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ON BASES OF g-INVARIANT ENDOMORPHISM
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To Marko Tadić for his 70th birthday.

Abstract. Let g be a complex simple Lie algebra. Let Z(g) be
the center of the universal enveloping algebra U(g). Let Vλ be the finite-
dimensional irreducible g-module with highest weight λ. Our main re-
sult is a criterion of the existence of Z(g)-bases for the g-invariant endo-
morphism algebra Rλ =: Homg(EndVλ, U(g)). Then we obtain a Clif-
ford algebra analogue, namely a criterion of the existence C(g)g-bases
for RCλ =: Homg(EndVλ, C(g)). We also describe a criterion of the ex-
istence of bases generated by powers of the Casimir element for Rλ,ν =:
Homg(EndVλ,EndVν).

1. Introduction

Let g be a complex simple Lie algebra with a Cartan subalgebra h.
Suppose that π : g → EndW is an irreducible finite-dimensional represen-
tation of g. Regarding EndW as a g-module, the space of g-homomorphisms
Homg(g,EndW ) is called the space of adjoint operators in type EndW by
physicists [9] (the definition of adjoint operators is given in [9, Definition 1.1],
but it will not be needed here). In case g = sl(2,C), the Wigner-Eckart
theorem states that [1, Theorem C. 4]:

dim Homsl(2,C)(sl(2,C),EndW ) ≤ 1.

This formula was generalized to any simple Lie algebra g by Okubo and Myung
[9], as they showed that

dim Homg(g,EndW ) ≤ r,
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where r = rank g = dim h. Suppose that the highest weight ν of a finite-
dimensional simple g-module Vν is expressed

(1.1) ν = m1ω1 + · · ·+mrωr,

with fundamental weights ω1, . . . , ωr and non-negative integers m1, . . . ,mr.
Then it is shown [9, Theorem 3.1]

dim Homg(g,EndVν) = n(ν),

where n(ν) is the number of nonzero mi’s in (1.1). In particular, it implies
that the adjoint representation of a simple Lie algebra g always occurs in
EndW for any nontrivial g-module W .

The above formula is better understood in the framework of g-invariant
endomorphism algebras which we explain now. Let U(g) be the universal
enveloping algebra of g. There is a surjective homomorphism of algebras

πν : U(g)→ EndVν .

Then πν induces a surjective linear map from the space of universal adjoint
operators to the space of adjoint operators in type EndVν :

A(g) = Homg(g, U(g))→ Homg(g,EndVν).

Since there is an embedding of g ↪→ EndVλ for any nontrivial simple g-module
Vλ, we consider the following algebras of g-endomorphisms:

Rλ =: (EndVλ ⊗ U(g))g ∼= Homg(EndVλ, U(g)),

and
Rλ,ν =: (EndVλ ⊗ EndVν)g ∼= Homg(EndVλ,EndVν).

Let V be a g-module (possibly infinite-dimensional) with an infinitesimal char-
acter χν . Kostant [7] proves that the tensor product of Vλ ⊗ V is of finite
length, hence a direct sum of modules with generalized infinitesimal charac-
ter. Moreover, the occurring characters are of form χν+µi

with µi being some
weights of Vλ. In Kostant’s proof, Rλ and Rλ,ν play pivotal roles.

The aim of this paper is to describe bases of Rλ and Rλ,ν generated
by a Casimir element C, and equivalently by a certain matrix valued element
Mλ(C) to be defined in the following. Let Z(g) be the center of U(g). Kostant
[6, Theorem 21] showed that there is a g-submodule E of U(g) such that the
multiplication

Z(g)⊗ E → U(g)
is a g-module isomorphism. It follows that U(g) and Rλ are free Z(g)-modules.
Consider the map

δλ : U(g)→ EndVλ ⊗ U(g)
defined by

δλ(x) = πλ(x)⊗ 1 + 1⊗ x for x ∈ g,
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which extends to a homomorphism of associative algebras. If u ∈ Z(g), then
δ(u) is in Rλ.

