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SUMMARY
The Spectral Domain Method (SDM) is a powerful technique to analyze planar microwave circuits. But available

conventional programming languages used in the literature do not give enough speed to use the Spectral Domain
Method to develop package analysis program. The functional approach to Spectral Domain Method gives a high
level of programming and a variety of features which help to build elegant, powerful and general libraries of
functions.
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1. INTRODUCTION

For the last two decades, open microstrip structures
have received special attention from the
electromagnetic community because of their potential
applications in the design of new devices and
components. Meanwhile, high-speed computer has
influenced the computation of electromagnetic
problem to the point that most practical computations
of the fields can be solved numerically by the computer.
The reason why most of the analysis of the devices
and components can be achieved numerically but is
almost impossible to be solved analytically. A lot of
efforts have still been done on improving numerical
techniques because complexity of the problems always
overstretch the speed of the processors. Moreover the
operating frequency raised up for more available
bandwidth, full-wave techniques which require more
computer power and resources must be used.

A number of numerical full-wave techniques are
reported in the literature for the analysis of microstrip

antennas [1], resonators [2] and circuits [3]. All
techniques reported in the literature have been either
written by conventional programming languages such
as Pascal and C or developed by using commercial
analysis tools such as Matlab. In the author knowledge
none of the papers can explore the idea of the way of
programming such as functional or logic. This
contribution presents a functional programming
approach to Spectral Domain Method (SDM) which is
one of the full wave numerical technique and widely
used for the analysis of the microwave and millimeter
wave devices and components. With this approach,
Spectral Domain Method have gained a high level of
programming giving its user a variety of features which
help to build elegant yet powerfully and general
libraries of functions. Numerical results have been also
given and compared with published data to show the
accuracy of the re-written Spectral Domain Method by
Haskel which widely used functional programming
language instead of conventional language such as
Pascal used in Ref. [3].
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2. FUNCTIONAL PROGRAMMING

2.1 Introduction

This section offers the readers the idea of the
functional programming with variety of the general
examples instead of the examples in electromagnetics
to be understood clearly. Central part of functional
programming is the idea of function, which computes
a result that depends on the values of its inputs. An
example of the power and generality of the language
is the “map” function, which is used to transform every
element of a list of objects in a specified way. For
example, map can be used to double all the numbers
in a sequence of numbers or invert the colors in each
picture appearing in a list of pictures [4].

A simple illustration is the function “add” which
adds two integers and doubles their sum. Its definition
is:

add x y = 2*(x+y)
where x and y are the inputs and 2*(x+y) is the result.

The model of functional programming is simple
and clean; to work out the value of expression like:

? 3+add 4 5
~ 3+2* (4+5)
~ ....
~ 21
This is how a computer would work out the value

of expression, but it is also possible to do exactly the
same calculation using pencil and paper, making
transparent the implementation mechanism [4].

2.2 What is function?

A function is something which we can picture as a
black box with some inputs and an output. Thus the
function gives an output value which depends upon
the input value. A simple example of a function is
addition, + over numbers. Given input values 12 and
34 the corresponding output will be 46.

2.3 Program structure

Programming is a form of problem solving. A
program can be thought of as being developed in three
stages. The first stage is specification, in which the
initial informal requirements for the program are
sharpened up so that the problem to be solved by the
program is specified as precisely as possible [5].

The second stage is design, in which the problem
to be solved is broken down into subproblems.
Program components which solve the subproblems can
be fitted together to solve the main problem.

The third stage is implementation in which the
program components are written, debugged and fitted
together.

A simple Haskell program:
--Find the square of an integer
square :: Integer ->Integer
square n = n*n
The first line of the program is a comment. In

Haskell, any line beginning with “-” is a comment. The
second line is a declaration. In Haskell, a declaration
consists of a function name followed by the “::”
symbol, followed by the type of each argument and
the type of the result, separated by “- >” symbols. Type
names begin with capital letters, whereas function
names begin with lower case letters. The third line is a
definition of the square function.

