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Abstract: Industrial emission directive (Directive) gives the obligation of continuous monitoring of some emissions into air for 

the incineration/co-incineration of waste by direct measurement. Conclusions for best available techniques for waste 

incineration, equally applied on co-incineration, allow the use of surrogate parameters instead or in combination, if this proves 

to be equivalent or better scientific quality than direct emission measurement. Surrogate parameters are measurable or 

calculable quantities closely related, directly or indirectly, to conventional direct measurements of emissions. The accent is on 

models that by combining more surrogate parameters could model emissions as well as valuation of the results of such models 

according to the requirement of Directive.  The application considered aims environmental permitting. 
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1. INTRODUCTION 
 

Air monitoring emission from waste incineration/co-incineration installations is treated by Industrial 

emission directive (2010/75/EU) (Directive), Annex VI, Part 6, Point 1.3. Equation 1 for direct measurement 

monitoring (validated values) is: 

 

𝑉1/2 ℎ𝑟 =  𝐸𝑚𝑗  − 𝑡95,𝑑𝑓   · 𝑠 ∙ √1

𝑛
    (1) 

 

with confidence interval restriction according to limit emission values (GVE) given for daily average: 

 

𝑡95,𝑑𝑓 · 𝑠𝑖𝑚 · √ 
1

𝑛
 ≤ p · GVE (2) 

 

In Equation 2 for estimation of population standard deviation of measurement results one uses symbol  

𝑠𝑖𝑚, and symbol 𝑠 will be further used for estimation of population standard deviation of surrogate parameters 

model results.  

According to Directive, the sample size for measurement is allowed to be n=1, and Equation 2 becomes 

Equation 3: 

 

𝑡95,𝑑𝑓 · 𝑠𝑖𝑚  ≤ p · GVE (3) 

 

where p are coefficient in table  from the Directive, Annex VI, Part 6, Point 1.3,  𝑉1/2 ℎ𝑟 validated values from 

direct measurement or for model results (30 min average), 𝑡95,  𝑡95,𝑑𝑓  Student ( t)  distribution  for 95% confidence 

level, 𝐸𝑚𝑗 ,  average value from direct measurement, df  degree of freedom, GVE  limit emission values, 𝑛𝑖𝑚 sample 

size for direct measurement, n sample size for model, 𝑠𝑖𝑚  estimation of population standard deviation from direct 

measurement,  s estimation of population standard deviation from models. 

According to the norm EN 14181 (Emissions from stationary systems– assurance of quality of automatic 

measurement systems (EN 14 181: 2014), it is allowed to use uncertainties in validation of direct measurements 

for automatic measurement systems: 

 

𝑉 = 𝐸𝑚𝑗 −  (µ ·  𝐸𝑚𝑗)    (4) 

 

with limit for confidence interval: 
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µ ·  𝐸𝑚𝑗 ≤  𝑝 · 𝐺𝑉𝐸   (5) 

 

where are µ relative measurement uncertainty given as extended with 95% confidence level, 𝐸𝑚𝑗  average value 

for direct measurement (30 min average). Those equations for direct measurement monitoring also applies in sur-

rogate parameters monitoring.  

 

2. MONITORING EMISSIONS BY SURROGATE PARAMETERS  
 

2.1. Basic frame for surrogate parameters monitoring  
 

By Directive (Directive, 2010/75/EU) and conclusions on best available techniques (BAT), BAT Conclusions 

for large combustion plant (EU 2017/1442)), BAT Conclusions for the manufacture of glass (2012/134/EU) and 

BAT Conclusions for waste incineration (EU 2019/2010), the basic frame for surrogate parameters monitoring is 

given and always in some relation to direct measurement of emission. The relation between direct measurement 

and surrogate parameters is not always easy to understand. By article 15 of directive, it is allowed to use surrogate 

parameters for confirmation results of direct measurement.  In the frame of that article surrogate parameters have 

subordinate role for the sake of confirmation of different monitoring frequencies then those given by BAT. 

However, by Decisions on BAT conclusions on large combustion plant, BAT conclusions for the manufacture 

of glass and BAT conclusions for waste incineration, the role of surrogates was finally equalized with direct meas-

urement of emissions into air. BAT conclusions for the manufacture of glass, technique BAT 7, allows to use 

surrogates together with direct periodic measurement for NOx, dust, and SOx instead of direct continuous meas-

urement of those emission parameters, as also BAT conclusions for large combustion plants allows it without 

associated direct measurement for some types of plants (technique BAT 4) and instead continuous direct measure-

ment. In BAT conclusions for waste incineration, techniques BAT 4 and BAT 5, it is allowed to use it without 

direct measurement of emission for regular and even for nonregular work. 