Let B be the Killing form of g. Let xi be a basis of g and x∗
i be the dual

basis with respect to B. The Casimir element C defined by

C =
m∑
i=1

xix
∗
i

is in Z(g), and clearly it is independent of choice of the basis xi. It follows
that

δλ(C) = πλ(C)⊗ 1 +
m∑
i=1

πλ(xi)⊗ x∗
i +

m∑
i=1

πλ(x∗
i )⊗ xi + 1⊗ C.

We set

Mλ(C) =
m∑
i=1

πλ(xi)⊗ x∗
i .

It is readily checked that Mλ(C) is also independent of choice of the basis xi,
and thus it equals

m∑
i=1

πλ(x∗
i )⊗ xi. Then

δλ(C) = πλ(C)⊗ 1 + 2Mλ(C) + 1⊗ C.

We write dλ for dimVλ. Recall that a principal sl2 in g is a three-dimensional

subalgebra spanned by {X,H, Y } in g such that

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H

and the orbit of X under the adjoint group of g is the principal nilpotent
orbit. By a conjugation, we may and will assume that H is in the Cartan
subalgebra h.
Theorem A (Theorem 3.1). The following assertions are equivalent:

(i) 1, δλ(C), . . . , δλ(C)dλ−1 form a basis of Z(g)-module Rλ.
(ii) 1,Mλ(C) . . . ,Mλ(C)dλ−1 form a basis of Z(g)-module Rλ.
(iii) Vλ is irreducible when restricted to a principal sl2 in g.

In Section 3 we obtain a complete list of Vλ’s satisfying Condition (iii).
In these cases, we get bases of Homg(g, U(g)) consisting of mi-th powers of
either δλ(C) or Mλ(C), where mi’s are the exponents of g (cf. Section 3 for
the definition of exponents).

By a theorem of Kostant [8, Theorem D], the Clifford algebra C(g) with
respect to the Killing form of g decomposes into the tensor product

C(g) = J ⊗ E,

where J = C(g)g and E = EndVρ. Here (πρ, Eρ) is the irreducible represen-
tation of g with highest weight ρ. We set the Clifford algebra analogue RCλ to
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be the invariant endomorphism algebra
RCλ : = Homg(EndVλ, C(g)).

Then RCλ is a free J-module of rank equal to dimRλ,ρ. Note that
ρ = ω1 + · · ·+ ωr.

For the irreducible representation (πρ, Eρ) of the highest weight ρ, we
define the map

δλ,ρ : U(g)→ EndVλ ⊗ EndVρ
by

δλ,ρ(x) = πλ(x)⊗ 1 + 1⊗ πρ(x) for x ∈ g,

which extends to a homomorphism of associative algebras. Then
δλ,ρ(C) = πλ(C)⊗ 1 + 2Mλ,ρ(C) + 1⊗ πρ(C),

where

Mλ,ρ(C) =
m∑
i=1

πλ(xi)⊗ πρ(x∗
i ).

Recall that a simple g-module Vλ is said to be minuscule if ⟨λ, α⟩ = 0,−1, 1
for all roots α (cf. Section 4 for the list of the minuscule representations).
Theorem B (Theorem 4.3). Assume that λ is minuscule. Then RCλ is a
free J-module of rank dλ. Moreover, the following assertions are equivalent:

(i) 1, δλ,ρ(C), . . . , δλ,ρ(C)dλ−1 form a J-basis of RCλ .
(ii) 1,Mλ,ρ(C), . . . ,Mλ,ρ(C)dλ−1 form a J-basis of RCλ .
(iii) δλ,ρ(C) acts on the distinct irreducible summands of Vλ ⊗ Vρ with

distinct eigenvalues.
Now we consider the map

δλ,ν : U(g)→ EndVλ ⊗ EndVν
defined by

δλ,ν(x) = πλ(x)⊗ 1 + 1⊗ πν(x) for x ∈ g,

which extends to a homomorphism of associative algebras. Then
δλ,ν(C) = πλ(C)⊗ 1 + 2Mλ,µ(C) + 1⊗ πν(C),

where

Mλ,ν(C) =
m∑
i=1

πλ(xi)⊗ πν(x∗
i ).

