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SUMMARY

The simplification of Pocklington's equation kernel and the software implementation of the arbitrary shaped
thin wire problem is presented here in order to get a useful antenna engineering tool that could be used in
determining the current distribution in arbitrary shaped thin wires. The softwareis based on the widely used method
of moments and it is implemented in programming language C++. The work presented in this paper is concerned
with how to simplify the kernel of the Pocklington’s integro-differential equation in order to be more efficient
computationally. e obtained an integral equation that reduces not only the programming efforts, but also the time
spent in the calculations. The integral equation presented in this paper was thought not only for arbitrary shaped

thin wires, but also for the case of straight thin wires.

Keywords: Method of moment, Pocklington’s equation, point matching technique, current distribution, thin wire,

antenna.

1. INTRODUCTION

It is known that the current distribution in any
conductor can indicate its electromagnetic behavior.
For the electrical engineer this is the key for
determining the electromagnetic field at any point of
the surrounded space (through the magnetic and
electric potential), and hence all the electric
characteristics would be determined, i.e. input
impedance, radiation pattern, directional gain, etc.

The theoretical analysis is based upon two
philosophies. The first one, the classical analysis,
makes a great effort in guessing how the current is
distributed along the antenna. For simple structuresthis
method brings us accurate results, but in complex
structures (such as helical antennas or cross antennas)
we do not have a prior knowledge about the current
distribution itself, so the obtained results could be
wrong. However, in order to improve the results, the
second philosophy brings us a better solution. Thisis
based upon the well known method of moments (MM),
which was introduced by Roger F. Harrington in 1967

[1]. This method, when applied in an electromagnetic
problem, brings results whose accuracy is as good as
the engineer needs or the computer could provide.

The MM solution uses the Pocklington’s equation,
which is derived from the electric field integral
equation. The solution can be found in the applied
literature for straight thin wires [2, 3]. For arbitrary
shaped wiresit is necessary the other integral equation
formulation, starting with Mei’s analysis and
successors [4, 5]. Although we are working in the
procedure for helical and cross antennas, we present
in this paper the well known solution for straight and
loop antennas in order to compare results with the
analytica solution of the same problem.

In this paper we show the simplification we made
to the Pocklington’s equation. Such simplification
transforms the integro-differential equation in an
integral one which can be easily evaluated through
some numerical integration algorithm. This
simplification saves time as the computer was used
for calculating the impedance and current matrices
which is an important issue for being considered

ENGINEERING MODELLING 17 (2004) 3-4, 69-76 69



V.B. Figueroa, J.S. Pedroza, J.L. Lopez-Bonilla: Smplification of Pocklington’s integral equation for arbitrary bent thin wires

when we are looking for a better solution of the
problem considered.

2. THE ELECTRIC FIELD INTEGRAL
EQUATION

The electric field integral equation describes the
strong relationship between the electric field and the
current distribution on the conductor. This equation can
be derived from Maxwell’s equations [6] through the
use of the concept of magnetic potential vector and
electric potential scalar. Mathematically:

where EY(r) is the total electric field vector measured
at the observation point r; J(r') is the current
distribution (the unknown of the problem) located at
the source point r'; [k2+ V2] isthe Helmholtz's operator
[7] dealing with Green’s function for the free space

eﬁjk|H'| / 4z|r —r'|; kand nisthewave number and
theintrinsicimpedance for the free space, respectively:

n=yHo! & @
where wisthe angular frequency of the current and g
and g is the permeability and permittivity of the free
space, respectively. Notice the use of the volume
integral over all source points in the structure that
contribute to the total electric field. As we can see in
the Eqg. (1), the unknown isinside the integral operator.

k=, 1oéo

3. POCKLINGTON'SINTEGRAL
EQUATION FOR THIN WIRES

Pocklington’sintegral equation can be derived from
Eq. (1) by applying the electric field boundary
condition over the structure of the arbitrary shaped thin
wire. This condition states that the total electric field
vanishes over the surface of any perfectly conducting
metal. In practice, the metal from which the antennas
aremadeisamost asperfect asanideal conductor (i.e.
copper) and hencethis condition models accurately the
current behavior on the wire's surface. If the wire's
surface is represented by r = r, then:

Efr) =Ei(rg + EXr9 =0 ©)
where Ei(r) isthe impressed electric field and E(rg) is
the scattered electric field. For high frequencies, duethe
skin effect, the current will be located over the wire's
surface. The more the frequency increases, the better
the current will be confined in aninfinitesimal layer that
cover the wire. The skin depth ¢ is obtained from:

6 =./2/ouc 4
where g istheelectrical conductivity of the metal from
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which the antenna was made. By using Egs. (1) and
(3) and considering that the current is located only on
the wire's surface we can get the impressed electric
field on the wire's surface, asis shown in Figure 1:

. —jk‘r—r"
s(r _p\__ AN 'V 2 2 ' e
ES(r=r,)= . _!JZJS(r r)[K* +V J47z\r—r'\ad(p ds
(5)

Noticethat theintegration isover thewire's surface.
Thevariable s represents the arch length over thewire
and ¢' the azimuthal angle around the cross section of
the wire. We have supposed that the wire is much
thinner than the wavelength of the current. Under this
assumption it is valid to suppose that the current
distributesitself without circumferential variations; this
is called the thin-wire approximation.

If the wire's radius is represented by a, then the
superficial current distribution can be expressed as:

2raly=14(s) = 6)

()

Fig. 1 Relationsamong the vectors of the arbitrary shaped
wire

Due the azimuthal independence the current
distribution only depends on the arch length; in other
words, we can think that the current is confined in a
very thin current filament | {S') over thewire'ssurface.
If the axis of the wire is represented by the following
vectorial equation:

r(s) = X(s)i +y(9)j+z(s)k (8)
then the curve which represents the current filament
has the next vectorial equation:

r'(s) =r(s) +an(s) 9)
wheren(s) isthe unit normal vector for thewire’saxis;
in other words, the curve which represents the current
filament is a parallel curve to the curve which
represents the wire's axis. Considering the circular
cross section, the wire's axis will have an infinite
collection of parallel curves, although in practice, we
select the one which could make the estimations easier.

Applying the former considerations we can get an
expression for the impressed electric field over the
wire's surface, known as the Pocklington’s equation:

62 e—jk‘r—r"
6565'}4;rr—r'

L j N K2ce & .
EL= 8£IS(S){ks S+ ds' (10)
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where Ed is the tangential impressed electric field.
Notice that due to the thin-wire approximation and the
skin effect, we could express the electric field as a
linear integration over thearch length s.

The Eqg. (10) isthe general Pocklington’s equation
which isvalid for any possible geometry that the wire
could have; nevertheless, Pocklington’s equation form
found in the applied literature is restricted only for
straight wires [Balanis, op. cit].

Thewire'sgeometry isexpressed by the dot product
se s, where §() is the unit tangentia vector for the
wire's axis and s'(S) is the unit tangentia vector for
the parallel curve which represents the current
filament, as is shown in Figure 2. These vectors are
calculated from:

os)= dx(s)i .\ dy(s) it dz(s) "

ds ds ds (11)
dX(s). dy(s). dZ(s
CE KR

Generator point for the electric field

R E‘[r)
& . . \‘\
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% - IJ
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Fig. 2 Unit tangential vectorsfor thethinwire

el =-) Y, ! in(s')[

k’ses + ——

The geometry is also expressed by the difference
between the vectors |r —r'| which can be expressed as:

R=|R|=|r-r|=

=[x(8)-x ()P +[y(s)- y () +[2ls) - 2 (¢
(12)
In this way, the work just consists in finding the
vectors which represent the parallel curve and the axis
curve for the considered wire.

4. THE MM SOLUTION TO
POCKLINGTON’S EQUATION

The MM isanumerical techniquewhich transforms
an operational equation into amatrix equation. Thefact
that an operational equation could be discretized isthe
base on which the equation could be solved through a
computational procedure.

The objective of the MM applied in Pocklington's
equation is to get the current distribution I4S) of the
wire. Looking at Eq. (10) it is clear that reaching that
goal is a very difficult task because the unknown
function 1) is inside the integral operator. The
formulation of the MM is needed in order to get a
numerical solution of Eq. (10) instead of an analytica
one (in cases where the wire’'s geometry issimpler, it is
possibleto get an analytical solution for Eg. (10), but in
other cases there is no warranty for getting such one).