The use of surrogate parameters according to article 15 of Directive is under further research because of always 

existing importance of confirmation for results of direct measurement results monitoring. 

 

2.2. Monitoring emissions by predictive surrogate parameters 
 

Predictive surrogate parameters are process parameters applied by models calculating emission values which 

are monitored, with important requirements on parameters to be also constantly measured (Brinkmann et al. 2018; 

Rumenjak 2021). Equation for validated model values with one sided confidence interval is:  

 

𝑉1/2 ℎ𝑟 =  𝑦̂1/2 ℎ𝑟  − 𝑡95,𝑑𝑓   · 𝑠 ∙ √𝑛+1

𝑛
  … (6) 

 

Symbol 𝑦̂1/2 ℎ𝑟 is used for all predictive surrogate parameter models where  𝑦̂1/2 ℎ𝑟  is predictive model for 

concentration (30 min average). Equation 6 in this case is written without part for random error of input values 

what could be justified by narrower confidence interval on the lower side of the model. 

Equation for the confidence interval limit for models must consider confidence interval for direct measurement 

as: 

 

𝑡95,𝑑𝑓𝑖𝑚
·  𝑠𝑖𝑚√

1

𝑛𝑖𝑚
+ 𝑡95,𝑑𝑓 

·  𝑠 ∙ √ 𝑛+1

𝑛
 ≤ p · GVE (7) 

 

For the purpose of limit confidence interval it is allowed 𝑛𝑖𝑚= n = 1 and 𝑡95,𝑑𝑓𝑖𝑚
= 𝑡95,𝑑𝑓 

 in Equation 7: 

 

𝑡95,𝑑𝑓 𝑖𝑚 · (𝑠𝑖𝑚 + 𝑠 · √ 2) ≤ p · GVE (8) 

 

2.3. Monitoring emissions by indicative surrogate parameters and by combining predicative 

and indicative parameters  
 

Indicative surrogate parameters are those process parameters for the work of emission treatment devices 

(Brinkmann et al. 2018).  It is proved convenient for such parameters instead of concentrations to model concen-

tration fall of emissions   (∆𝑦̂1/2 ℎ𝑟) and as validated values: 

 

𝑉1/2 ℎ𝑟 =   ∆𝑦̂1/2 ℎ𝑟 − 𝑡95,𝑑𝑓 ∙ 𝑠 ∙ √𝑛+1

𝑛
   (9) 
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Symbol ∆𝑦̂1/2 ℎ𝑟 is model for concentration fall in emission treatment and as such it is always negative, where 

 ∆𝑦̂1/2 ℎ𝑟 is indicative model for concentration fall (30 min average). Confidence interval limitation, Equation 2 

for indicative surrogates is not required. 

For indicative surrogate it is also possible to limit concentration fall values like limiting values (GVE) for 

emission concentrations and use it in validation of results with some developed logical methods for combination 

consisting of more indicative models 

Under considerations are combinations of predictive and indicative surrogate parameter models for situation 

as on Figure 1. 

 

 
 

Figure 1. Combined models of predictive and surrogate parameters for emission monitoring when deSOx 

emission treatment is used (in glass manufacturing installation). 

 
It uses predictive regression and indicative mass balance models for emission flows of SOx, Figure 1 and for 

case of combination of two deSOx devices with calculated emission comparison for measuring place 4 (stack). 

The emissions are designed from furnaces 61, 62, 63, with their own developed (regression) models and with 

serial/parallel connections of deSOx using indicative models. The validated result of the model (30 min average) 

is: 

 

𝑉1/2  ℎ𝑟,𝐴 =  𝐷1(𝑦̂1/2  ℎ𝑟,1 − 𝑡95,𝑑𝑓 𝑀−2 ·  √
𝑛+1

𝑛
𝑠2

𝑟1 ) +  𝐷2 (𝑦̂1

2
 ℎ𝑟,2

− 𝑡95,𝑑𝑓 𝑀−2 ·  √
𝑛+1

𝑛
𝑠2

𝑟2
) +

(𝐷1 + 𝐷2)(∆𝑦̂1

2
 ℎ𝑟,1

− 𝑡95,𝑑𝑓 𝑀−2 ·  √
𝑛+1

𝑛
𝑠2

𝑖1
 ) + 𝐷3(𝑦̂1

2
 ℎ𝑟,3

+ ∆𝑦̂1/2  ℎ𝑟,2 − 𝑡95,𝑑𝑓  𝑀−2 ·  √
𝑛+1

𝑛
𝑠2

𝑟3
−

𝑡95,𝑑𝑓 𝑀−2 ·  √
𝑛+1

𝑛
𝑠2

𝑖2 )                 (10) 