Theorem C (Theorem 4.4). Let d be a positive integer. The following
assertions are equivalent:

(i) 1, δλ,ν(C), . . . , δλ,ν(C)d−1 form a basis of Rλ,ν .
(ii) 1,Mλ,ν(C), . . . ,Mλ,ν(C)d−1 form a basis a basis of Rλ,ν .
(iii) Vλ⊗Vν =

⊕d
i=1 Vγi

decomposes into a direct sum of d non-isomorphic
simple g-modules with distinct δλ,ν(C)-eigenvalues.
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We note that the algebra Rλ was investigated from a different perspec-
tive by Kirillov [4, 5] as ‘quantum family algebra’. There was following up
work on commutativity of Rλ and existence of certain M -type bases for Rλ
by Rozhkovskaya [11]. Let S(g) denote the symmetric algebra of g. The
related associated algebra (EndVλ ⊗ S(g))g is called ‘classical family alge-
bra’ by Kirillov and it appeared in Panyushev’s work on determination of the
Dynkin polynomials and calculation of equivariant cohomology [10]. Their
work inspired us to find the main result of this paper.

Our paper is organised as follows. In Section 2 we recall the basic prop-
erties of the algebras of g-endomorprhisms due to Kostant. In Section 3 we
prove our main theorem on Z(g)-bases for Rλ. In Section 4 we describe the
bases for Rλ,ν and the Clifford analogue of our main theorem that is proved
in Section 3.

2. Preliminaries on Rλ and Rλ,ν

Fix a finite-dimensional simple g-module Vλ with highest weight λ. Let

π : U(g)→ EndVπ
be an arbitrary g-module having an infinitesimal character. In describing the
infinitesimal characters of the tensor product Vλ⊗Vπ, Kostant [7] introduced
the following algebras

Rλ = (EndVλ ⊗ U(g))g

and
Rλ,π = (EndVλ ⊗ π[U(g)])g.

Kostant used the notation R and Rπ for these two algebras [7]. Our notation
indicates their dependence on λ. In particular, if πν is any finite-dimensional
simple module with highest weight ν, then we use simpler notation Rλ,ν for
Rλ,πν , namely

Rλ,ν = (EndVλ ⊗ EndVν)g ∼= Endg(Vλ ⊗ Vν).

Consider the map
δ : U(g)→ U(g)⊗ U(g)

defined by
δ(x) = x⊗ 1 + 1⊗ x for x ∈ g,

which extends to a homomorphism of associated algebras.
By composing with πλ on the first factor, we have the map

δλ : U(g)→ EndVλ ⊗ U(g)

defined by
δλ(x) = πλ(x)⊗ 1 + 1⊗ x for x ∈ g,
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which extends to a homomorphism of associative algebras. Then Rλ is the
commutant of δ(U(g)) in EndVλ ⊗ U(g). For any u ∈ Z(g), δ(u) is in Rλ.
Thus, δ(Z(g)) is in the center of Rλ.

As shown in [6, Theorem 21] there is a g-submodule E of U(g) such that
the multiplication

Z(g)⊗ E → U(g)
is a g-isomorphism. It follows that Rλ is a free Z(g)-module.

Let △λ = {µ1, · · · , µk} be the set of weights of Vλ and di be the multi-
plicity of µi. In other words, we have the weight space decomposition

Vλ|h =
⊕
i

C⊕di
µi

.

Following Kostant we make the following definition.

Definition 2.1. We say that λ is totally subordinate to ν if the number
of irreducible constituents in Vλ ⊗ Vν is equal to dλ : = dimVλ.

