Zuckerman [16] used the Dirac inequal-
ity to classify unitary (g,K)-modules with nonzero (g,K)-cohomology. Fur-
thermore, Enright-Howe-Wallach [2] and independently Jakobsen [6] used the
Dirac inequality to classify unitary highest weight (g,K)-modules. More re-
cently, together with Souček, Tuček and Savin we reproved the classification
of [2] and [6] in a more elementary way, using the Dirac inequality to full
extent [9], [10], [11], [8].

As explained above, the Dirac inequality is a very useful necessary con-
dition for unitarity, but it is by no means a sufficient condition. We mention
that a sufficient condition in terms of the Dirac operator is described in [7].
Namely, let us assume that G is simple noncompact (or semisimple with no
compact factors). Let ⟨· | ·⟩M be an inner product on M , not necessarily in-
variant. We extend ⟨· | ·⟩M to an inner product ⟨· | ·⟩ on M ⊗ S in the same
way as above, i.e., by (1.1). Suppose that the Dirac operator D is self-adjoint
with respect to ⟨· | ·⟩. Then the inner product ⟨· | ·⟩M is g-invariant, so M
is unitary. The reason for this is the fact that D and 1 ⊗ p generate all of
U(g)⊗ C(p).

As we already said, if M is unitary with infinitesimal character corre-
sponding to Λ ∈ h∗, and if M ⊗ S contains a K-type Eτ , then the Dirac
inequality holds, and on Eτ it can be written as

∥Λ∥2 ≤ ∥τ + ρk∥2.

If Λ is real, then ∥Λ∥ is the Euclidean norm, so Λ is in a ball of radius ∥τ+ρk∥.
Let us recall the well known Vogan’s conjecture that was formulated in [15]
and proved by Huang and Pandžić in [3].

The Dirac cohomology of M is defined as
HD(M) = kerD/ kerD ∩ imD.

Since D is K-invariant, HD(M) is a module for K̃.

Theorem 1.1 (Vogan’s conjecture; [15], [3]). Let M be a (g,K)-module
with infinitesimal character corresponding to Λ ∈ h∗ and suppose that HD(M)
contains a K̃ module Eτ of highest weight τ ∈ t∗ ⊆ h∗. Then Λ is conjugate
to τ + ρk under the Weyl group of (g, h).

If M is unitary, then HD(M) = kerD = kerD2. This and Vogan’s conjec-
ture imply that the only unitary points on the sphere where Dirac inequality
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becomes an equality, have Λ in the Weyl group orbit of τ + ρk. This can be
interpreted as a sharpening of the Dirac inequality. Further sharpening has
been conjectured by Salamanca-Riba and Vogan:

Conjecture 1.2 (Salamanca-Vogan convex hull conjecture; [14], Conjec-
ture 5.7.). Let M be an irreducible unitary (g,K)-module with infinitesimal
character corresponding to Λ ∈ h∗ and suppose that M ⊗ S contains a K̃-
module Eτ of highest weight τ ∈ t∗ ⊆ h∗. Then Λ is in the convex hull of the
Weyl group orbit of τ + ρk.

For example, if M is spherical (i.e., contains the trivial K–type), then
τ = ρn = ρ − ρk appears in M ⊗ S. So the Dirac inequality says that for
unitary M with infinitesimal character Λ,

∥Λ∥2 ≤ ∥ρ∥2.

In this case, the Salamanca-Vogan conjecture says that Λ is in the convex hull
of the Weyl group orbit of ρ.

We mention that the Salamanca-Vogan conjecture has recently been re-
placed by even sharper conjectural inequalities of similar nature; see e.g. [17],
where the sharper conjecture is proved for G = U(p, q).

We acknowledge the use of the software system Macaulay2 [5] for the
explicit computations of the invariant (2.2) as well as the examples in Sect. 3.

2. Some ideas towards a possible proof

The convex hull is defined by linear inequalities on h∗
R. The set of these

inequalities is invariant under the Weyl group Wg, but individual inequal-
ities are not Wg-invariant. Therefore we need the following lemma, which
originates from collaboration with David Renard:

Lemma 2.1. One can define the same convex hull by polynomial Wg–
invariant inequalities.