2.4 Data structure

Haskell has a mechanism for introducing new
record-like data types using the data keyword. If a user
wants to define a new type to hold information about a
person for the purpose of storing personnel record in a
database. This can be done in Haskell with a definition:

Data Personnel = Person String Integer Bool
This innocent looking definition does several things

at the same time. First, it introduces a new type
Personnel, second it introduces a new function called
Person. Third, it implicitly specifies the type of the new
function. Fourth, it provides a method called pattern
matching for unpacking a personnel record and
extracting its fields. The function Person is a special
kind of function called a constructor. The name of the
constructor always begin with a capital letter. A new
mini database can be created from these definition:

people :: [Personnel]
people = [Person “Sam” 25 True, Person “Merry”

40 False
In this database the sex of a person as a boolean

value is represented.
We can now build records, but as things stand so

far we have no way to unpack them again to get at
their fields. One way to do this would have a collection
of functions for extracting the individual fields, like
the head and tail functions which can be used to extract
the two fields of a non-empty list.

However, Haskell provides a different mechanism
called pattern-matching which is very convenient and
expressive. A constructor such as Person can be re-used
to break a record down into its fields, as well as to
build new records up. The way this works is that the
constructor is used on the left hand side of a definition.
For example testing a person is an adult or not:

--Test whether a person is an adult
adult :: Personnel ->Bool
adult (Person s n b) = (n>=18)
The idea is that (Person s n b) acts as a pattern,

with unknowns s, n and b when the adult function is
applied to an argument expression is evaluated and
then compared against the pattern. The pattern
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matching technique allows you to extract all the fields
at once and make them all available:

-- Exctract the fields from a personnel record
name :: Personnel -> String
name (Person s n b) = s
age :: Personnel -> Integer
age = (Person s n b) = n
sex :: Person -> Bool
sex (Person s n b) = b
A further feature of data definitions in Haskell is the

use of alternatives. For example to carry out a search to
find out where an item appears in a list. It is tempting to
use some values such as (-1) which can not represent a
position in the list to mean that the search fails. This
might lead you to a definition such as:

search :: Eq a => a -> [a] -> Integer
search x xs =
if null xs then -1 else
if x == head xs then 0 else

1+search * (tail xs)
In this function the use of the arithmetic result is

not a good solution. We want two alternatives; if the
search succeeds, we want to return the position of the
item. If it fails, we just want to return the fact of failure:

-- Introduce a new type Answer with to represent
-- the result of a search for a position
data Answer = Yes Integer -> No

with the “Answer” type, there are two constructors.
The “Yes” constructor builds a record with just one
field, which is an integer, the “No” constructor builds
a record with no fields at all. If the search example is -
rewrite:

search :: Eq a => a -> [a] -> Answer
search x xs =
if null xs then No else
if x == head xs then Yes 0 else
increment (search x (tail xs))
increment :: Answer -> Answer
increment (Yes n) = Yes (n+1)
increment No = No
The constant constructor and alternatives define

enumerated types.
--Introduce a new type Sex to represent the sex of

person
data Sex = Female⏐Male
Another example of pattern-matching is:
-- data Day = Mon⏐Tue⏐Wed⏐Tru⏐Fri⏐Sat⏐Sun
-- find the next day
next :: Day -> Day
next Mon = Tue
next Tue = Wed
next Wed = Thu
next Thu = Fri
next Fri = Sat
next Sat = Sun
next Sun = Mon
In some applications, the result is the same for many

of the cases, and it is boring to write them all down.

There is a default mechanism for catching all remaining
cases. For example:

-- Test whether a day is a weekend day.
weekend Sat = True
weekend Sun = True
weekend d = False
When dealing with the problem of searching for the

position of an item in a list, we introduce the answer
type defined by:

data Answer = Yes Integer ⏐ No
Haskell deals with this by allowing types to be

polymorphic, and then the constructors they introduce
can also be polymorphic. For example the Answer type
can be generalized:

data Answer a = Yes a ⏐ No
The word “Answer” is now a type constructor, it is

a function which takes a type as its argument and
constructs a new type as its results. The original search
and increments functions would now have to change
their declarations to specify that they act on one
particular type of answer, namely Answer Integer:

-- search for an item in a list
search :: Eq a => a -> [a] -> Answer Integer
..........
-- Check a result and add one if it succeeded
increment :: Answer Integer -> Answer Integer
increment (Yes n) = Yes (n+1)
increment No = No
Polymorphic data types once more increase the

expressive power and generality of the language,
allowing facilities to be used in a wide variety of
contexts.

