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SUMMARY

In the paper the inverse problem consisting in the identification of external heat source influencing the skin
surface is presented. On the basis of the knowledge of heating curves at selected points from the domain considered
the time dependent value of boundary heat flux is identified. In order to solve the problem the sequential function
specification method [1, 2] and the whole-domain estimation of heat flux [2] have been used. In the stage of
numerical computations the boundary element method has been applied. From the practical point of view the
algorithm presented can be applied for the burns prediction.

Key words: identification of external heat source, skin surface, sequential approach, boundary element method,

burns prediction.

1. INTRODUCTION

The skin is treated as a multi-layer domain. If the
1D model is considered (such assumption is quite
acceptable) then the equations describing the heat
transfer processes in the successive layers are of the
form[3, 4, 5]:

XeLdy: 1

CeatTe(Xit) = ieaxxTe(Xft)"' ke[TB —Te(X,'[)+ Qme] @
wheree=1,2,3 correspond to the epidermis, dermisand
sub-cutaneous sub-domain (Figure 1), co, Ao and ke
denote the volumetric specific heat, thermal
conductivity and perfusion coefficient for sub-domains

e, Tgisthearterial blood temperature and Q¢ isthe
metabolic heat source.

skin surface

Lz L3

subcutaneous region

epidermis dermis

Fig. 1 Skin tissue

For xe I'y (skin surface) we introduce the Neumann
condition:
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0;(0.t) = 2410, T;(0,1) = a(t) @

and course of function gqt) is unknown.
On the contact surfaces between sub-domains the
continuity conditions are given:

Qe(x t) qe+1(x,t) _
Te(X’t)—Te+1(X’t) et (3)

For the internal boundary I'z limiting the system
the no-flux condition is assumed. The initial
temperature distribution is also determined [3].

Additionally, the values Ty at the selected set of
points x; for times tf are known. Namely:

Tl = Tyoth i=12..,M;f=12.,F (4

In order to solve the inverse problem the two
different algorithms have been applied. The first of
them is called the sequential function specification
method [1, 2] and usesthe information about the future
temperature measurements. The second one (whole-
domain estimation of heat flux [2]) consists of the
estimation of coefficients determining the form of qg(t).

It should be pointed out that comparing the task
discussed with the solutions presented in literature we
consider essentially more complex problem (the non-
homogeneous domains with internal heat sources).

The‘measured’ heating curves (Eq. (4)) result from
the solution of the direct problem for assumed course
of function g4t), next they have been disturbed in a
random way.

Xelege: {

2. SEQUENTIAL FUNCTION
SPECIFICATION METHOD

In the sequential function specification method
[1, 2] the sensitivity coefficients are used.

In order to calculate them, the governing equations
are differentiated with respect to the unknown
boundary heat flux. So, for each sub-domain of skin
one has (Eg. (2)):

X€ Qg1 CdiZo(X,t) = 160 1 Zo(X,t) — KeZo(X,1) (5)
where:

ATe(x,t)

0Qs

Ze(xt)= (6)
is the sensitivity function.

A differentiation of the boundary and initial
conditions with respect to g gives:
— continuity conditions:

Xelgair:
{_ leaxze(x’t) = le+la xZe+l(X’t) (7)
, e=12
Ze(x’t) = Ze+1(x't)
— Neumann condition:
xe Iy 1 —A10,Z4(X1) ©)]
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— adiabatic condition for x € I's:
30, Z5(xt) = O 9)
— initial condition:
t=0: Z (xt)=0,e= 123 (10)
The additional problem can be solved directly -
is correctly posed because both the differential
equations determining the distribution of Z, in the
domain considered and the boundary initial conditions
are known too.
Due to the discrete nature of temperature data,
Eq. (4), the unknown function ggt) must also be
expressed in a discrete form, for example:

te[tf 1tf] q' qs( ),f=1,2,...,F (1)

It isassumed that the heat flux isknown at timest1,
t2, ...t*-1 and we want to determine the heat flux qf at
time tf. Of course, some measured temperature
histories are given at interior locations x;, namely Ty,
Tgi2 - Tg'L, i=1,2,...,M. This variant of function
specification method is called the sequential approach
[1, 2]. Additionaly, we assume that the temperature
histories are known for R future intervals, namely:

Tt = Tyt ™ ; r=1,2,..,R; i=1,2,., M (12)
and the heat flux is constant over R future steps:
qf: qf+1:qf+R-l (13)
Function T;+r-1 = T(x;,t #r-1) is expanded in a
Taylor series about arbitrary but known value of heat
flux gf

f+r-1
= f4r— 1 GT

TR = (qf —ﬁf)(l“)

q =

f+r-1.

where T is the temperature at time t+-land

location x; obtained under the assumption that for
te[tf’l,tf”*qthe heat flux equals f = gf+1 =
gf+Rl= E]f

We introduce the sensitivity coefficients and then:
i1 :-I‘—if+r71+zif+rfl(qf g ) (15)

|
In order to solve the inverse problem, the least
sguares method is applied [1, 2, 6]:

s')- ii(ﬂf”’l—ﬁ”’l)z — MIN (16)
i=1r=1

Putting Eq. (15) into Eq. (16) one has:
sla')-

:ii(fm 1y gt 1(qf ) Tdf+r 1)2_)

=1r=1

— MIN (17)
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Differentiating the criterion given by Eq. (12) with
respect to the unknown heat flux gf and using the
necessary condition of minimum, one obtains:

ii( f+r 1 f+r 1) f+r-1
Zi

i=1r=1 (18)

ii(zimfl)z

=1r=1

q'=q" +

3. WHOLE-DOMAIN ESTIMATION OF
HEAT FLUX

We assume thetime variation of boundary heat flux
in the form:
xely: a4t) = By + Bot + Bat? (19)
where the coefficients 3, 8, and 35 are unknown.
As in the sequential approach of function
specification method in the whole-domain estimation
of heat flux [2] the sensitivity coefficients are used.
So, we differentiate the governing equations with
respect to the unknown parameters f3;, j = 1, 2, 3. For
each sub-domain of skin one has (Eq. (1)):
XedLdy:
CedUg (X,1) = 205U (X,t)— kU g (xt)  (20)
where:
aTa(xt)
B,

Ug(x.t)= (21)

are the sensitivity functions.

A differentiation of the boundary and initial
conditions with respect to f3; gives:
— continuity conditions:

Xelgei1:
— 203U (X,1) = Ag,10,U g1 j (X1) e 12 (22)
U q = U e+1,j ! !
— Neumann condition:
1, j=1
xelp: —Ao0Upj=1t, j=2 (23)
t?, j=3
— adiabatic condition for xe I's:
-Agd,U5(xt) = 0 (24)
— initia condition:
t=0: Ue]-(x,t) =0 (25)

Summing up, three additional boundary initial
problems connected with the sensitivity of temperature
field with respect to the unknown parameters 31, o
and B3 must be solved. It should be pointed out that
these additional problems can be solved directly - they
are correctly posed because both the differential

equations determining the distribution of U in the
domain considered and also the boundary initial
conditions are known.

We assume that the values of temperature Ty at
theinternal nodesx; for timetf, f=1,2,...,F are known,
Eq. (4). In order to solve the inverse problem, the sum
of sguares criterion is applied [1, 2, 6]:

) -SS T F o

f=1li=1

where Tf is the cal culated temperature at the points ;.
Differentiating the criterion Eq. (26) with respect

to the unknown parameters f3, j=1,2,3 and using the

necessary condition of minimum, one obtains:

F M tR2oT!
= ——=0, j=123 (27
aﬂJ fZZl( ) P = 0

J
or:

Tif —Ti )U”f =0, j=123 (28

At first, we solve the basic boundary initial problem
for the arbitrary assumed values of parameters B B>
and f33. The solution obtained we denote by T . The
temperature T, is expanded into Taylor’s seriesin the
vicinity of point T." taking into account the first and
second components, this means [1, 2, 6]:

3 f
f_=f T, _z
VR S beh) @

3
ieSuilea) @
k=1

Putting Eq. (30) into Eq. (28) one has:

F M 3
ZZ T.f+ZU.k( B)-T uf =0 (3

=1i

1
2,3

._
Il

3

JZ kB = ZZUIJ Z:UIkﬂKJr

k=1 f=1i=1 k=1

M

(32)

M= e

(Tdf - )Uijf1

M

=123

—h

=1i

I
iy

The Eg. (32) can be written in the matrix form,
namely:

AB=AB+B (33)
where:
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and:

while;

where F¢" are the fundamental solutions given by formulas:

SSuif STl

Fe(g,tf )+ 1

+ TF; (g,x,tf -t

F M 1
PIPICAEAA

f=li=1

F M
PIPILS

f=li=1

YL

f=li=1

(34)

(39)

(36)

The system of Eq. (33) allowsto find the values of
P1. B2 and fs.