Proof. Suppose that P1, . . . , Pn is a Weyl group orbit of polynomials (in
our case the Pi are linear). Let σ1, . . . , σn be their symmetric combinations.
The σi are obviously Wg–invariant, and we claim that the inequalities Pi ≥ 0
define the same set as the inequalities σi ≥ 0. Clearly, if all Pi(x) ≥ 0, then
also all σi(x) ≥ 0. Conversely, suppose all σi(x) ≥ 0. Each Pi(x) satisfies the
equation

tn − σ1(x)tn−1 + σ2(x)tn−2 − · · ·+ (−1)nσn(x) = 0.

The coefficients of this equation alternate, so if Pi(x) < 0, then all terms are
of the same sign, a contradiction. (This simplification of our original proof is
due to Vogan.)
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By Harish-Chandra isomorphism, we can associate zi ∈ Z(g) to each σi.
Since σi is also Wk–invariant, it moreover defines ζ(zi) ∈ Z(k∆). In the proof
of Vogan’s conjecture, the main point was to write each z⊗1−ζ(z) as Da+aD
for suitable a ∈ (U(g)⊗ C(p))K . Here we want to write

(2.1) zi ⊗ 1− ζ(zi) =
∑
j

bjb
∗
j for some bj ∈ U(g)⊗ C(p).

The star-operation is defined on g as the involutory antiauthomorphism whose
restriction to g0 is −1 and it is extended uniquely to involutive antiautomor-
phisms of the algebras U(g) and C(p). Furthermore, (u ⊗ c)∗ = u∗ ⊗ c∗ for
u ∈ U(g) and c ∈ C(p). Then for any b ∈ U(g)⊗C(p) b∗ is formally adjoint to
b in any unitary module, so each bb∗ acts automatically as positive operator,
and therefore z ⊗ 1− ζ(z) is positive if (2.1) holds.

Example 2.2. Let G = SU(2, 1). The (real) Lie algebra of SU(2, 1) is
g0 = su(2, 1). The complexification of g0 is g = sl(3,C). The Weyl group is
the group of permutations of coordinates, i.e. Wg = S3.

As usual, h∗
R is identified with

{(x, y, z) ∈ R3 |x+ y + z = 0}.

The half sum of positive roots is ρ = (1, 0,−1). The convex hull of ρ is defined
by

−1 ≤ x, y, z ≤ 1.
One orbit for Wg = S3 is

x+ 1 ≥ 0, y + 1 ≥ 0, z + 1 ≥ 0,

and the other is

−x+ 1 ≥ 0, −y + 1 ≥ 0, −z + 1 ≥ 0.

Making symmetric combinations for each orbit and removing the redundant
inequalities leads to the system

xyz + xy + xz + yz + 1 ≥ 0,
−xyz + xy + xz + yz + 1 ≥ 0.

A basis for g is given by:

H1 = e11 − e33, H2 = e22 − e33, E = e12, F = e21,

E1 = e13, E2 = e23, F1 = e31, F2 = e32,

where eij denotes the usual matrix unit: it has the ij entry equal to 1 and
all other entries equal to 0. Then the element z ⊗ 1 − ζ(z) of U(g) ⊗ C(p)
corresponding to the first inequality can be written as
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2H2
1 ⊗ E1F1 − 4H1H2 ⊗ E1F1 + 6EF ⊗ E1F1 − 6E2F2 ⊗ E1F1+

2H1E ⊗ E2F1 + 2H2E ⊗ E2F1 + 6E1F2 ⊗ E2F1 + 2H1F ⊗ E1F2+
2H2F ⊗ E1F2 + 6E2F1 ⊗ E1F2 − 4H1H2 ⊗ E2F2 + 2H2

2 ⊗ E2F2+
6EF ⊗ E2F2−6E1F1 ⊗ E2F2+4H1E1F1 ⊗ 1−8H2E1F1 ⊗ 1+12EE2F1 ⊗ 1+
12FE1F2 ⊗ 1− 8H1E2F2 ⊗ 1 + 4H2E2F2 ⊗ 1− 6H1 ⊗ E1F1+
6H2 ⊗ E1F1 − 6E ⊗ E2F1 − 6F ⊗ E1F2 − 12E1F1 ⊗ 1− 12E2F2 ⊗ 1.

(2.2)

We would like to write this element as
∑
j bjb

∗
j .

3. A method for finding positive invariants for SU(2, 1)

Now the idea is to find as many positive K-invariant elements as we can
for the case G = SU(2, 1). The procedure described below would work equally
well in the other rank two cases, SO(4, 1) and Sp(4,R).