One of the aims in the design of Haskell was to
provide tools for the programmers which are as
powerful as the tools needed to implement the standard
data types, functions and notations.

-- Standard type : boolean values for testing and
choosing

data Bool = False⏐True
This explains why the boolean constants start with

capital letters; they are constructors. It also means that
they can be used for pattern-matching. For example:

xor :: Bool -> Bool -> Bool
xor False False = False
xor False True = True
xor True True = True
xor True True = False
On Integer and Char data types can be used pattern-

matching for example:
-- Test the characters is blank or not
isSpace :: Char -> Bool
isSpace ‘\n’= True
isSpace c = False
-- Find the factorial of an integer
fact :: Integer -> Integer
fact 0 = 1
fact n = n*f act(n-1)
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Pattern matching is used on the list:
myLength :: [a] -> Integer
myLength [ ] = 0
myLength (x:xs) = 1+myLength xs
As well as introducing new data types, it is also

possible to define type synonyms. These have no other
effect than to provide more readable abbreviations for
existing types, to help make your own type declarations
more readable:

type Position = (Integer, Integer)
This allows you to use pairs of integers as positions,

which looks more natural then using a new data type
for positions. At the same time, your own data
declarations can use the Position type freely to
document where pairs are being used as positions.

Type synonyms can be polymorphic, but they can
not be recursive. There is one built-in synonym which
have been used frequently; String is a synonym for
“[Char]”

-- Standard type synonym : String
type String = [Char]

2.5 Recursion

The idea behind recursion is that a problem often
breaks down into subproblems which are similar to the
original. The simplest example is the loop, where a
problem breaks down into a sequence of simpler
subproblems of the same kind.

For example, take the problem of adding up a list
of numbers. There is a standard function sum for doing
this, and we know it can be implemented using folding.
However, suppose we want to implement it directly.

When solving list problems the most obvious
approach is usually to run along the list dealing with
the items one by one. In the summing problem it is
usual to run along the list which has been dealt with,
the subproblem left it to add up the remaining list of
items and so on:

subProblems :
mySum [5,4,3,2,1]
mySum [4,3,2]
mySum [3,2]
mySum [2]
mySum []
An example of a recursion:
mySum :: [Integer] ->[Integer]
mySum ns =
if null ns then 0 else

head ns + mySum (tail ns)

2.6 Modules

Using modules to structure a large program has a
number of advantages. These can be itemized as
follows:

−−−−− Parts of the system can be built separately from
each other;

−−−−− Part of a system can be compiled separately; this is
a great advantage for a system of any complexity;

−−−−− Libraries of components can be reused, by
importing the appropriate modules containing them.
In the definition of Haskell, there is no

identification between modules and files. Nevertheless,
we chose here to write one module per file.

3. SPECTRAL DOMAIN METHOD

Although it would be impossible to include all works
concerning the Spectral Domain Method (SDM), even
when there is a restricting interest to implementations
for planar microwave circuits, it is hoped to present a
guide to the historical background which inspired the
development of this contribution.

The analysis in the Fourier transform domain was
first introduced by Yamashita and Mittra [6] in 1968
for the computation of the characteristic impedance
and the phase velocity of an open microstrip. It was
based on a quasi-TEM approximation which is a low
frequency simplification that neglects the longitudinal
electric and magnetic fields supported by the
microstrip.

Increasing the operating frequency has led
numerical techniques towards full-wave analysis,
because the effects such as coupling due to surface
waves and discontinuities become significant at high
frequencies. Denlinger [7] solved the integral equation
using the Fourier transform technique. The solution by
his method, however, is strongly dependent on the
assumed current distribution on the strip. To avoid this
difficulty and to allow systematic improvements of the
solution for the current components to a desired degree
of accuracy, Itoh and Mittra [8] introduced the Spectral
Domain Approach, otherwise called the Spectral
Domain Method in 1973 for open microstrip lines and
enhanced for shielded microstrip lines in Ref. [9]. The
unknown current distribution on the strip is defined as
a set of known current basis functions with unknown
coefficients and Galerkin’s Procedure is used to yield
a homogeneous system of equations to determine the
propagation constant and the amplitude of current
distribution.

