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ABSTRACT
This article presents a new approach for building robust portfolios
based on stochastic efficiency analysis, by using the Chance
Constrained Data Envelopment Analysis (CCDEA) model and peri-
ods of market downturn, i.e. worst-state market. The model is able
to accommodate investors who exhibit different risk behaviors and
the empirical analysis is done on assets traded on the Brazil Stock
Exchange, B3 (Brasil, Bolsa, Balc~ao). The results confirm that the
proposed model achieved portfolios that at the same time reduced
systematic risk and maximized portfolio returns when working with
worse market state data and higher levels of risk aversion. A higher
level of risk aversion also led to better risk-return ratios, which can
be seen in higher Sharpe ratio values.
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1. Introduction

Diversification is a critical factor in reducing non-systematic risk in portfolio selection
theory. There has been a growing amount of published research seeking to reconcile
the benefits of diversification with investment practices (Brito, 2023; Kim et al.,
2015). Portfolio selection is a broad theory that also involves the issue of capital allo-
cation among a given number of assets so that the investment provides a higher
return while minimizing risks i.e. a risk-adjusted return that is satisfactory for invest-
ors, similar to Markowitz’s proposal (Jalota et al., 2023; Leung et al., 2012).

Seventy years after the development of the Markowitz model (1952), this classic
approach of mean-variance is still one of the most used academic models in
asset allocation and management, and has given rise to many new approaches
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(Gonçalves et al., 2022; Leung et al., 2012), that have been developed by various aca-
demics (Bouaddi & Moutanabbir, 2023; Chen et al., 2020; Jalota et al., 2023; Leung
et al., 2012; L�opez Prol & Kim, 2022). Whether for researchers or for investors, the
investment selection process remains a major challenge for financial management
(Ali et al., 2019; Markowitz, 2014).

Among several tools for efficiency measurement e.g. conventional statistical meth-
ods, non-parametric methods and artificial intelligence methods, Data Envelopment
Analysis (DEA) can effectively measure the relative efficiency of Decision Making
Units (DMUs), which employ multiple inputs to produce multiple outputs
(Emrouznejad & Tavana, 2014; Shi & Wang, 2020).

DEA is a non-parametric method that has been broadly used in different types of
companies and organizations, helping managers from diverse areas, including the
financial area (Azadi et al., 2015; Emrouznejad & Tavana, 2014; SmeR tek et al., 2022).
More recently, DEA continues to be used in efficiency evaluation and building port-
folios (Amin & Hajjami, 2020; Atta Mills & Anyomi, 2022; Choi & Min, 2017;
Edirisinghe & Zhang, 2010; Lim et al., 2014; Rotela Junior et al., 2015).

Since then, variations of the classic DEA models have been presented. Among
these models, some seek to include approximate information or uncertainty, using a
DEA model with Fuzzy coefficients (Azadi et al., 2015; Gong et al., 2021), or models
like those proposed by Sengupta (1987), which combine Chance-Constrained
Programming (CCP), from Charnes and Cooper (1963), with the DEA model (Jin
et al., 2014).

The most widespread and traditional models of portfolio optimization theory, such
as the reference models presented by Markowitz (1952), and Sharpe (1963), are recog-
nized for being sensitive to small variations in data, and not considered robust (Kim
et al., 2014, 2015). Consequently, researchers started to develop mathematical techni-
ques on robust optimization. Several approaches have been used to increase the
robustness of traditional models using mean-variance, and these approaches usually
deal with solving max-min problems (Won & Kim, 2020; Xidonas et al., 2017). These
techniques allow investors to incorporate risk into their portfolio optimization pro-
cess considering estimate errors (Baltas & Yannacopoulos, 2019; Fabozzi et al., 2007,
2010; Sehgal & Mehra, 2020). Robust portfolio optimization has quickly become a
widely applied approach among investors to incorporate uncertainty into their finan-
cial models (Kim et al., 2018).

Other relevant information for portfolio optimization theory was presented by
Kim et al. (Kim et al., 2014, 2015, 2018). The authors state that the so-called robust
models are achieved based on information coming from bear market periods. In
other words, this information is more relevant than information coming from peak
market periods, when seeking robustness. More recently, other researchers have ana-
lyzed market downturn conditions when proposing portfolio optimization models
(Ashrafi & Thiele, 2021; Yu et al., 2019).