4. BOUNDARY ELEMENT METHOD

In order to solve the basic boundary initial problem
and the additional problems connected with the
sensitivity functions, the boundary element method has
been used [7, 8].

The following equations for successive layers of
skin are considered:

CedtFa(Xt)= Aol uFa(Xt)+ Sa(x,t), =123 (37)

where F¢(x,t) denotes the temperature Tg(x,t) functions
Z(xt) or Ug(x,t) resulting from the sengitivity analysis,
S=S.(xt) are the source functions.

At firgt, the time grid is introduced:

0=t0<tl<. <tfFlctfc <o At=ttF1 (38)

If the 18t scheme of the BEM is taken into account
then the boundary integral equations (for successive
layers of skin - e = 1,2,3) corresponding to transition
tf-1 — tf are of the form [6, 7]:

where & is the point in which the concentrated heat source is applied and a, = AJ/Ce.
The heat fluxes resulting from the fundamental solutions are equa to:

Assuming that:

Llext’ t)=-2

one has the following form of Eq. (39):

where:

36
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he(.Le)Fellot ')~ (& Lo aJFelLe s t '+ pel)+ 2e(¢)

f f x=L,
tf Fe (g,x,tf ,t)Je(x,t)dt = Ci tI\];(g,x,t f ,t)Fe(x,t)dt +
L e ttff1 x-L,, (39)
)Fe(x,tf’l)dXJrCi I Se(x,tf’l)J.F; (f,x,tf ,t}dtdx
e L, i1
2
Fe (.f xitf ,t):mexp{— ﬁ(j—)—t)} (40)
Folext ) lx-g) I (x-f?
S it i I
cohaa] [ o
Fe(éz,tf )+ ge(éz’Le)‘]e(Le ! )_ ge(éz’Le—l)‘]e(Le—l it ): (43)
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tf
he(é )= Cltjl Jalext! = T e 2|XajtJ (@)
and:
e (=] e f =g
ge(i,X)—C—etJI (fxt t)dt Jﬂiece - Zaem }— 27 [2 Jaem} (45)
while:
L
pe(§)=£lF§(§,X,tf,tf1)Fe(x,tf1)d 2 mj [ o }F (xt " (46)
at the same time:
- Lfse(x,tf1)9e(45,x)olx (47
Los

For E—Lg 1+ and é—L¢ for each domain considered one obtains the system of equations (Eq. (43)):

F (Leqt )+ge( o1 )Je( ) o( &11L&1)Je(L&1,tf):

he(Le1.Le ) Fe Lot ) =h(Le 1. Le )R (Ht) P(Le1)+2(Let)

(Let )+g Lo, Lo Je(Le,t ) o1)de (L&l,tf): “)
he(Lt_LlfLe) ( ) ( ) (L&lt) Pe(Le) + Z(Le)
This system can be written in the matrix form:
{ga g&] e(Leat') {m m] o[Lest’) {pﬁﬂ
e e f e e (49)
921 92 Je(Le,t ) hs1 h, e(Le,t ) Pz +2;

Taking into account the continuity conditions for x=L, and x=L, and adiabatic condition for x=L3 one has:

_FS(LO tf ) ) _
i 7 1 f 1,1
-h, -h g, 0 0 0 Fb(tf ) —911F1(|-o,t )+ pL+ 2
-+ -hp 9 0 0 O —g%lFl(LO,tf)+ P+ 23
0 -hg ofy -, 9 O Jo (t ) _ 247 50
0 My g5 -hp 9p O Fq (tf ) p2 + 22
0 0 0 -h; gi -h 3, (tf ) P2+ 23
| 0 0 0 _hgl 921 —hgz_ ¢ pg + Zg
_F3(L3 t ) i ]

where Fl(Llit f) = F2(L1,t f) = Fb(t f), F2(L2,t f) = F3(L2,t f) = Fd(t f), Jl(Ll,t f) = J2(L1,t f):Jb(t f) and J2(L2,t f) =
Ja(Lo,t )=J4(t ). Next, we introduce the boundary condition for x=L associated with the primary problem or
additional problems resulting from the sensitivity analysis.