 

where  𝑦̂1/2  ℎ𝑟,1,  𝑦̂1/2  ℎ𝑟,2, 𝑦̂1/2  ℎ𝑟,3 are 30 min average concentrations  calculated by regression models r1, r2, r3 

for   furnaces 61, 62, 63 (Figure 1), ∆𝑦̂1/2  ℎ𝑟,1,  ∆𝑦̂1/2  ℎ𝑟,2 30 min average of concentration fall of pollutant   

achieved on deSOX   devices 1 and  2  and obtained by mass balance models of indicative type  i1 , i2 ,  𝐷1, 𝐷2, 𝐷3 

ratio of waste gases flows from furnaces 61, 62 i 63 , A aggregation  of the models (𝑉1/2  ℎ𝑟,𝐴). (In this case the 

correction of validated value for oxygen level of waste gas is omitted because it is not a part of the model). 

In recent model used in glass manufacturing, equation of type Equation 10 was used for construction of more 

developed combined model directly using estimation of standard deviation from measurement on place 4 beyond 

the stack and applying some mathematical techniques for maximization using ratio of waste gases flows,  𝐷1, 𝐷2, 

𝐷3  in limitation of confidence level for the model. 

The sensitivity analysis for surrogate parameters in models should also be the part of model construction and 

later part for correction of the models as statistical learning (Smith&Smith 2007). Some procedures for the task 

were already developed. 

 

2.4. Types of models for surrogate parameters already proposed 
 

According to permitting system the proposal for models is given to authorities. Among predictive and 

indicative models now proposed for use are linear regression models and some mass balance models and artificial 

neural network models.  Still missing other models of balance types: energy and process balances models. 
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Regression models are characterized by more parameters than other models and as such are convenient for 

modelling using predictive (process) parameters according to results of sensitivity analysis.  Artificial neural 

network models proposed for now have only two input (surrogate) parameters and its potential for more surrogate 

parameters is not yet, according to that fact fully utilized. The same could be told for the low number of neuron 

layers now used in networks. The data about the potential of that models are still missing but their advantage over 

regression models in future could also be that they are nonlinear, using various types of modelling nonlinear 

functions (Mesellem et al. 2021). Mass balance models are used mostly for indicative parameters so the problem 

of number of parameters and their statistical significance in model is not yet so crucial. 

By these types of models, the choice of models is not exhausted.  Some approaches, even changes the basic 

statistics (frequentist or Bayesian) could be considered. For example, the models on Bayesian statistics, which are 

statistically fully functional according to used parameters and confidence level offers the new ways of 

optimizations of models using Bayes theorem (Sivia 2002). The other types of the models also exist which 

monitoring on surrogate parameters could apply (Tahraoui et al. 2021). 

 

 
 

 

Figure 2. Model of artificial neural network with one active hidden layer for monitoring emissions of NOx 

and dust. 

 

2.5. Correction of the models, statistical learning and confidence interval checking  
 

The conditions for surrogate parameters monitoring must hold correction of the models according to the results 

from direct measurement in later period and for these statistical methods (statistical learning) are considered for 

all types of model already proposed (Hastie et al 2001). Correction of the models could be mathematically the 

same procedure as developing new models (Mendenhalll&Sinchic1988; Rozendaal 1999), but it seems convenient 

to use techniques of optimization of existing models. Now exists optimization procedures for regression and mass 

balance models (Press et al 2002) and for artificial neural network models (Kelleher 2019) but also the broader 

framework, for optimization for some other types of models still not proposed is already established.  The main 

difference of procedures exists between neural artificial network and other types of models. 

For regression models corrected value of estimation of standard deviation of population is: 

 

𝑠2 =
𝑆𝑆𝐸

 𝑛−(𝑘+1)
   (11) 

 

where SSE is calculated as: 

 

𝑆𝑆𝐸 = 𝒀′𝒀 − 𝜷̂′𝑿′𝒀       (12) 

 

Y are results of regression model (vector), 𝑿 membership (surrogate parameters) matrix for regression model, 𝜷̂ 

coefficients of regression model (vector),  𝑆𝑆𝐸 sum of square errors of the model, n number of samples,  𝑘 number 

of parameters (Mendenhall & Sinchich 1988). 