Proposition 2.2. [7, Theorem 4.7] If λ is totally subordinate to ν, then
there is an isomorphism of algebras

Rλ,ν →
k⊕
i=1

Matdi
(C).

Proposition 2.3. [7, Theorem 4.8] Rλ is a free Z(g)-module of rank r,
where r =

∑k
i=1 d

2
i .

Proposition 2.4. [7, Theorem 4.9] Suppose u ∈ Z(g) is not a constant.
Then there exists a monic polynomial Pu,λ(X) of degree k with coefficients in
Z(g), such that Pu,λ(X) is the minimal polynomial of δλ(u).

Remark 2.5. The minimal polynomial of δλ(u) can be obtained from u
by using the Harish-Chandra isomorphism [7, (4.9.4)- (4.9.6)].

Theorem 2.6. The following statements are equivalent:
(i) Rλ is commutative.
(ii) Vλ has simple h-spectrum (every di = 1).
(iii) For any non-constant u ∈ Z(g), 1, δ(u), . . . , δ(u)dλ−1 form a basis of

Rλ over the fractional field K(g) of Z(g).

Proof. (i) =⇒ (ii): Commutativity of Rλ imples that Rλ,ν is commu-
tative for any ν. Take a ν so that λ is totally subordinate to ν. By Proposition
2.1 there is an isomorphism of algebras

Rλ,ν →
k⊕
i=1

Matdi
(C).

Thus, (ii) follows from (i).
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(ii) =⇒ (iii): It follows from Proposition 2.2 that 1, δ(u), . . . , δ(u)k−1

are linearly independent over Z(g), and thus they form a basis of Rλ over the
K(g).

(iii) =⇒ (i) is obvious.

Remark 2.7. The following is a complete list of irreducible representa-
tions of simple Lie algebras with simple h-spectrum. This list is well-known
to experts. For instance, it appears in Howe’s 1992 Schur Lecture Notes [2].

g λ the highest weight
An(n ≥ 1) ωk, k = 1, . . . , n

kω1, kωn, k = 1, 2, . . .
Bn(n ≥ 2) ω1

ωn (spin representation)
Cn(n ≥ 3) ω1

C3 ω3
Dn(n ≥ 4) ω1

ωn−1, ωn (spin representations)
G2 ω1 (dim = 7)
E6 ω1 (dim = 27)

ω6 (dim = 27)
E7 ω1 (dim = 56)

3. Z(g)-Bases of Rλ

We see from Theorem 2.5 that any δ(u) (u ∈ Z(g) not a constant) gen-
erates Rλ over K(g). In this section we seek u so that δ(u) generates Rλ
over Z(g). Naturally, it has to be the element of the smallest positive degree,
namely the Casimir element

C =
m∑
i=1

xix
∗
i .

We have
(3.1) δλ(C) = πλ(C)⊗ 1 + 2Mλ(C) + 1⊗ C,
where

Mλ(C) =
m∑
i=1

πλ(xi)⊗ x∗
i .

Clearly, as Z(g)-module, Rλ is generated by powers of δλ(C) if and only if it
is generated by powers of Mλ(C).

To prove our main result Theorem 3.1 we first recall the concept of gen-
eralised exponents [6, Page 394] and a remarkable theorem of Kostant [6].
Let I(g) = S(g)g. We identify I(g) with the algebra P (g∗)g of g-invariant
polynomials on g∗. Let I+(g) be the augmentation ideal in I(g), namely the
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ideal of polynomials vanishing at the origin. Denote by J(g) the ideal in S(g)
generated by I+(g). The space H(g) of harmonic polynomials on g∗ is defined
as the orthogonal complement to J(g) in S(g). Kostant showed that there is
an isomorphism of graded g-modules:

S(g) ∼= I(g)⊗H(g).