The MM states that the unknown function must be
expressed in terms of alinear combination of linearly
independent functions i,(s) called basis functions:

IS(S):iCnin(S) (13)

where ¢, are unknown coefficients that must be
determined and N is the number of basis functions. By
substituting Eqg. (13) into Eqg. (10) it results in one
equation with unknowns:

0s0s' |4r

—jk|r—r'|
02 }e ds
|r —r'| (14)

In order to get a consistent equation system we must find N linearly independent equations, which can be
obtained by taking the inner product of Eq. (14) with another set of N linearly independent functions wj,(s) chosen,

called weighting functions:

TR N

m= 1,2,"',N (15)

pe :|ejk|rr'| '

47z|r —r'|

Remembering the definition of inner product we can write the system Eqg. (15) in the form:

'[WmE'Sds: —iicnlwm;[in(s'){kzs. s'+@

ds'ds m=1,2,--,N (16)

pe :|ejk|rr'|

47z|r —r'|
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The system could be written in a matrix form:

17

where the elements Z;, , are calculated from:

. 2 e—]k|r—r |
Z :—ijwm_[in(s'){k%o s'+—}—ds'd8
we %,

S. 0s0s' | 4rx|r —r'|
(18)
and the elements v, are obtained from:
Vi = J.WmEISdS (19)

S

and c,, are, of course, the unknowns of the system. In
the literature the matrices of the systems Eqg. (18) have
special names. These are the following: [Zynl,
impedance matrix; (c,), current matrix; and (v,y,),
voltage matrix. Though their names remember us the
Kirchhoff’sequation of electric circuits, their real units
are Q, A/m and V/m, respectively. Nevertheless, if the
length unit istaken as unitary, the units of Eq. (17) are
then the same like the Kirchhoff’s ones. So, the solution
of Eq. (17) is written as:

(Cn ) = [Zmn ]_1(Vm) (20)

where some numerical technique could be used in
order to get the inverse matrix [Z,,] 1.

5. THE POINT MATCHING
SIMPLIFICATION TECHNIQUE

Aswe can see, each element of the system Eq. (17)
consists of a double integration over the Helmholtz's
operator and the Green’sfunction. Thiscould beavery
difficult task because the calculation time and
programming efforts increase with N; then we must
find some simplifications in order to reduce the
computational needs.

The first simplification is based upon the method
of moments’ technique known as Point Matching
Technique. This technique uses the Dirac’s delta
function asaweighting function. The properties of this
function are the following ones:

{1 if speds

Ié(s—%)ds: 0 elsewhere

4s

[ 1(s)(s s )as— {; ) 1 e

By applying Eq. (21) into Eq. (18) and Eqg. (19)
we get:

(21)
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pe efjk|r7r'|
ds
6363'}4;r|r —r'|

=S

j H ' 2 '
=1 k
Z. !ln(s){ Ses'+

v, =Eg(s=s,) o

Using Dirac’'s delta means that the boundary
electromagnetic conditions are being applied only at
discrete points on the wire's structure, exactly in the
places where the Dirac’s functions have their roots s,
Choosing the places where the roots must be located
is an important problem. In this paper, the roots will
be found in the axis of the wire, which means that we
try to find the electric field in this place. A second
simplification is to choose some basis function that
could smplify theintegration Eq. (22). The one chosen
is the pulse function that is defined by:

_ 1 if (h-14as<s<nas
n(s) {0 elsewhere (23

The pulse function divides the wire's structure into
N segments of length As', producing a stair
representation of the structure current. The size of each
segment must be freely chosen, however, in order to
keep the linear independence of each equation of Eq.
(17), usually the whole structure is equally divided, so
the length of each segment is AS=L/N. By applying
Eqg. (23) into Eq. (22) we get:

. nds > —jk|r—r‘|
Znn Z—L I |:kzs. Sl-f‘a—li|e—ldsI
OE (1 1) 45 0s0sS 47r|r -r |

S=Sn

(24)

6. THE KERNEL SIMPLIFICATION

Another simplification can be made. We notein Eq.
(24), that the integral operator deals with an iterated
differential operator; instead that the software makes
such operation numerically each time for the
impedance element, it is possible to develop the
derivative operation. By using Eq. (12) we find the
iterated derivative for Green's function:

. : kR OR
pe efij__i (1+ jkr)E™! s
0s0s R 0s R
2
(aR)(aR)[Z—kZRZ+2ijJ—R(1+ iR) R
g R 0s )\ 08 0S0s

R3
(25)
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As we can see, we must find the value of the multiple derivatives of R that appears in the last equation.