The application of the method to a general three-
dimensional structure required the introduction of a
more advanced formulation. The move in this direction
is presented by Itoh [10] with the modelling of a
microstrip resonator. In 1980, Itoh introduced a
formulation process called the immitance approach
[11] for easy formulation of multilayer structures. This
approach is based on the transverse equivalent circuit
concept as applied in the spectral domain. An
application of the immitance approach was presented
by Itoh and Menzel [12] which allowed the analysis of
planar resonator antennas for the complex resonant
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frequency. The historical progress of the Spectral
Domain Method (SDM) until 1984 was summarized
by Jansen [13].

A full-wave analysis of microstrip open-end and
gap discontinuities in SDM was presented by Jackson
[14]. In his analysis, the results were presented for the
reflection and transmission coefficients derived with a
source formulation of SDM. A time-harmonic
electromagnetic field analysis method related to SDM,
which allows the modelling of shielded arbitrary
shaped planar discontinuities, was presented by Rautio
and Harrington [15]. Similarly, Jackson [16]
formulated SDM for open irregular microwave circuit
discontinuities with semi infinite feedlines, although
Jackson calls his technique as Finite Element Method.

A generalised spectral domain Green’s function
was described by Das and Pozar [17] in terms of
suitable components of the vector electric and
magnetic potentials. The works by Railton et al who
described the asymptotic form of the Green’s function
in Ref. [18] and re-arranged the characteristic equation
by making use of its asymptotic properties in 1992 in
Ref. [19] are found out by the author to be particularly
significant. Precalculated current basis functions have
been used by Meade [20] to reduce the number of
current basis functions required and to include a priori
knowledge of the current distribution at discontinuities.
It can be noticed that the historical development of
SDM has been summarized until 1994 which is the
starting date of this project. The existing SDM has
been improved by the enhancements introduced in this

project. Meanwhile Tsai et al [21] has developed the
Mixed Potential Integral Equation Method (MPIEM) in
the spectral domain and Kuo et al [22] has formulated
the hybrid-mode Spectral Domain Approach to
investigate the dispersion nature of multiple coupled
microstrip lines with arbitrary metallization thickness.
General analytical solutions of static Green’s functions
for shielded and arbitrarily opened multilayered media
have been presented by Li et al in 1997.

Numerous authors have contributed to the
development of SDM. Balik introduced compensation
function to remedy the deficiency, presented in Ref.
[16,] and to model correctly the excitation over the
whole microwave frequency region. Kaichida et al.,
Ref. [23], introduced a novel technique in SDM to
evaluate the loss in the transmission line at millimeter
wave frequency.

3.1 General formulation

A general formulation of the Spectral Domain
Method for the passive, open planar microwave
circuits of interest is presented. The following is based
on references quoted above. Before formulating this
process, the types of equations obtained by SDM and
those obtained by a typical space domain formulation
are compared. In the space domain, a microwave
circuit can be analyzed by solving the coupled integral
equation given as:

( ) ( ) ( ) ( )[ ] ( )∫ ∫ =−−+−− z,xE'dz'dx'z,'xJ'zz,y,'xxG'z,'xJ'zz,y,'xxG zxzxzzz

( ) ( ) ( ) ( )[ ] ( )∫ ∫ =−−+−− z,xE'dz'dx'z,'xJ'zz,y,'xxG'z,'xJ'zz,y,'xxG xxxxzxz

(1)

where:
Gst is the dyadic Green’s function (dependent on frequency, ω),
Es is the electric field at the air-dielectric interface,
Js is the current distribution on the metallization.
Equation (1) can be solved if Gst, etc., are given. The Green’s functions Gzz, etc., however, are not available in

closed form for the nonhomogeneous structures. The following algebraic Eq. (2), instead of the coupled integral
Eq. (1), are obtained in the spectral domain formulation. These equations are Fourier transforms of the coupled
integral Eq. (1):

Gzz(kx,d,kz,w)Jz(kx,kz)+Gzx(kx,d,kz,w)Jx(kx,kz)=Ez (kx,d,kz)
Gxz(kx,d,kz,w)Jz(kx,kz)+Gxx(kx,d,kz,w)Jx(kx,kz)=Ex(kx d,kz)

(2)

where the bold quantities are the Fourier transform of corresponding quantities and d is the thickness of the
dielectric substrate. The two dimensional Fourier transform is defined as:

( ) ( ) ( )∫ ∫
∞

∞−

∞
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Equation (2) can also be written in a matrix form as follows:
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where:
G(kx,d,kz,ω) is the dyadic Green’s function in the

spectral domain,
Jz is the Fourier transform of the z-directed surface

current density,
Jx is the Fourier transform of the x-directed surface

current density,
E is the Fourier transform of the electric field.
Spectral Fourier transforms have been taken in the

x and z directions, therefore the dielectric must extend
to infinity in both the x and z directions. This is a
disadvantage of the SDM formulation, but a layered
dielectric structure is considered to be general enough
to fit a wide variety of applications.