Moreover, each irreducible representation πλ has finite multiplicity in H(g).
More precisely, if s = mλ(0) is the multiplicity of the zero weight in Vλ, then
there exist numbers e1(λ), . . . , es(λ) (not necessarily distinct) such that πλ oc-
curs in the homogeneous components He1(λ)(g), . . . ,Hes(λ)(g). The numbers
e1(λ), . . . , es(λ) are called the generalised exponents related to the represen-
tation πλ. Since H(g) is a self-dual g−module, the generalised exponents are
the same for λ and λ∗. For the adjoint representation of a simple Lie algebra
g, the generalised exponents coincide with the exponents of g.

We list of the exponents of simple Lie algebra g. This list will be used in
the proof of Proposition 3.3.

g exponents
An(n ≥ 1) 1, 2, . . . , n
Bn(n ≥ 2) 1, 3, 5, . . . , 2n− 1
Cn(n ≥ 3) 1, 3, 5, . . . , 2n− 1
Dn(n ≥ 4) 1, 3, 5, . . . , 2n− 3, n− 1

E6 1, 4, 5, 7.8.11
E7 1, 5, 7, 9, 11, 13, 17
E8 1, 7, 11, 13, 17, 19, 23, 29
F4 1, 5, 7, 11
G2 1, 5

Recall that a principal sl2 in g is a three-dimensional subalgebra spanned
by a triple {X,H, Y } in g such that

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H

and the orbit of X under the adjoint group of g is the principal nilpotent orbit.
It turns out that there is one conjugacy class of principal sl2’s for which the
semisimple element H is conjugate to

2ρ∨ =
∑
α∈ϕ+

α∨,

where Φ+ is a fixed system of positive roots of g and α∨ = 2α
(α,α) is the dual

root in h.
Let Π = {α1, · · · , αr} be the set of simple roots. We choose the simple

root vectors X1, . . . , Xr and let Y1, . . . , Yr be the corresponding root vectors
for the negatives of the simple roots normalized by the condition

[Xi, Yi] = Hi := α∨
i .
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Since the difference of simple roots is never a root, we have [Xi, Yj ] = 0
for i ̸= j. Set ci = ⟨ωi, ρ∨⟩ where ωi are the fundamental weights. Then
ρ∨ =

∑
ciα

∨
i ,and

X = X1 + · · ·+Xr, H = 2ρ∨ = c1H1 + · · ·+ crHr, Y = Y1 + · · ·+ Yr

form a basis of a principal sl2. The height of λ is defined by

ht(λ) = ⟨λ, ρ∨⟩.

Theorem 3.1. The following statements are equivalent:
(i) 1, δλ(C), . . . , δλ(C)dλ−1 form a basis of the Z(g)-module Rλ.
(ii) 1,Mλ(C), . . . ,Mλ(C)dλ−1 form a basis of the Z(g)-module Rλ.
(iii) Vλ is irreducible when restricted to a principal sl2 in g.

Proof. Note that δλ(C) = |λ + ρ|2 − |ρ|2 is a scalar. It follows from
(3.1) that (i) and (ii) are equivalent. A necessary condition for Rλ having
a basis generated by powers of one element is that Rλ is commutative. By
Theorem 2.6, Vλ is multiplicity free. It follows that the rank of the free
Z(g)-module Rλ is dλ = dimVλ. The condition (ii) is equivalent to that the
generalised exponents of EndVλ are 0, 1, . . . , dλ − 1. Note that the largest
possible exponent of EndVλ is 2ht(λ). Here ht(λ) is the height of λ, which
is equal to the highest weight of the principal sl2. Thus, condition (ii) is
equivalent to that 2ht(λ) = dλ − 1, which is equivalent to that Vλ is an
irreducible module for the principal sl2.

We note that in Theorem 3.1 the set of integers {1, . . . , dλ} that appeared
as the powers of δλ(C) or Mλ(C) is exactly the union of the sets of generalised
exponents of all irreducible constituents Vγi

’s in

EndVλ ∼= V ∗
λ ⊗ Vλ =

⊕
Vγi

.

Consequently, in Proposition 3.3 below the integers (i for type An and 2i− 1
for others) appeared as the powers of δω1(C) or Mω1(C) exactly the exponents
for the corresponding simple Lie algebra g.