According to Egs. (11) and (12), we have:

e {[X(S)_X(S)]z+[y(5)—Y(S)]2+[z(s)—z(g)]2}:_%R.g

08 2RoS

R LK) X G +IY5)-y ()P +[45)- 2 (S)F =S Res (26
R 1[ox(s)ox(s) ay(s)ay(s) az(s)azs) Reg LR_ 1o 6,1 (Reg)Res)
@:E{ o os | o8 os | o8 }+ "R ROV

By substituting Eqg. (26) in Eq. (25) we have:

o eM LRt jkR)se s'—(Res')(Res)(3- k'R +3}kR)

0s0s' R R® 27)
By substituting Eq. (27) in Eq.(24) we get the simplified kernel of Pocklington’s equation:
csess 0 |€ —[R2(1+ jKR—K’R*)se s'—(3+3jkR-k’R*)(Re s)(Re s')} i
>t 08 | anR : : R &
So the elements of the impedance matrix are expressed for:
j nas e jkR J nAs' — kR
Zy=— R (1+ JKR—K°R*)ses =—ds [ (3+3jkR-K’RF)(Res)(Res)=——ds
Anwe (1) 45 R Anoe (44 R
S=S, S=S,
(29)
For the numerical integration of Eq. (29) the well known trapezoid rule could be used.
7. MODELLING THE SOURCE
Vi 0
Aswecan seein Eq. (22) the elements of the matrix v 0
are the value of theimpressed electric field in the roots .
of Dirac’sdelta. It means that we must know the value V=] =l (31)
of the impressed electric field all over the structure. Vm V1I4s
This could be as hard as knowing the current : :
distribution in the conductor. The solution isto choose Vi 0

some source which will produce some known
impressed electric field distribution on the conductor.
Although there are known sources used for modelling
the voltage matrix [Stutzman, op. cit], the most used,
is the delta gap generator; this source supposes that
the impressed electric field is different from zero only
in the place where it is connected. Mathematically:

V/ds if sedsy,

CR

where V is the value of the voltage fasor of the source
connected in the m segment of the structure. The delta
gap generator is a very idealized generator that could
not be obtained in practice, however its use simplifies
the solution and produces results with enough
accuracy. In this way, if the antenna uses only one
source connected to the mth segment, the voltage
matrix will be:

30
0 elsewhere (30)

The value of V is usualy taken like 1, however,
other choices could be made.

For considering impedances, we must apply the
Kirchhoff‘s voltage law. If the impedance Z is
connected to the mth segment, the potential difference
initsendsis:

Vi = Vi = ChZ (32
where c,,, is the current in such segment. In this way,
by substituting in Eq. (17) we have:

Z1y Zyp v Zim o AN |G Vi
Ly Zyp o Loy o Zon | Vo
Zml Zm2 me ZmN Cm Vi — sz
1ZN1 ZN2 0 Zam o Znn\Cn VN
(33)
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We can note that, by using the definition of matrix
product, the mth element of the voltage matrix can be
expressed like;

CZm+ - +CrZrm T T CNZNL =Vm — CmZ

C1Zmg + o+ C(Zyn + Z) + ..+ CNZN1 = Vim (34)
So, the Equation (33) can be written as:

(2 Zyy o Zym - N (G )
Zyy Zyp 0 Lom o Ion | G Vo
Zml ZmZ me +Z - ZmN Cm - Vim

1Zn1 Zn2 0 Znm  Znn SN VN

(39)

Therefore, we conclude that connecting an
impedance to the mth segment isthe same as adding its
value to the corresponding Z,,,,, matrix element.

8. CURRENT DISTRIBUTION IN A
STRAIGHT LINEAR DIPOLE

The dipole antennais very used in communication
systems and isthe most simple antenna ever made. The
first step isto find the equation that describes its axis.
If theantennaaxisliesinthe Z axis, asshownin Figure
3, its equation and its unit tangential vector is:

r(s) =sk s(s) =k (36)

The next step is to choose the parallel curve that
describesthe current filament. For simplicity we choose
the curve that lies over the YZ plane. Its equations are:

r's)=sk+a s(s)=k (37)
z
T
R
Fls | st
R
] | .
g

Fig. 3 Dipole antenna and its associated vectors

The dipoleisfeeding in its central segment, so the
voltage matrix will be:

0
(Vi) =|V 1 4s
0 (39)
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By using Egs. (36), (37) and (38) for a 24 length
dipole with the following characteristics:
f=1GHz N=41segments L=21
a=0.00541 V=1volt
the C++ program we developed produces the current
distribution shown in Figure 4.
Fig. 4 Currentdistribution for a24 length dipole antenna
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13 5 F o8 N 13 15 1719 oxn @k oI oI oMo on FH W oM oH

We can note that the current’s magnitude at the
21t segment is 2.04099 mA, so the input impedance
is

_ [\/21| _ 1Vv
|l21] 2.04099 mA

|Zin| =489.95Q2  (39)

The results are consistent with the expected ones
cited by literature [Balanis, op. cit.].

9. CURRENT DISTRIBUTION IN AN
CIRCULAR LOOPANTENNA

Following the same procedure for the circular loop
antenna, we must find the vectoria equation for the
axis and the filament curve. If the antenna has aradius
A, asin Figure 5, then the equations are:

r(s)= Acos(%ji + Asin(%Jj
s(s) = —sin(%ji + cos(%} i

Among the possible parallel curves we choose the
simpler for the current filament, which is the one
located at a distance a from the axis of the antenng;
then the equations are:

r'(s)= Acos(%)i + Asin(iAlJ j +ak
s'(s'):-sin(%ji +C°S(%jj (41)

Itisclear that the parallel curve hasthe samelength
as the axis curve.

(40)
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X

Fig. 5 Circular loop antenna and its associated vectors

The antenna is feeding in its ends, so the voltage
matrix will be:

V /24s
0
0 (42)
0

-V /24s

By using Egs. (40), (41) and (42) for a 31 length
circumference loop antenna with the following
characteristics:

f=1GHz N= 41segments 27A= 31

a=0.0051 V=1volt
the C++ program gives the curve shown in Figure 6.
By looking at Figure 6 we can note that the current’s
magnitude in the ends has the same vaue, equal to
0.8015937 mA, so the input impedance is:

2=l LY

=~ =12475147Q (43)
|la] 0.8015937 mA

I8
1. 20E-03
1.00E-03
S.00E-0
G.00E-04
A00E-04 1

20E-04

Q.00E+00 LI I e s e e B
13 5 7 9 1113 15 17 19 31 23 25 27 20 31 3 35 37 30 oM

Fig. 6 Currentdistribution for a3A length circumferenceloop
antenna

10. CONCLUSION

This paper presents the general procedure for
getting the current distribution in an arbitrary shaped
wire. Itsgeometry has been taken into account in order
to get a good representation of the wire through the
relations among the vectors that describe the whole
wire. There is no doubt that Pocklington’s equation
describes correctly the electromagnetic problem, so
that the results have as good accuracy as the size of
the programming efforts. The simplification of the
integral equation’s kernel brings the computational
simplification, reducing the computation time and the
source code of the program. For any problem, the
engineer just needs to specify the geometry of the
antenna, the source and the load impedance.

In this first effort, the program only calculates the
current distribution, but we are working to get the
current distribution graph and the radiation partner
plot, and a mathematical syntax analyzer for
interpreting the vectoria equations of the antenna.
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POJEDNOSTAVLJENJE POCKLINGTONOVE INTEGRALNE JEDNADZBE ZA
PROIZVOLJNO SAVIJENE TANKE ZICE

SAZETAK

Pojednostavijenje podskupa Pochlingtonove jednadzbe kao i problem software-ske primjene proizvoljno oblikovane
tanke Zice opisuje se u ovom radu da bi se dobilo korisno inzenjersko rjesenje antene za odredivanje distribucije
struje u proizvoljno oblikovanim tankim Zicama. Software se bazira na vrlo koristenoj metodi momenta a programiran
jeujeziku C++. Ovaj rad se bavi pojednostavijenjem podskupa Pochlingtonove integralno-diferencijalne jednadzbe
da bi racunalno bila sto jednostavnija (djelotvornija). Dobili smo integralnu jednadzbu koja ne smanjuje samo trud
programiranja vec i vrijeme utroSeno na racunanje. Ova integralna jednadzba nije smisljena samo za proizvoljno
oblikovane tanke Zice, ve¢ i za slucaj ravnih tankih Zica.

Kljucéne rijeci: Metoda momenata, Pocklingtonova jednadzba, tehnika pogadanja tocke, distribucija struje, tanka
Zica, antena.
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