Derivations of the spectral domain forms of the
Green’s functions (Gzz, etc. in Eqs. (2) and (4)) are
widely available in the literature for single dielectric
layer [8, 9].

Equations (2) and (4) contain four unknowns which
are Jz, Jx, Ez and Ex. At least two unknowns must be
eliminated to solve the equations. The Method of
Moments [24] is applied to eliminate the Fourier
transformed electric fields from the formulation. The
first step to the solution is to expand the unknown
surface current as a set of known basis functions with
unknown coefficients:

( ) ( ) z,xsk,kak,k
N

1n
zxsnsnzxs ==∑

=

JJ (5)

where Jsn is the nth basis function with coefficient asn.
The basis functions (Jsn) must be chosen to

approximate the unknown current distribution on the
metallization of the circuit. The choice of basis
functions is crucial to the efficiency of the technique.
If they are not chosen to represent the actual current
distribution closely, then a large number of functions
will be required for convergence.

To eliminate the Fourier transformed electric fields
(Ez, Ex in Eq. (4)), a set of weighting functions (wt)
are required. The weighting functions (wt) are chosen
to be identical to the set of current basis functions. Two
more weighting functions are also required for the
problem with excitation.

After application of the Method of Moments the
Eq. (4) becomes:
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where the elements of the impedance matrix Z are given
by:

( ) ( ) ( )

z,xt,s
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=
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∞

∞−
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and the excitation vector is given by:

( ) ( ) z,xtdkdkk,kk,k zxzxtzxtt == ∫ ∫
∞

∞−

∞

∞−

EwV (8)

By solving Eq. (6) for the unknown current
coefficients, the unknown current distribution of the
metallization of the circuit can be determined. For the
sourceless eigenvalue problem, the excitation vector
(Vt) is identically zero. This can be verified by using
Parseval’s theorem, see page 341 in Ref. [25].

Note that the method is formulated for spot
frequencies, that is the final matrix equation is
repeatedly solved for each frequency of interest. Thus
the minimization of the order of the matrix equation is
very important for the efficiency of the technique. For
the Method of Moments, the order of the matrix is
twice the total number of basis functions plus two,
therefore the critical choice of the basis functions is
highlighted.

4. FUNCTIONAL APPROACH TO SDM

4.1 Introduction

In this paper, five fundemantal modules are
rewritten by using functional approach instead of
conventional programming language such as Pascal to
show the applicability of the approach. All of the
modules are described in the sections below.

4.2 Input functions

In this module the input parameters are taken and
passed to other modules. Operating frequency,
substrate layer parameters, kx, kz which are Fourier
transform variables in x and z directions respectively,
n which is number of layers, lx and lz which are
dimensions of rooftop function are used as input
values. The rewritten module becomes as follows:

type Ind = Double
type D = Double
type M = Double
type E = Double
type Layer = [(Ind,D,M,E)
type OneLayer = (Ind,D,M,E)
type Kx = Complex Double
type Kz = Complex Double
type Lx = Double
w :: Double
w = 2*3.1456*saveF
saveLayer :: IO - Layer
saveKx :: IO - Kx
saveKz :: IO - Kz
saveLx :: IO - Lx
saveN :: IO - Double
saveF :: IO - Double
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nx=saveKx/sgrt(saveKx*saveKx+saveKz*saveKz)
nz=saveKz/sgrt(saveKx*saveKx+saveKz*saveKz)

4.3 Impedance functions

In this module the Green Function (given in Eq.
(2)) in the spectral domain has been computed by
using a functional approach. Mathematical formulation
of the Green function can be found in the literature
such as Ref. [24, Chapter 4].