Let us denote

H = e11 − e22, z = 1
3 (e11 + e22 − 2e33) ,

and let E,F,E1, E2, F1, F2 be as in Example 2.2.
The commutation relations are given by

[H,E1] = E1, [z, E1] = E1, [H,E2] = −E2, [z, E2] = E2(3.1)
[H,F1] = −F1, [z, F1] = −F1, [H,F2] = F2, [z, F2] = −F2

[H,E] = 2E, [z, E] = 0, [H,F ] = −2F, [z, F ] = 0.

Let g = k ⊕ p be the Cartan decomposition of g corresponding to the usual
Cartan involution θ(X) = −X∗. Then

k = spanC{H,E, F, z} ∼= gl(2,C), and p = spanC{E1, E2, F1, F2}.

The semisimple part of k is

ks = spanC{H,E, F} ∼= sl(2,C),

with H, E and F corresponding to the standard basis of sl(2,C), while the
center of k is equal to Cz.

For n ∈ N, m ∈ 1
3Z, let V(n,m) denote the irreducible k–module with a

highest weight vector xn such that

H · xn = nxn, z · xn = mxn.

Then we have

V(n,m) = spanC{x(m)
n , x

(m)
n−2, . . . , x

(m)
−n+2, x

(m)
−n },

where x(m)
n−2i = F i · x(m)

n , i ∈ {1, . . . , n}, and then we have
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H · x(m)
n−2i = (n− 2i)x(m)

n−2i, i ∈ {0, 1, . . . , n};

z · x(m)
n−2i = mx

(m)
n−2i, i ∈ {0, 1, . . . , n};

F · x(m)
n−2i = x

(m)
n−2(i+1), i ∈ {0, 1, . . . , n− 1}; F · x(m)

−n = 0;

E · x(m)
n−2i = i(n− i+ 1)x(m)

n−2(i−1), i ∈ {1, . . . , n}; E · x(m)
n = 0.

We have
H∗ = H, z∗ = z, E∗ = F, F ∗ = E, E∗

i = −Fi F ∗
i = −Ei, i ∈ {1, 2}.

Since (u ⊗ c)∗ = u∗ ⊗ c∗ for u ∈ U(g), c ∈ C(p), it follows that for an
element x(m)

n−2i ∈ V(n,m) ⊂ U(g)⊗ C(p) we have

(3.2)
H · (x(m)

n−2i)
∗ = [H∗, (x(m)

n−2i)
∗] = [x(m)

n−2i, H]∗ = −[H,x(m)
n−2i]

∗

= −((n− 2i)x(m)
n−2i)

∗ = −(n− 2i)(x(m)
n−2i)

∗.

Therefore
(3.3) H · (x(m)

n−2i(x
(m)
n−2i)

∗) = (H · x(m)
n−2i)(x

(m)
n−2i)

∗ + x
(m)
n−2i(H · (x

(m)
n−2i)

∗) = 0.
Similar calculations show that
(3.4) z · (x(m)

n−2i)
∗ = −m(x(m)

n−2i)
∗; z · (x(m)

n−2i(x
(m)
n−2i)

∗) = 0.
Furthermore, we have

(3.5)

E · (x(m)
n−2i)

∗ = [F ∗, (x(m)
n−2i)

∗] = [x(m)
n−2i, F ]∗

= −[F, x(m)
n−2i]

∗ = −(x(m)
n−2(i+1))

∗, i ∈ {0, 1, . . . , n− 1}

E · (x(m)
−n )∗ = 0

and

(3.6)

F · (x(m)
n−2i)

∗ = [E∗, (x(m)
n−2i)

∗] = [x(m)
n−2i, E]∗ = −[E, x(m)

n−2i]
∗

= −i(n− i+ 1)(x(m)
n−2(i−1))

∗, i ∈ {1, . . . , n}

F · (x(m)
n )∗ = 0.

For V(n,m) = spanC{x
(m)
n , x

(m)
n−2, . . . , x

(m)
−n+2, x

(m)
−n } ⊂ U(g) ⊗ C(p), let us

denote
V ∗

(n,m) = spanC{(x(m)
n )∗, (x(m)

n−2)∗, . . . , (x(m)
−n+2)∗, (x(m)

−n )∗}] ⊂ U(g)⊗ C(p).