This study seeks to present a method for robust portfolio optimization based on
the stochastic analysis of asset efficiency, using asset information taken from worst-
case market scenarios. We used data from the Brazilian Stock Exchange (B3 - Brasil,
Bolsa, Balc~ao).
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In general terms, the presented model is the result of a combination of different
mathematical techniques: Hierarchical Clustering, Chance-Constrained DEA
(CCDEA), and the Sharpe approach. Hierarchical Clustering will be used to form dif-
ferent clusters, which contribute to diversifying the portfolio. The CCDEA model will
allow us to stochastically identify the efficient assets in each group. Sharpe’s approach
will allow us to optimally allocate efficient assets in the portfolios. It is worth men-
tioning that information from worst-case market scenarios will be used.

The novelty of the study focuses on the fact that it allows the insertion of investor
risk aversion in the portfolio optimization model. Furthermore, it contributes to the
theory of robust portfolio optimization by showing the importance of worst-state
market information.

2. Chance constrained DEA

DEA has been gaining more popularity as a non-parametric efficiency technique for
measuring the performance of financial assets, as can be seen in recent studies such
as Ghahtarani et al. (2022), Gong et al. (2021), Adam and Branda (2020) and Choi and
Min (2017). The most used classic models in literature are deterministic and do not
consider errors in random variables. According to Azadi and Saen (2012), the general-
ized randomness in the evaluation processes comes from data collection errors.

One of the first attempts to fill this gap involved developing Chance Constrained
Programming in mathematical models for DEA (Charnes & Cooper, 1959), to incorp-
orate stochastic variations in the data.

Saen and Azadi (2011), define Chance Constrained Programming (CCP) as a type
of approach for stochastic optimization, appropriate for solving optimization prob-
lems with random variables included in the constraints, and sometimes in the objective
function, as was done by Charnes and Cooper (1959) . The major contribution can be
found in the research carried out by Sengupta (1987). The CCP can effectively reflect
the reliability of satisfying a system with constraints under risky conditions. The CCP
does not require that all restrictions are completely satisfied, they can be satisfied
according to established probabilities (Azadi et al., 2012; Saen & Azadi, 2011).

The stochastic DEA model formulation is presented according to equations (1)
through (4), where the i-th DMU, x̂i ¼ x̂i1, x̂i2, . . . , x̂iað ÞT and ŷi ¼ ŷi1, ŷi2, . . . , ŷib

� �T
respectively denote the stochastic variables for the input and output vectors, where
i¼ 1,… ,n. The objective function of the stochastic model is formulated by equation
(1), where ‘E’ represents an expected value from the sum of weighted ŷiq q ¼ 1, . . . , bð Þ:

max E
Xb
q¼1

uqŷ0q

0
@

1
A (1)

s.t.:

E
Xa
p¼1

vpx̂0p

 !
¼ 1 (2)
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P

Pb
q¼1uqŷiqPa
p¼1vpx̂ip

� bi

0
@

1
A � 1� ai i ¼ 1, 2, . . . , n (3)

uq, vp � 0 (4)

uq and vp respectively indicate the weight of the multipliers associated with the
q-th output and the p-th input. u1,… ,ub, v1,… ,va are the weights that will be calcu-
lated by the optimization model. P is the probability, and superscript ‘^’ means that
x̂ip and ŷiq are random variables. Regarding the constraints, the model states that the
proportion equal or inferior to bi represents an efficiency level expected for the i-th
DMU, the variation of which is in [0,1] (Cooper et al., 1996; Jin et al., 2014; Rotela
Junior et al., 2015). ai is the risk criterion adopted by the decision maker. 1-ai is the
probability of meeting the constraint requirements, which is a confidence level whose
variance is [0,1] (Jin et al., 2014; Rotela Junior et al., 2015).

The formulation needs to be rewritten as proposed by Charnes and Cooper (1963), to
provide a viable model from a computational point of view. Randomness is considered
in this proposal, and the stochastic variable x̂ip for each input can be represented as
x̂ip ¼ xip þ aipn, where p presents a variation in the interval [1,b], and i is in [1,n]; xip
is the expected value of x̂ip and aip is the standard deviation (Rotela Junior et al., 2015).

Similarly, the stochastic variable ŷiq for each output can be represented as ŷiq ¼
yiq þ biqn, where q has a variation in [1,a], and i in [1,n]; yiq is the expected value of
ŷiq and biq is the standard deviation. Thus, it is assumed that the random variable n
follows a normal distribution, since part of the stochastic disorders suggest that the
errors are the result of data collection.