For mass balance models, both indicative and predictive after the correction of the models the estimation of 

standard deviation is after correction: 

 

𝑠 = √
∑ (𝑒𝑖−𝑒̅)2𝑀

𝑖=1

𝑀−2
   (13) 
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where: 

- for predictive surrogates:                  𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖  (14), 

 

- for indicative surrogates:               𝑒𝑖 = ∆𝑦𝑖 − ∆𝑦̂ 𝑖  (15)  

 

and 

𝑒̅ =
∑ 𝑒𝑖𝑖

𝑀
    (16) , 

 

𝑦̂𝑖 are calculated values of the predictive model, 𝑦𝑖  measured concentration values, ∆𝑦𝑖   measured concentration 

fall obtained as 𝐸𝑚𝑗,2 − 𝐸𝑚𝑗,1,  ∆𝑦̂ 𝑖 calculated values of indicative model, i pair index of measured-calculated 

values, M number of measured-calculated pairs, 𝑑𝑓 = 𝑀 − 2 degrees of freedom for model confidence interval, 

𝑒𝑖 measured-calculated pair error, all obtained after correction of the model. 

The learning function as: 

 

𝐿 =
1

𝑀
∙ ∑ [𝑦𝑖 − 𝑦̂𝑖]

2𝑀
𝑖=1   (17) 

 

is used for the optimization of artificial neural networks. 

Combined models mentioned before theoretically needs correction both for predictive and indicative models 

and combined models itself. One way of solving the problem is learning on surrogates’ models but testing only 

the combined model.  Limit confidence interval could be checked from Equations (7) and (8) but it is also possible 

to do this through control parallel measurement using reference methods, for those pollutants not covered by 

confidence interval limit, through variability test as: 

 

𝑠𝐷 ≤ 𝜎0 ∙ 𝑘𝑣  (18) 

 

where: 

 

𝜎0 =  𝜇 ∙ 𝐺𝑉𝐸/1,96   (19) 

 

Equation for model limit confidence interval considering direct measurement is: 

 

1,96 · (𝑠𝐷 + 𝑠 · √ 2) ≤ µ· 𝑘𝑣 · GVE (20) 

where 𝜎0  are determined standard deviation estimation from variability test Equation 19, 𝑠𝐷 standard deviation 

estimation of differences from the variability test,  𝑘𝑣 coefficient from in-measuring table, µ relative measurement 

uncertainty appropriate for the control measurement. 

 

2.6. Some examples of surrogate parameters   
 

Examples considering waste incineration/co-incineration cases could not be given yet. But examples from   

high temperature technologies in some way alike, give some ideas for surrogate parameters for waste incinera-

tion/co-incineration. 

Some surrogate parameters from those technologies are: 

-  in glass manufacturing (waiting approval):           

Predictive surrogate parameters: secondary air flow, ratio of gas and secondary air flows, rate of changes 

ratio of gas and secondary air flows in furnaces, temperature of air for combustion in furnaces. 

Indicative surrogate parameters:  flow of deSOx agents, devices efficiency factor, mass balance in filter 

Qualitative surrogate parameters: glass recipes - colour of raw materials (dimensionless characteristics).  (The 

qualitative surrogates are used for correction of predictive surrogates in more elaborate mass balance models.)  

-   in mineral wool production (in real use): 

Predictive surrogate parameters:  the raw materials input, air flow in furnaces, air temperature, amount of 

oxygen, volume ratio of O2 and CO in waste gas, waste gas temperature, content of raw material and fuel, 

input and output temperatures of cooling water, chemical content of raw materials and fuel, chemical content 

of melt for wool production.  

Indicative surrogate parameters: pressure in filters, temperature in filters, volume ratio of waste gas after 

waste gas treatment device. 

- for large combustion plants (waiting approval):  

only predictive surrogate parameters: flow of natural gas, volume ratio of oxygen in waste gas, flow of pro-

duced steam.  
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3. CONCLUSIONS  
 

It is not an easy task to prepare administrative and technical frame for surrogate parameters model emission 

air monitoring, but a lot of work is already done. The questions of model types for monitoring and complicated 

nomenclature associated, with unified symbols for models 𝑦̂ and  ∆𝑦̂ and other issues could be considered fin-

ished for the purpose of administrative procedures and for use for regulation purposes in permits. The procedures 

and basic rules for statistical learning, testing and correction of the models are also defined and for cases of using 

indicative parameters also some issues of validation of results of modelling. 

Even as examples considering waste incineration/co-incineration cases could not be given yet, examples of 

model proposals and parameters from the other high temperature technologies, some waiting approval and some 

from real use, could give ideas for waste incineration/co-incineration surrogate parameters modelling. Combined 

models one could propose for solution for complicated situation of monitoring, where the simple (elemental) mod-

els are not sufficient. 

One always must consider that proposals for models are always coming from installations (operators) and that 

prepared procedures must treat them accordingly. So, the administrative procedures should be opened for proposals 

of users, which from the other side could improve the existing administrative procedures and technical issues.   

The use of surrogate parameters for other purpose, supporting direct measurement (monitoring) is under further 

research because of always existing importance of confirmation results of direct measurement monitoring. 
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