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SUMMARY
In the paper the inverse problem consisting in the identification of external heat source influencing the skin

surface is presented. On the basis of the knowledge of heating curves at selected points from the domain considered
the time dependent value of boundary heat flux is identified. In order to solve the problem the sequential function
specification method [1, 2] and the whole-domain estimation of heat flux [2] have been used. In the stage of
numerical computations the boundary element method has been applied. From the practical point of view the
algorithm presented can be applied for the burns prediction.

Key words: identification of external heat source, skin surface, sequential approach, boundary element method,
burns prediction.
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1. INTRODUCTION

The skin is treated as a multi-layer domain. If the
1D model is considered (such assumption is quite
acceptable) then the equations describing the heat
transfer processes in the successive layers are of the
form [3, 4, 5]:

( ) ( ) ( )[ ]meeBeexxeete

e

Qt,xTTkt,xTt,xTc
:x

+−+∂=∂
∈

λ
Ω

(1)

where e=1,2,3 correspond to the epidermis, dermis and
sub-cutaneous sub-domain (Figure 1), ce, λe and ke
denote the volumetric specific heat, thermal
conductivity and perfusion coefficient for sub-domains
Ωe, TB is the arterial blood temperature and Qme is the
metabolic heat source.

Fig. 1  Skin tissue

For x∈Γ0 (skin surface) we introduce the Neumann
condition:
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q1(0,t) = λ1∂xT1(0,t) = qs(t) (2)

and course of function qs(t) is unknown.
On the contact surfaces between sub-domains the

continuity conditions are given:
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1ee
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For the internal boundary Γ3 limiting the system
the no-flux condition is assumed. The initial
temperature distribution is also determined [3].

Additionally, the values Tdif at the selected set of
points xi for times tf are known. Namely:

Tdi
f = Td(xi,t f) ; i = 1,2,..., M ; f = 1,2,..., F (4)

In order to solve the inverse problem the two
different algorithms have been applied. The first of
them is called the sequential function specification
method [1, 2] and uses the information about the future
temperature measurements. The second one (whole-
domain estimation of heat flux [2]) consists of the
estimation of coefficients determining the form of qs(t).

It should be pointed out that comparing the task
discussed with the solutions presented in literature we
consider essentially more complex problem (the non-
homogeneous domains with internal heat sources).

The ‘measured’ heating curves (Eq. (4)) result from
the solution of the direct problem for assumed course
of function qs(t), next they have been disturbed in a
random way.

2. SEQUENTIAL FUNCTION
SPECIFICATION METHOD

In the sequential function specification method
[1, 2] the sensitivity coefficients are used.

In order to calculate them, the governing equations
are differentiated with respect to the unknown
boundary heat flux. So, for each sub-domain of skin
one has (Eq. (1)):

( ) ( ) ( )t,xZkt,xZt,xZc:x eeexxeetee −∂=∂∈ λΩ (5)
where:
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is the sensitivity function.
A differentiation of the boundary and initial

conditions with respect to qs gives:
− continuity conditions:
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− Neumann condition:
 x∈Γ0 : −λ1∂xZ1(x,t) (8)

− adiabatic condition for x ∈ Γ3:

−λ3∂xZ3(x,t) = 0 (9)
− initial condition:

t=0 : Ze(x,t) = 0, e = 1,2,3 (10)
The additional problem can be solved directly - it

is correctly posed because both the differential
equations determining the distribution of Ze in the
domain considered and the boundary initial conditions
are known too.

Due to the discrete nature of temperature data,
Eq. (4), the unknown function qs(t) must also be
expressed in a discrete form, for example:

( )f 1 f f f
st t ,t : q q t , f 1,2,...,F−⎡ ⎤∈ = =⎣ ⎦ (11)

It is assumed that the heat flux is known at times t1,
t2, ...tf-1 and we want to determine the heat flux qf at
time t f. Of course, some measured temperature
histories are given at interior locations xi, namely Tdi1,
Tdi2, ..., Tdif-1, i=1,2,...,M. This variant of function
specification method is called the sequential approach
[1, 2]. Additionally, we assume that the temperature
histories are known for R future intervals, namely:

Tdi
f+r-1 = Td(xi,t f+r-1) ; r=1,2,..., R ; i=1,2,..., M (12)

and the heat flux is constant over R future steps:

q f = q f+1 = q f+R-1 (13)

Function Tif+r-1 = T(xi,t f+r-1) is expanded in a
Taylor series about arbitrary but known value of heat
flux fq̂ :
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where 1rf
iT̂ −+ is the temperature at time tf+r-1and

location xi obtained under the assumption that for
f 1 f r 1t t ,t− + −⎡ ⎤∈ ⎣ ⎦ the heat flux equals qf = qf+1 =

qf+R-1 = fq̂ .
We introduce the sensitivity coefficients and then:

( )ff1rf
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In order to solve the inverse problem, the least
squares method is applied [1, 2, 6]:

( ) ( )∑∑
= =

−+−+ →−=
M

1i

R

1r

21rf
di

1rf
i

f MINTTqS (16)

Putting Eq. (15) into Eq. (16) one has:
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Differentiating the criterion given by Eq. (12) with
respect to the unknown heat flux qf and using the
necessary condition of minimum, one obtains:
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3. WHOLE-DOMAIN ESTIMATION OF
HEAT FLUX

We assume the time variation of boundary heat flux
in the form:

x∈Γ0 : qs(t) = β1 + β2t + β3t2 (19)

where the coefficients β1, β2 and β3 are unknown.
As in the sequential approach of function

specification method in the whole-domain estimation
of heat flux [2] the sensitivity coefficients are used.

So, we differentiate the governing equations with
respect to the unknown parameters βj, j = 1, 2, 3. For
each sub-domain of skin one has (Eq. (1)):
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where:
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are the sensitivity functions.
A differentiation of the boundary and initial

conditions with respect to βj gives:
− continuity conditions:
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− Neumann condition:
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− adiabatic condition for x∈Γ3:

-λ3∂xU3j(x,t) = 0 (24)
− initial condition:

t=0 : Uej(x,t) = 0 (25)
Summing up, three additional boundary initial

problems connected with the sensitivity of temperature
field with respect to the unknown parameters β1, β2
and β3 must be solved. It should be pointed out that
these additional problems can be solved directly - they
are correctly posed because both the differential

equations determining the distribution of Uej in the
domain considered and also the boundary initial
conditions are known.

We assume that the values of temperature Tdif at
the internal nodes xi for time t f, f=1,2,…,F are known,
Eq. (4). In order to solve the inverse problem, the sum
of squares criterion is applied [1, 2, 6]:
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where Tf is the calculated temperature at the points xi.
Differentiating the criterion Eq. (26) with respect

to the unknown parameters βj, j=1,2,3 and using the
necessary condition of minimum, one obtains:
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At first, we solve the basic boundary initial problem
for the arbitrary assumed values of parameters β1, β2
and β3. The solution obtained we denote by f

iT̂ . The
temperature Tif  is expanded into Taylor’s series in the
vicinity of point f

iT̂ taking into account the first and
second components, this means [1, 2, 6]:
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Putting Eq. (30) into Eq. (28) one has:
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The Eq. (32) can be written in the matrix form,
namely:

BβAAβ += ˆ (33)
where:
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The system of Eq. (33) allows to find the values of
β1, β2 and β3.

4. BOUNDARY ELEMENT METHOD

In order to solve the basic boundary initial problem
and the additional problems connected with the
sensitivity functions, the boundary element method has
been used [7, 8].

The following equations for successive layers of
skin are considered:

( ) ( ) ( ) 3,2,1e,t,xSt,xFt,xFc eexxeete =+∂=∂ λ (37)

where Fe(x,t) denotes the temperature Te(x,t) functions
Ze(x,t) or Uej(x,t) resulting from the sensitivity analysis,
Se=Se(x,t) are the source functions.

At first, the time grid is introduced:

0 = t0<t1<...<t f-1<t f<...<∞, ∆t = t f-t f-1 (38)

If the 1st scheme of the BEM is taken into account
then the boundary integral equations (for successive
layers of skin - e = 1,2,3) corresponding to transition
t f-1 → t f are of the form [6, 7]:
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where Fe* are the fundamental solutions given by formulas:
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where ξ is the point in which the concentrated heat source is applied and ae = λe/ce.
The heat fluxes resulting from the fundamental solutions are equal to:
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one has the following form of Eq. (39):
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where:
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at the same time:
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For ξ→Le-1+ and ξ→Le- for each domain considered one obtains the system of equations (Eq. (43)):
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This system can be written in the matrix form:
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Taking into account the continuity conditions for x=L1 and x=L2 and adiabatic condition for x=L3 one has:
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where F1(L1,t f) = F2(L1,t f) = Fb(t f), F2(L2,t f) = F3(L2,t f) = Fd(t f), J1(L1,t f) = J2(L1,t f)=Jb(t f) and J2(L2,t f) =
J3(L2,t f)=Jd(t f). Next, we introduce the boundary condition for x=L0 associated with the primary problem or
additional problems resulting from the sensitivity analysis.