The values of functions F(x,t) at the internal points e (Lg 1, Le) for timetf can be found using the formula:

Fe(fitf ): ge(ffl-e—l)‘-]e(l-e—l’tf )_ ge(fil-e)’-]e(l-e’tf )+

(2o FalLot )= Mol Lo FolLo 2.t )+ pel@)+ 2e(&) 5D
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5. EXAMPLES OF COMPUTATIONS

In numerical computations the following skin
parameters have been assumed [1]: 1,=0.235 W/
(mK), 24,=0.445 W/(mK), A3=0.185 W/(mK),
c1=4.3068-106 J/(m3K), ¢,=3.96-106 J/(m3K),
Cg=2.674-106 JI(MBK), ky=0, ky=kg=4995.25 WI(mBK),
Tg=37 °C, Qu=0, Qnp=Qnz=245 W/m3 [3]. The
thicknesses of successive skinlayers: 0.1, 2 and 10 mm.
The layers have been discretized using 10, 40 and 120
internal cells, while the time step equals At=0.05 s.

At first, it is assumed that the boundary heat flux
gs(t) (Eq. (2)) is known, namely:

q4(t) = 60 + 6400t - 640t (52)

and we solve the direct problem of Egs. (1), (3) and
(52) supplemented by theinitial condition and no-flux
condition on the internal surface x=L3. The initial
condition determines the quadratic temperature
distribution between 32.5 °C at the surface and 37 °C
at the base of the subcutaneous region [3]. In Figure 2
the temperature field in the skin domain for times 2, 4,
6, 8 and 10 sis shown. Figure 3 illustrates the course
of heating curves at the points x;=0.0001 m,
Xo=0.00015 m and x3=0.00025 m.
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Fig. 2 Temperature distribution in the skin domain
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Fig. 3 Heating curves
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Next, the inverse problem connected with the
boundary heat flux qgq(t) identification using previously
presented methods has been solved. The average
relative error between the exact g,(t) and estimated
values qg(t) is defined as:

F

1
B:Ez

f=1

) o ff
A tqf oo (s3)
Oex

In the first version of computations it is assumed
that the ‘measured’ temperature at the point x; is
known and this temperature corresponds to the exact
solution of the direct problem - Figure 3. Using the
sequential function specification method (SFSM) for
R=3, theerror of identification equals B=3.99 %, while
the whole-domain estimation procedure (WDP) leads
to the exact solution of the inverse problem (B=0). If
the temperature courses are given at three internal
nodes (Figure 3) then we obtain the similar results, this
means for the first method B=4.67 %, while for the
second one B=0.

Simulation of inexact measurement of
temperatures can be obtained under the assumption
that measurement errors are normally distributed with
zero mean and constant standard deviation o, and
then:

Ty =Tg +of (%) (54)

where x;e (-3,3) is a random variable, f(x) is the
probability density function of normal distribution.
Figure 4 presents the simulated measurement
temperatures for o=1, while in Figure 5 the results of
inverse problem solution are shown.
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Fig. 4 Disturbed heating curves (o = 1)
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Fig. 5 Solution of inverse problem

6. CONCLUSIONS

The sequentia function specification method and
the whole-domain procedure allow to identify the
boundary heat flux, but in the case of exact
measurements of temperatures only the second leads
to the exact solution of inverse problem. In the case of
theinexact measurements the whole-domain procedure
gives the results with the smaller errors than the
sequential function specification method. It should be
pointed out the whole-domain procedure can be
applied only in the case when the searched heat flux is
described by the function in which the parameters are
unknown.
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IDENTIFICIRANJE RUBNIH UVJETA NA POVRSINI KOZE KOJA JE IZLOZENA
VANJSKOM IZVORU TOPLINE

SAZETAK

Ovaj rad opisuje inverzni problem identificiranja vanjskog izvora topline koji utjece na povrsinu koze.
Poznavajuci krivulje zagrijavanja na odabranim tockama promatranog podrucja, identificira se vrijednost rubnog
strujanja topline koja ovisi o vremenu. U svrhu rjesavanja problema koristi se specifikacijska metoda pravilne
funkcije [1,2] i procjena strujanja topline cijelog podrucja [2] Primjenjuje se i metoda rubnih elemenata u fazi
numerickog izracuna. S prakticne tocke gledista, koristeni algoritam moze se primijeniti u predvidanju opekotina.

Kljucne rijeci: identifikacija vanjskog izvora topline, povrsina koze, uzastupni pristup, metoda rubnih elemenata,

predvidanje opekotina.
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