findlayer :: Ind -> OneLayer
findlayer indx = head [(ind,d,m,e) | (ind,d,m,e) <-

saveLayer , ind==indx]
layparD :: OneLayer -> D
layparD (ind,d,m,e) = d
layparM :: OneLayer -> M
layparM (ind,d,m,e) = m
layparE :: OneLayer -> E
layparE (ind,d,m,e) = e
ztm :: Double -> Complex Double
ztm i = (gama i)/(w*(layparE(findlayer i)):+0)
gama :: Double -> Complex Double
gama i = sgrt((saveKz*saveKz)+(saveKx*saveKx)-

((w*w*(layparM (findlayer i))*(layparE(findlayer
i))):+0))

zte :: Double -> Complex Double
zte i = (w*(layparM(findlayer i)):+0) /gama i
zelist :: Double -> (Complex Double,Double)
zelist n = ((zeN n) ,(n-1) )
zeN :: Double -> Complex Double
zeN n = ztm n / atanh((gama n)*((layparD

(findlayer n)):+0))
zhN :: Double -> Complex Double
zhN n = zte n / atanh((gama n)*((layparD

(findlayer n)):+0))
zhlist :: Double -> (Complex Double,Double)
zhlist n = ((zhN n) ,(n-1) )
coth :: Double -> Complex Double
coth i = atanh((gama i)*((layparD (findlayer

i)):+0))
ze2 :: (Complex Double,Double) -> (Complex

Double,Double)
ze2 (n,2) = (n,2)
ze2 (n,s) =
ze2
(
(
(ztm s * (n*(coth s ))+ztm s)/
(ztm s *(coth s)+n)
)
, (s-1)
)
zh2 :: (Complex Double,Double) -> (Complex

Double,Double)
zh2 (n,2) = (n,2)
zh2 (n,s) =
zh2
(

(
(zte s * (n*(coth s ))+zte s)/
(zte s *(coth s)+n)
)
, (s-1)
)
ze1 = ztm 1
zh1 = zte 1
ze :: Double -> Complex Double
ze n =
1/
(
((1:+0)/ze1)
+
((1:+0)/fst((ze2 (zelist n))))
)
zh :: Double -> Complex Double
zh n=
1/
(
((1:+0)/zh1)
+
((1:+0)/fst((zh2 (zelist n))))
)
gzz n = nz*nz*(ze n) + nx*nx*(zh n)
gzx n = nx*nz*(-(ze n)+(zh n))
gxz n = gzx n
gxx n = nx*nx*(ze n) + nz*nz*(zh n)

4.4 Current functions

In this module current basis functions, which are
roottop functions [24, Chapter 3], are computed by a
functional approach.

jz :: Double ->Complex Double
jz n = (2/saveKx)* sin(saveKx*(saveLx:+0))*

exp(saveKx*(n*(saveLx):+0))
jx :: Double -> Complex Double
jx n = (2/(saveKx*saveKx))*(1-cos(saveKx*

(saveLx:+10)*exp(saveKx*(n*(saveLx):+0))
makeNpar :: Double -> Double -> [Double]
makeNpar 0 n = []
makeNpar n a =(-((n-1)-a)):(makeNpar (n-1) a)
jzn :: Double -> Double -> [Complex Double]
jzn n a = map jz (makeNpar n a)
jxn :: Double -> Double -> [Complex Double]
jxn n a = map jx (makeNpar n a)
mux :: [Complex Double] -> [(Complex Double)]
mux xs = concat (map (fun xs) xs)
fun :: [Complex Double] ->Complex Double->

[(Complex Double)]
fun as a = [(a*b)I b<-as]

4.5 Integral functions

This module is used to calculate the each element
of the impedance matrix given in Eq. (7).
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makeMat :: Integer -> Integer-> Double ->
[(Complex Double)] -> [(Complex Double)]

makeMat a c k [] = []
makeMat a c k (n:ns)
⏐(a>O &&a<=(1*c)) =(n*(gzz k)):(makeMat