Proposition 3.2. Here is the list of simple g-modules that are irreducible
when restricted to a principal sl2 in g.

g λ the highest weight
An ω1, ωn
A1 kω1, k = 1, 2, . . .
Bn ω1
B2 ω2
Cn ω1
G2 ω1 (dim = 7)
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Proof. By Theorem 3.1, Rλ is commutative. It follows from Theorem
2.6 that Vλ is of simple h-spectrum. Then it is readily checked that the list
in Remark 2.7 implies the conclusion.

Now we consider a special case when λ = ω1, the fundamental weight
corresponding to the natural representation for a classical simple Lie alge-
bra or the 7-dimensional irreducible representation for G2. Denote by d the
dimension of Vω1 . Then

d =


n, g = sl(n,C) or so(n,C)
2n, g = sp(2n,C)
7, g is of type G2.

By the natural embedding of

g ↪→ Matd(C) ∼= EndVω1 ,

we have the embedding

A(g) = Homg(g, U(g)) ↪→ (Matd(C)⊗ U(g))g.

As a consequence, we have the following proposition. Given a matrix M ,
let MT denote the transpose of M .

Proposition 3.3. One has following Z(g)-bases for A(g):
An: Mω1(C)i − trMω1 (C)i

n+1 In+1 with 1 ≤ i ≤ n;
Bn: Mω1(C)2i−1 − (Mω1(C)2i−1)T with 1 ≤ i ≤ n;
Cn: Mω1(C)2i−1 − (Mω1(C)2i−1)T with 1 ≤ i ≤ n;
G2: Mω1(C)2i−1 − (Mω1(C)2i−1)T with i = 1, 3.

Proof. This is verified case by case. First, we consider the case g is of
type An. Then we have EndVω1

∼= g⊕C, and clearly a basis is given as above.
In the second case when g is either of type Bn or of type Cn, we have the

following decomposition into irreducible representations

EndVω1
∼= Sym2 Vω1 ⊕ ∧2Vω1

∼= (C⊕ V2ω1)⊕ g.

Here the adjoint representation g has highest weight ω2 and is contained in
∧2Vω1 . Then we readily verify by checking the exponents that the correspond-
ing expressions of Mω1(C) with appropriate powers are in (g⊗ U(g))g inside
Rω1 = (EndVω1 ⊗ U(g))g.

In the last case when g is of type G2, we have

EndVω1
∼= Sym2 Vω1 ⊕ ∧2Vω1

∼= (C⊕ V2ω2)⊕ (Vω1 ⊕ g).

Here the adjoint representation g has highest weight ω2 and is contained in
∧2Vω1 . Again we readily verify by checking the exponents that the corre-
sponding expressions of Mω1(C) with appropriate powers are in (g ⊗ U(g))g
inside Rω1 = (EndVω1 ⊗ U(g))g.
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Corollary 3.4. It follows from Theorem 3.1 that one gets the following
Z(g)-bases for A(g):

An: δω1(C)i with 1 ≤ i ≤ n;
Bn: δω1(C)2i−1 − (δω1(C)2i−1)T with 1 ≤ i ≤ n;
Cn: δω1(C)2i−1 − (δω1(C)2i−1)T with 1 ≤ i ≤ n;
G2: δω1(C)2i−1 − (δω1(C)2i−1)T with i = 1, 3.

4. Bases for Rλ,ν

Recall that the map

δλ,ν : U(g)→ EndVλ ⊗ EndVν
is defined by

δλ,ν(x) = πλ(x)⊗ 1 + 1⊗ πν(x) for x ∈ g,

which extends to a homomorphism of associative algebras. We set

Mλ,ν(C) =
m∑
i=1

πλ(xi)⊗ πν(x∗
i ).

Then

(4.1) δλ,ν(C) = πλ(C)⊗ 1 + 2Mλ,µ(C) + 1⊗ πν(C).