It follows from (3.2), (3.4), (3.5) and (3.6) that V ∗
(n,m) is an irreducible

k-module with a highest weight vector (x(m)
−n )∗. It is clear that an element of

the form
n∑
i=0

αi(x(m)
n−2i)(x

(m)
n−2i)

∗ ∈ V(n,m) · V ∗
(n,m)
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is positive, for all choices of nonnegative integers α0, . . . , αn (which are not si-
multaneously 0). Our next goal is to find (enough) conditions on the constants
αi to ensure that

∑n
i=0 αi(x

(m)
n−2i)(x

(m)
n−2i)∗ is k–invariant.

Theorem 3.1. With notation as above, suppose that αi−1 = i(n−i+1)αi
for all i ∈ {1, . . . , n}. Then the element

n∑
i=0

αi(x(m)
n−2i)(x

(m)
n−2i)

∗ ∈ V(n,m) · V ∗
(n,m)

is k-invariant.

Proof. It follows from (3.3) and (3.4) that

H · (
n∑
i=0

αi(x(m)
n−2i)(x

(m)
n−2i)

∗) = 0 and z ·
n∑
i=0

αi(x(m)
n−2i)(x

(m)
n−2i)

∗ = 0.

Furthermore, it follows from (3.6) that

F · (
n∑
i=0

αi(x(m)
n−2i)(x

(m)
n−2i)

∗) = α0x
(m)
n−2(x(m)

n )∗ − αn · n · x(m)
−n (x(m)

−n+2)∗

+
n−1∑
i=1

αi((x(m)
n−2(i+1))(x

(m)
n−2i)

∗ − i(n− i+ 1)(x(m)
n−2i)(x

(m)
n−2(i−1))

∗)

=
n−1∑
i=0

(αi − (i+ 1)(n− i)αi+1)(x(m)
n−2(i+1))(x

(m)
n−2i)

∗.

Therefore, if αi−1 = i(n− i+ 1)αi for all i ∈ {1, . . . , n}, or equivalently

αi − (i+ 1)(n− i)αi+1 = 0

for all i ∈ {0, 1, . . . , n− 1}, then F · (
∑n
i=0 αi(x

(m)
n−2i)(x

(m)
n−2i)∗) = 0.

We now use (3.5) to conclude

E · (
n∑
i=0

αi(x(m)
n−2i)(x

(m)
n−2i)

∗) = −α0x
(m)
n (x(m)

n−2)∗ + nαnx
(m)
−n+2(x(m)

−n )∗

+
n−1∑
i=1

αi(i(n− i+ 1)(x(m)
n−2(i−1))(x

(m)
n−2i)

∗ − (x(m)
n−2i)(x

(m)
n−2(i+1))

∗)

=
n−1∑
i=0

(−αi + (i+ 1)(n− i)αi+1)(x(m)
n−2i)(x

(m)
n−2(i+1))

∗ = 0.

Using the above theorem, we can find many positive invariants. In fact,
for any highest weight sl(2,C)-module V contained in U(g) ⊗ C(p) we get
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a new positive invariant. For example, we can get some familiar positive
K-invariants such as minus the p–Laplacian −(E1F1 + E2F2), and Cask.

Example 3.2. Let V = spanC{E1, E2} ⊂ U(g) be the two-dimensional
sl(2,C)–module with highest weight 1 and highest weight vector E1. Then
V ∗ = spanC{E∗

1 , E
∗
2} ⊂ U(g) is the two-dimensional sl(2,C)-module with

highest weight 1 and highest weight vector E∗
2 = −F2. Therefore the positive

invariant is −(E1F1 + E2F2).

Similarly, we get Cask from the three-dimensional sl(2,C)–module with
highest weight 2 and highest weight vector E. A few more complicated ex-
amples can be found below.

Example 3.3. Let

V = spanC{EE1,−HE1 + EE2,−2FE1 − 2HE2,−6FE2} ⊂ U(g)

be the highest weight sl(2,C)-module with highest weight 3 and highest weight
vector EE1. Then

V ∗ = spanC{−F1F, F1H − F2F, 2F1E + 2F2H, 6F2E} ⊂ U(g)

is the highest weight sl(2,C)-module with highest weight 3 and highest weight
vector 6F2E. The corresponding positive invariant is therefore

1
12 [36(EE1)(−F1F ) + 12(−HE1 + EE2)(F1H − F2F )

+ 3(−2FE1 − 2HE2)(2F1E + 2F2H) + (−6FE2)(6F2E)]
= −H2

1E1F1 + 2H1H2E1F1 −H2
2E1F1 − 4EFE1F1 −H2

1E2F2

+ 2H1H2E2F2 −H2
2E2F2 − 4EFE2F2

+ 3H1E1F1 − 3H2E1F1 + 2EE2F1 + 2FE1F2 +H1E2F2 −H2E2F2.