(a+1) c k ns)
⏐(a>(1*c)&& a<=(2*c))  (n*(gzx k)):(makeMat

(a+1) c k ns)
⏐(a>(2*c)&& a<=(3*c))  (n*(gzz k)):(makeMat

(a+1) c k ns)
⏐(a>(3*c)&& a<=(4*c))  (n*(gzx k)):(makeMat

(a+1) c k ns)
⏐(a>(4*c)&& a<=(5*c))  (n*(gxz k)):(makeMat

(a+1) c k ns)
⏐(a>(5*c)&& a<=(6*c))  (n*(gxx k)):(makeMat

(a+1) c k ns)
⏐(a>(6*c)&& a<=(7*c))  (n*(gxz k)):(makeMat

(a+1) c k ns)
⏐(a>(7*c)&& a<=(8*c))  (n*(gxx k)):(makeMat

(a+1) c k ns)

5. NUMERICAL RESULTS

These sections below include several analyzed
example microwave structures to show the accuracy
of the re-written program using Spectral Domain
Method in Haskell which is one of the functional
programming languages. Total program code has
been optimized 55% compared to Pascal code. As a
result runtime has been reduced 50% compared to
Pascal code run on the computer. The computer has
Intel P4 2.4 GHz with 1 GB RD RAM. The operating
system is Redhat Linux 8.0.

5.1 Simple low-pass filter

Measurement results are available for the
microstrip low-pass filter [26] shown in Figure 1. The
dimensions and parameters of the dielectric substrate
are given in Figure 1.

Fig. 2  Plot of S-parameters’ magnitude for the low-pass filter

5.2 Edge-coupled filter

In order to further prove the accuracy of the
rewritten program, the analysis of the microstrip edge-
coupled filter, shown in Figure 6 in Ref. [19], is
considered. The measurements were performed by
Shibata et al [27] for this filter.

As it can be seen in Figure 3, there is a clear
agreement between the newly written program and
measured data.

Fig. 1  Low pass filter detail

The S-parameter results are plotted in Figure 2
where it can be seen that the computed results and
measurements are in a very good agreement.

Fig. 3  Magnitude of  S-parameters for the edge-coupled filter

6. CONCLUSION

We have shown that realistically complex microstrip
circuits can be rigorously analyzed by rewritten
program which uses a functional programming
approach to Spectral Domain Method. The accuracy
of the program is obvious. The code size and runtime
reduction are 55% and 50% recpectively on ordinary
computers. By this approach a model which retains
the accuracy of the full-wave anaylsis technique as
well as the speed of the package programs has been
introduced.



B. Sevinc, H.H. Balik: A new approach to spectral domain method: Functional programming

ENGINEERING MODELLING 17 (2004) 3-4, 77-86 85

7. REFERENCES

[1] A. Gharsallah, A. Mami, R. Douma, A. Gharbi
and H. Baudrand, Analysis of microstrip antenna
with fractal multilayer substrate using iterative
method, International Journal of RF and
Microwave Computer-Aided Engineering, Vol.
11, pp. 212-218, 2001.

[2] T. Fukusako and M. Tsutsumi, Microstrip
superconducting resonators loaded with yttrium
iron garnet single crystals, Eletronics and
Communication in Japan, Vol. 81, No. 5, pp. 44-
50, 1998.

[3] H.H. Balik and C.J. Railton, New compensation
functions for efficient excitation of open planar
microwave circuits in SDM, IEEE Transaction
on Microwave Theory and Technique, Vol. 47,
pp. 106-108, January 1999.

[4] S. Thomson, The Craft of Functional
Programming, 2nd Edition, Addison Wesley
Press, 1999.

[5] I. Holyer, Functional Programming with Haskel,
Bristol University Press, 1996.

[6] E. Yamashita and R. Mittra, Variational method
for the analysis of microstrip lines, IEEE
Transaction on Microwave Theory and
Technique, Vol. 16, pp. 251-255, April 1968.

[7] E.J. Denlinger, A frequency dependent solution
for microstrip transmission lines, IEEE
Transaction on Microwave Theory and
Technique, Vol. 19, pp. 30-39, January 1971.

[8] T. Itoh and R. Mittra, Spectral domain approach
for calculating the dispersion characteristics of
microstrip lines, IEEE Transaction on Microwave
Theory and Technique, pp. 496-499, July 1973.

[9] T. Itoh and R. Mittra, A technique for computing
dispersion characteristics of shielded microstrip
lines, IEEE Transaction on Microwave Theory
and Technique, pp. 896-898, October 1974.

[10] T. Itoh, Analysis of microstrip resonators, IEEE
Transaction on Microwave Theory and
Technique, Vol. 22, pp. 946-952, November
1974.