We also recall from Section 2 that △λ = {µ1, · · · , µk} is the set of weights
of Vλ and di the multiplicity of µi. If λ is totally subordinate to ν, then we
have an isomorphism

Rλ,ν →
k⊕
i=1

Matdi
(C).

It follows from Theorem 2.6 that we have the following proposition.

Proposition 4.1. Assume that Vλ has simple h-spectrum and λ is totally
subordinate to ν. Then the following statements are equivalent:

(i) 1, δλ,ν(C), . . . , δλ,ν(C)dλ−1 form a basis of Rλ,ν .
(ii) 1,Mλ,ν(C), . . . ,Mλ,ν(C)dλ−1 form a basis of Rλ,ν .
(iii) δλ,ν(C) acts on the distinct irreducible summands of Vλ ⊗ Vν with

distinct eigenvalues.

Proof. It follows from (4.1) that (i) and (ii) are equivalent. Clearly, the
equivalence (iii) and (i) is due to the expression of the determinant for the
corresponding Vandermonde matrix.

Now we deal with the minuscule representations Vλ. Recall that Vλ is
said to be minuscule if ⟨λ, α⟩ = 0,−1, 1 for all roots α. Here is the list of the
minuscule representations (cf. [3, Page 72, Exercise 13]).
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g λ the highest weight
An(n ≥ 1) ωk, k = 1, . . . , n
Bn(n ≥ 2) ωn (spin representation)
Cn(n ≥ 3) ω1
Dn(n ≥ 4) ω1

ωn−1, ωn (spin representations)
E6 ω1 (dim = 27)

ω6 (dim = 27)
E7 ω1 (dim = 56)

Proposition 4.2. Suppose that λ is minuscule. Assume that n(ν) = r (=
rank g). Then λ is totally subordinate to ν. As a consequence of Proposition
4.1, one has the following equivalent statements:

(i) 1, δλ,ν(C), . . . , δλ,ν(C)dλ−1 form a basis of Rλ,ν .
(ii) 1,Mλ,ν(C), . . . ,Mλ,ν(C)dλ−1 form a basis of Rλ,ν .
(iii) δλ,ν(C) acts on the distinct irreducible summands of Vλ ⊗ Vν with

distinct eigenvalues.

Proof. Let α be a simple root of g with respect to the fixed system of
positive roots. Then |⟨λ, α⟩| ≤ 1, since λ is minuscule, and |⟨µ, α⟩| ≤ 1 for all
weights µ of Vλ. On the other hand, we have ⟨ν, α⟩ ≥ 1 due to n(ν) = r. Thus,
Vλ⊗Vν decomposes into dλ (non-isomorphic) irreducible representations with
highest weights ν+µi, where µi are the weights of Vλ. Therefore, λ is totally
subordinate to ν. The rest of the conclusions follow from Proposition 4.1.

By a theorem of Kostant [8, Theorem D], the Clifford algebra C(g) with
respect to the Killing form of g decomposes into the tensor product

C(g) = J ⊗ E,

where J = C(g)g and E = EndVρ. We set the Clifford algebra analogue RCλ
to be the invariant endomorphism algebra

RCλ : = Homg(EndVλ, C(g)).

Then RCλ is a free J-module of rank equal to dimRλ,ρ. Note that

ρ = ω1 + · · ·+ ωr.

The following theorem is an immediate consequence of Proposition 4.2.

Theorem 4.3. Assume that λ is minuscule. Then RCλ is a free J-module
of rank dλ. Moreover, the following statement are equivalent:

(i) 1, δλ,ρ(C), . . . , δλ,ρ(C)dλ−1 form a J-basis of RCλ .
(ii) 1,Mλ,ρ(C), . . . ,Mλ,ρ(C)dλ−1 form a J-basis of RCλ .
(iii) δλ,ρ(C) acts on the distinct irreducible summands of Vλ ⊗ Vρ with

distinct eigenvalues.