In order to make the model solution simpler, it is convenient to present its equiva-
lent deterministic formulation. The objective function (as presented in equation (1)),
can be remodeled according to equation (5):

E
Xb

q¼1
uqŷ0q

� �
¼
Xb

q¼1
uqy0q (5)

The model constraints, according to equations (2) and (3), when including the sto-
chastic process, will be rewritten in equations (6) and (7):

E
Xa
p¼1

vpx̂0p

 !
¼
Xa
p¼1

vpx0p ¼ 1 (6)

P

Pb
q¼1 uqŷiqPa
p¼1 vpx̂ip

� bi

 !
¼ P

Xb
q¼1

uqŷiq � bi
Xa
p¼1

vpx̂ip � 0

0
@

1
A � 1� ai

i ¼ 1, 2, . . . , n

(7)

Mi and Vi are the average and variance of each random variable. These can be
expressed as equations (8) and (9):
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Mi ¼
Xb
q¼1

uqyiq � bi
Xa
p¼1

vpxip (8)

Vi ¼
Xb
q¼1

uqyiq � bi
Xa
p¼1

vpxip

0
@

1
A

2

r2 (9)

In this way, the random variable

Pb

q¼1
uqŷiq�bi

Pa

p¼1
vpx̂ip�0

� �
�Miffiffiffiffi

Vi
p

 !
follows a normal

distribution of mean zero and variance one. Thus, equation (7) can be expressed
according to equation (10), or even in its equivalent form as expressed by equation (13).

�Miffiffiffiffiffi
Vi

p � /�1 1� aið Þ i ¼ 1, 2, . . . , n (10)

Equation (10) can be written as equation (11):

Xa
p¼1

vpbi �xip þ /�1 1� aið Þaipr
� �

�
Xb
q¼1

uq �yiq þ /�1 1� aið Þbiqr
� �

� 0

i ¼ 1, 2, . . . , n

(11)

In this model, / represents a function of standard normal distribution, and /�1 is
the inverse of the function. Finally, the CCDEA optimization model can be discussed.
In this manner, the original proposal is presented as a linear model, according to
equations (12)-(15):

max E
Xb
q¼1

uqy0q

0
@

1
A (12)

s.t.:

Xa
p¼1

vpx0p ¼ 1 (13)

Xa
p¼1

vpbi �xip þ /�1 1� aið Þaipr
� �

�
Xb
q¼1

uq �yiq þ /�1 1� aið Þbiqr
� �

� 0

i ¼ 1, 2, . . . , n

(14)

uq, vp � 0 (15)

The model of multipliers extends DEA applications to the financial area and helps
in decision making. Besides the deterministic situation, efficiency can be measured
considering random variables. The desired confidence levels of the model can be
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defined according to different situations of practical application, according to the par-
ticularities of each case.

3. Portfolio selection

Solutions for portfolio optimization are often influenced by poorly specified models or
by errors in approximation, estimation, or even due to incomplete information. As
demonstrated by Black and Litterman (1992), a small variation in the expected return
of assets can result in a large alteration in the allocation of investments in an optimized
portfolio. In other words, classic models for portfolio optimization are not robust
because they are susceptible to small variations in data (Kim et al., 2015). As a matter
of fact, Kim et al. (2014), affirmed that the main reason for questioning the Markowitz
(1952) model is because of its high sensitivity towards small variations in data values.

Researchers have begun to incorporate risk by estimating errors directly in the
portfolio optimization process using mathematical techniques for robust optimization.
Different from traditional approaches where the data for the structure of portfolio
allocation are deterministic, robust portfolio optimization incorporates the notion
that these data have been estimated with errors (Fabozzi et al., 2007, 2010). In this
case, data like the expected return and asset covariance are not traditional predictions
but rather sets of probabilities e.g. confidence intervals. The two best-known method-
ologies for dealing with risk are robust and stochastic optimization (Xidonas et al.,
2020).

It was identified that the correlation between assets tends to increase during peri-
ods of low market (bear market) performance, so investors cannot benefit from diver-
sification when it is most needed. Worse still, correlation within capital markets has
been increasing in recent periods (Kim et al., 2015). Some solutions have been pro-
posed to overcome this problem, like employing variables that are less sensitive to
historic data, or inserting risk sets on the parameters of traditional models (Fabozzi
et al., 2007).

Of the several approaches for increasing robustness in the mean-variance model,
robust portfolio optimization applies robust optimization techniques for
asset allocation by solving max-min problems (Maciel, 2021; Won & Kim, 2020;
Xidonas et al., 2017). According to Kim et al. (2015), even though worst-case opti-
mization seems to be a natural extension of the mean-variance model for achieving
robustness, more in-depth analysis on the importance of concentration in worst-case
market scenarios has not been conducted.

The main contribution of the work conducted by Kim et al. (2015) was to demon-
strate the importance of information on asset returns on the worst-performing days
for achieving a robust portfolio. In other words, instead of selecting assets that always
perform well in both bear markets and bull markets, assets that perform well in bear
markets are usually considered. Therefore, these researchers believe that robustness
can be achieved when worst-case market information is considered.

Furthermore, it is known that low beta assets perform better than high beta assets
in crisis periods (market declines), since low beta assets reduce the overall risk and
offer better returns (Kim et al., 2015).