The values of functions Fe(x,t) at the internal points ξ∈(Le-1, Le) for time t f can be found using the formula:

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )ξξξξ

ξξξ

ee
f

1ee1ee
f

eeee

f
eeee

f
1ee1ee

f
e

zpt,LFL,ht,LFL,h

t,LJL,gt,LJL,gt,F

++−

+−=

−−

−−
(51)



E. Majchrzak, D. Janisz, G. Kaluza, K. Freus: Identification of the boundary condition on the skin surface subjected to external heat source

38 ENGINEERING MODELLING 17 (2004) 1-2, 33-39

5. EXAMPLES OF COMPUTATIONS

In numerical computations the following skin
parameters have been assumed [1]: λ1=0.235 W/
(mK), λ2=0.445 W/(mK), λ3=0.185 W/(mK),
c1=4.3068·106 J/(m3K), c2=3.96·106 J/(m3K),
c3=2.674·106 J/(m3K), k1=0, k2=k3=4995.25 W/(m3K),
TB=37 °C, Qm1=0, Qm2=Qm3=245 W/m3 [3]. The
thicknesses of successive skin layers: 0.1, 2 and 10 mm.
The layers have been discretized using 10, 40 and 120
internal cells, while the time step equals ∆t=0.05 s.

At first, it is assumed that the boundary heat flux
qs(t) (Eq. (2)) is known, namely:

qs(t) = 60 + 6400t - 640t2 (52)

and we solve the direct problem of Eqs. (1), (3) and
(52) supplemented by the initial condition and no-flux
condition on the internal surface x=L3. The initial
condition determines the quadratic temperature
distribution between 32.5 °C at the surface and 37 °C
at the base of the subcutaneous region [3]. In Figure 2
the temperature field in the skin domain for times 2, 4,
6, 8 and 10 s is shown. Figure 3 illustrates the course
of heating curves at the points x1=0.0001 m,
x2=0.00015 m and x3=0.00025 m.

Next, the inverse problem connected with the
boundary heat flux qs(t) identification using previously
presented methods has been solved. The average
relative error between the exact qex(t) and estimated
values qs(t) is defined as:

( ) ( )
( ) %100
tq

tqtq
F
1B

F

1f
f

ex

f
ex

f
s∑

=

−
= (53)

In the first version of computations it is assumed
that the ‘measured’ temperature at the point x1 is
known and this temperature corresponds to the exact
solution of the direct problem - Figure 3. Using the
sequential function specification method (SFSM) for
R=3, the error of identification equals B=3.99 %, while
the whole-domain estimation procedure (WDP) leads
to the exact solution of the inverse problem (B=0). If
the temperature courses are given at three internal
nodes (Figure 3) then we obtain the similar results, this
means for the first method B=4.67 %, while for the
second one B=0.

Simulation of inexact measurement of
temperatures can be obtained under the assumption
that measurement errors are normally distributed with
zero mean and constant standard deviation σ, and
then:

( )i
f

di
f

di xfTT̂ σ+= (54)

where xi∈(-3,3) is a random variable, f(x) is the
probability density function of normal distribution.
Figure 4 presents the simulated measurement
temperatures for σ=1, while in Figure 5 the results of
inverse problem solution are shown.

Fig. 2  Temperature distribution in the skin domain

Fig. 4  Disturbed heating curves (σ = 1)

Fig. 3  Heating curves
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IDENTIFICIRANJE RUBNIH UVJETA NA POVR[INI KO@E KOJA JE IZLO@ENA
VANJSKOM IZVORU TOPLINE

SA@ETAK

Ovaj rad opisuje inverzni problem identificiranja vanjskog izvora topline koji utje~e na povr{inu ko`e.
Poznavaju}i krivulje zagrijavanja na odabranim to~kama promatranog podru~ja, identificira se vrijednost rubnog
strujanja topline koja ovisi o vremenu. U svrhu rješavanja problema koristi se specifikacijska metoda pravilne
funkcije [1,2] i procjena strujanja topline cijelog podru~ja [2]. Primjenjuje se i metoda rubnih elemenata u fazi
numeri~kog izra~una. S prakti~ne to~ke gledi{ta, kori{teni algoritam mo`e se primijeniti u predvi|anju opekotina.

Klju~ne rije~i: identifikacija vanjskog izvora topline, površina ko`e, uzastupni pristup, metoda rubnih elemenata,
predvi|anje opekotina.

Fig. 5  Solution of inverse problem

6. CONCLUSIONS

The sequential function specification method and
the whole-domain procedure allow to identify the
boundary heat flux, but in the case of exact
measurements of temperatures only the second leads
to the exact solution of inverse problem. In the case of
the inexact measurements the whole-domain procedure
gives the results with the smaller errors than the
sequential function specification method. It should be
pointed out the whole-domain procedure can be
applied only in the case when the searched heat flux is
described by the function in which the parameters are
unknown.
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