ON BASES OF g-INVARIANT ENDOMORPHISM ALGEBRAS 351

In the remaining part of this section, we deal with the general situation for
any λ, ν. Clearly, if Vλ⊗Vν decomposes into a direct sum of d non-isomorphic
irreducible representations

Vλ ⊗ Vν =
d⊕
i=1

Vγi
,

then Rλ,ν is a commutative C-algebra and dimRλ,ν = d.
Theorem 4.4. Let d be a positive integer. Then the following statements

are equivalent:
(i) 1, δλ,ν(C), . . . , δλ,ν(C)d−1 form a basis of Rλ,ν .
(ii) 1,Mλ,ν(C), . . . ,Mλ,ν(C)d−1 form a basis of Rλ,ν .
(iii) Vλ⊗Vν =

⊕d
i=1 Vγi decomposes into a direct sum of d non-isomorphic

simple g-modules with distinct δλ,ν(C)-eigenvalues.
Proof. It follows from (4.1) that (i) and (ii) are equivalent. We now

show that (i) and (iii) are equivalent. Either (i) or (iii) implies that Rλ,ν is
commutative which is equivalent to Vλ⊗Vν decomposing into a direct sum of
d distinct simple g-modules. Under the assumption that Vλ ⊗ Vν decomposes
into a direct sum of d non-isomorphic simple g-modules

Vλ ⊗ Vν =
d⊕
i=1

Vγi
,

we have Rλ,ν is commutative algebra with dimRλ,ν ≤ d. Thus, Condition (i)
holds (namely 1, δλ,ν(C), . . . , δλ,ν(C)d−1 form a basis of Rλ,ν) if and only that
1, δλ,ν(C), . . . , δλ,ν(C)d−1 are linear independent. This is in turn equivalent
to that the determinant of the following Vandermonde matrix is nonzero:

1 (|γ1 + ρ|2 − |ρ|2) · · · (|γ1 + ρ|2 − |ρ|2))d−1

1 (|γ2 + ρ|2 − |ρ|2) · · · (|γ2 + ρ|2 − |ρ|2)d−1

...
...

...
...

1 (|γd + ρ|2 − |ρ|2) · · · (|γd + ρ|2 − |ρ|2)d−1

 ,

which is equivalent to the condition that δλ,ν(C)-eigenvalues |γ2 + ρ|2 − |ρ|2
on the irreducible constituents Vγi

are distinct.

Remark 4.5. Suppose that Vλ⊗Vν =
⊕d

i=1 Vγi
decomposes into a direct

sum of d non-isomorphic simple g-modules. Then the irreducible constituents
Vγi have distinct infinitesimal characters χγi+ρ. For almost all u ∈ Z(g), one
has
(4.2) χγi+ρ(u) ̸= χγj+ρ(u), for i ̸= j.

Such u ∈ Z(g) satisfying the above Condition (4.2) are called generic with
respect to λ and ν. It follows from Theorem 4.4 that 1, δλ,ν(u), . . . , δλ,ν(u)d−1

form a basis of Rλ,ν provided u ∈ Z(g) is generic with respect to λ and ν.
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O bazama g-invarijantnih algebri endmorfizama
Jing-Song Huang i Yufeng Zhao

Sažetak. Neka je g kompleksna prosta Liejeva algebra.
Neka je Z(g) centar univerzalne omotačke algebre U(g). Neka je
Vλ konačno–dimenzionalni ireducibilan g-modul najveće visine λ.
Glavni rezultat ovog rada je kriterij postojanja za Z(g)–baze g-
invarijantnih algebri endmorfizama Rλ =: Homg(EndVλ, U(g)).
Nadalje, dokazujemo Clifford algebra analog tj. kriterij egzi-
stencije C(g)g–baze za RCλ =: Homg(EndVλ, C(g)). Osim
toga, opisujemo kriterij egzistencije baza generiranih potencijama
Casimirovog elementa za Rλ,ν =: Homg(EndVλ,EndVν).
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