[11] T. Itoh, Spectral domain immitance approach for
dispersion characteristics of generalized printed
transmission lines, IEEE Transaction on
Microwave Theory and Technique, Vol. 28, pp.
733-736, July 1980.

[12] T. Itoh and W. Menzel, A full-wave analysis
method for open microstrip structures, IEEE
Transactions on Antennas and Propagation, Vol.
29, pp. 63-67, January 1981.

[13] R.H. Jansen, The spectral domain approach for
microwave integrated circuits, IEEE Transaction
on Microwave Theory and Technique, Vol. 33, pp.
1043-1056, October 1985.

[14] R.W. Jackson and D.M. Pozar, Full-wave analysis
of microstrip open-end and gap discontinuities,
IEEE Transaction on Microwave Theory and
Technique, Vol. 33, pp. 1036-1042, October 1985.

[15] J.C. Rautio and R.F. Harrington, An
electromagnetic time harmonic analysis of
shielded microstrip circuits, IEEE Transaction on
Microwave Theory and Technique, Vol. 35, pp.
726-729, August 1987.

[16] R.W. Jackson, Full-wave, finite element analysis
of irregular microstrip discontinuities, IEEE
Transaction on Microwave Theory and
Technique, Vol. 37, pp. 81-89, January 1989.

[17] N.K. Das and D.M. Pozar, A generalised spectral
domain Green’s function for multilayer dielectric
substrates with application to multilayer
transmission lines, IEEE Transaction on
Microwave Theory and Technique, Vol. 35, pp.
326-335, March 1987.

[18] C.J. Railton and T. Rozzi, Complex modes in
boxed microstrip, IEEE Transaction on
Microwave Theory and Technique, Vol. 36, pp.
865-873, May 1988.

[19] C.J. Railton and S.A. Meade, Fast rigorous
analysis of shielded planar filters, IEEE
Transaction on Microwave Theory and
Technique, Vol. 40, pp. 978-985, May 1992.

[20] S.A. Meade and C.J. Railton, Efficient
implementation of the spectral domain method
including precalculated corner basis functions,
IEEE Transaction on Microwave Theory and
Technique, Vol. 42, pp. 1678-1684, September
1994.

[21] M.-J. Tsai, D. Flaviis, O. Fordham, and N.G.
Alexopoulos, Modelling planar arbitrary shaped
microstrip elements in multilayered media, IEEE
Transaction on Microwave Theory and
Technique, Vol. 45, pp. 330-337, March 1997.

[22] J. Kuo and T. Itoh, Hybrid-mode computation of
propagation and attenuation characteristic of
parallel coupled microstrips with finite
metalisation thickness, IEEE Transaction on
Microwave Theory and Technique, Vol. 45, pp.
274-280, February 1997.

[23] T. Kaichida, N. Ishii, M. Yamamoto, T. Nishimura
and K. Itoh, Analysis of dual frequency operating
microstrip antenna fed by coplanar waveguide
using method of moments in spectral
communications in Japan, Vol. 84, No. 3, pp. 21-
28, 2001.

[24] H.H. Balik, Passive open planar circuit analysis
by enhanced spectral domain method, PhD.
Thesis, University of Bristol, December 1997.

[25] T. Itoh, Numerical Techniques for Microwave and
Millimeter-Wave Passive Structures, John Willey
and Sons, 1989.



B. Sevinc, H.H. Balik: A new approach to spectral domain method: Functional programming

86 ENGINEERING MODELLING 17 (2004) 3-4, 77-86

NOVI PRISTUP METODI PRIJENOSNOG PODRU^JA: FUNKCIONALNO
PROGRAMIRANJE

SA@ETAK

Metoda prijenosnog podru~ja predstavlja sna`nu tehniku za analizu ravninskih mikrovalnih strujnih krugova.
Dostupni konvencionalni jezici programiranja koji se koriste u literaturi ne omogu}avaju dovoljno brzo korištenje
Metode prijenosnog podru~ja da se razvije analiza programskog  paketa. Funkcionalni pristup Metodi prijenosnog
podru~ja omogu}ava visoku razinu programiranja kao i višestruke mogu}nosti koje poma`u da se izgrade elegantne,
dapa~e jake i op}enite knji`nice funkcija.
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