Example 3.4. Let

V = spanC{E1F2 ⊗ E1, (E2F2 − E1F1)⊗ E1 + E1F2 ⊗ E2,

− 2E2F1 ⊗ E1 + 2(E2F2 − E1F1)⊗ E2,−6E2F1 ⊗ E2} ⊂ U(g)⊗ C(p)

be the highest weight sl(2,C)-module with highest weight 3 and highest weight
vector E1F2 ⊗ E1. Then

V ∗ = spanC{−E2F1 ⊗ F1, (E1F1 − E2F2)⊗ F1 − E2F1 ⊗ F2,

2E1F2 ⊗ F1 + 2(E1F1 − E2F2)⊗ F2, 6E1F2 ⊗ F2} ⊂ U(g)⊗ C(p)
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is the highest weight sl(2,C)-module with highest weight 3 and highest weight
vector 6E1F2 ⊗ F2. The corresponding positive invariant is therefore

1
12 [36(E1F2 ⊗ E1)(−E2F1 ⊗ F1)

+ 12((E2F2−E1F1)⊗ E1+E1F2 ⊗ E2)((E1F1−E2F2)⊗ F1−E2F1 ⊗ F2)
+ 3(−2E2F1 ⊗ E1 + 2(E2F2 − E1F1)⊗ E2)(2E1F2 ⊗ F1

+ 2(E1F1 − E2F2)⊗ F2) + (−6E2F1 ⊗ E2)(6E1F2 ⊗ F2)]
= −E2

1F
2
1 ⊗ E1F1 − 2E1E2F1F2 ⊗ E1F1 − E2

2F
2
2 ⊗ E1F1 − E2

1F
2
1 ⊗ E2F2

− 2E1E2F1F2 ⊗ E2F2 − E2
2F

2
2 ⊗ E2F2 +H1E1F1 ⊗ E1F1

+ 3H2E1F1 ⊗ E1F1 − EE2F1 ⊗ E1F1 − FE1F2 ⊗ E1F1 +H1E2F2 ⊗ E1F1

+H2E2F2 ⊗ E1F1 − EE1F1 ⊗ E2F1 +H1E1F2 ⊗ E2F1

+H2E1F2 ⊗ E2F1 − EE2F2 ⊗ E2F1 − FE1F1 ⊗ E1F2 +H1E2F1 ⊗ E1F2

+H2E2F1 ⊗ E1F2 − FE2F2 ⊗ E1F2 +H1E1F1 ⊗ E2F2 +H2E1F1 ⊗ E2F2

− EE2F1 ⊗ E2F2 − FE1F2 ⊗ E2F2 + 3H1E2F2 ⊗ E2F2

+H2E2F2 ⊗ E2F2 − 4E1F1 ⊗ E1F1 − 2E2F2 ⊗ E1F1 − 2E1F2 ⊗ E2F1

− 2E2F1 ⊗ E1F2 − 2E1F1 ⊗ E2F2 − 4E2F2 ⊗ E2F2.

So far, we have found 80 positive invariants and are still working on
expressing the element (2.2) as a positive linear combination of these (and
possibly other) positive invariants.

The list of invariants we have constructed so far can be found at the link
https://drive.google.com/file/d/1FKEj4FjJ_sI5waqG6bojcCnffO0ZqLBR/view?usp=sharing.
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Pojačanje Diracove nejednakosti

Pavle Pandžić i Ana Prlić

Sažetak. Objašnjavamo ideju koja vodi ka mogućem dokazu
slutnje Salamanca-Ribe i Vogana. Ova slutnja, takoder na-
zvana slutnja konveksne ljuske, pojačava dobro poznatu Parta-
hasarathyjevu Diracovu nejednakost, koja je bila korisna u neko-
liko parcijalnih klasifikacija unitarnih reprezentacija realnih re-
duktivnih grupa. Ideja koju predstavljamo proizašla je iz surad-
nje s Davidom Renardom.
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