6 P. ROTELLA JUNIOR ET AL.



4. Materials and methods

In order to establish a strategy for robust portfolio optimization using stochastic effi-
ciency analysis, we used the following observations as starting points:

i. Preliminary results indicate that DEA is well suited for determining portfolio
composition. DEA allows assets to be evaluated using criteria that represent
investor interests, supporting the classic models of mean and variance;

ii. DEA models that consider data randomness allow investors to reduce the search
space for assets that perform well, by presenting good data discrimination;

iii. Risk variation in stochastic efficiency analysis can meet the needs of investors
with different attitudes towards risk;

iv. One difficulty in applying CCDEA to portfolio optimization (depending on the
data) is the contradictory behavior of the constraints, making it difficult to iden-
tify efficient assets;

v. Hierarchical Clustering allows individuals or assets to be grouped based on the
similarity or dissimilarity of these initial groups;

vi. Robust portfolio models achieve robustness by concentrating on information gath-
ered from crisis periods or market recessions i.e. poor performance days are fun-
damental for building portfolios that perform well under any market conditions.

4.1. Selecting the variables

After defining the object of study, we set out to select a set of indicators that will be
used in the efficiency analysis. Then, following the premises presented in the exten-
sive DEA literature, the variables in this study will be defined as outputs or inputs.

Researchers have evaluated the impact of correlation on efficiency analyses, espe-
cially with a view to reducing model complexity and redundancy. Siriopoulos and
Tziogkidis (2010) state that correlated inputs and outputs do not significantly affect
the efficiency results of classic DEA models. The statement agrees with Charnes et al.
(1994), who in their book use correlated variables in their studies. Therefore, we did
not see a need to perform correlation tests for the possible input and output variables.

We chose to use input and output variables present in literature for DEA applica-
tions in the stock market (Powers & Mcmullen, 2002; Rotela Junior et al., 2014,
2015). It should be remembered that low beta assets have better returns while reduc-
ing the overall risk of the portfolio in worst-case market scenarios (Kim et al., 2015).

For this study, we chose to use the asset return, asset liquidity, and earnings per
share (EPS) as output model variables. For input variables we chose to use the beta,
the price-earnings (PE), and volatility (Kim et al., 2015; Powers & Mcmullen, 2002;
Rotela Junior et al., 2014, 2015). For more information on calculating indicators, see
Economatica (Economatica, 2022).

4.2. Sample selection and data collection

The sample comprised assets traded on the Brazilian Stock Exchange B3 (Brasil,
Bolsa, Balc~ao). The B3 was founded after a merger between BM&FBOVESPA and
Cetip, with participation in the Bovespa Index (Ibovespa).

ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA 7



Kim et al. (2015) used daily data for the return of the market index to identify
worst-case market periods. The authors classified all the returns of the index in
increasing order within a time interval. They then divided this period into n other
periods. Within the longer period, Kim et al. (2015) defined n as ten, and for defin-
ing the worst-case market period, the tenth part was selected, corresponding to the
smallest values presented for the index (i.e. 10% referring to the worst values). We
used the same approach adopted by Kim et al. (2015), to identify crisis market
periods.

We then proceeded to selecting the sample, however, we observed that only 61
companies in the Ibovespa index had all the necessary information for conducting
the efficiency analysis. It is worth noting that Ibovespa index is a benchmark index of
stocks traded on the Brazilian stock exchange. All information on the selected varia-
bles were collected using the software Econom�aticaVR .

The information in this study corresponds to daily data for a period of 5 years. To
validate the results, daily information from a 6-month period was used. It is import-
ant to highlight that the period used in this study was prior to the global covid-19
pandemic. It is worth noting that there is still no concrete evidence of the effects of
the pandemic on stock markets.

The cumulative return was calculated for each proposed portfolio for the validation
phase based on the results of the models adopted for optimization (identifying the
ideal share).

5. Results and discussion

5.1. Data preparation and cluster analysis

We started by collecting data, and then proceeded using a proposal from Kim et al.
(2015) by classifying the returns from Ibovespa in increasing order for the period
adopted in this study. The remaining spreadsheet information followed such classifi-
cation, and n was set equal to four for defining the worst-case market period, giving
the model more than three hundred daily information pieces.

We calculated the average and variance for each of the variables adopted for the
efficiency analysis using the data collected for each of the proposed scenarios i.e.
worst-case (n¼ 4), and complete market information (n¼ 1).

We observed that the number of efficient assets was very reduced, even when vary-
ing the risk criterion. This led us to believe that the CCDEA model was composed of
highly divergent constraints, making it more difficult to properly discriminate the
analysis. Next, different forms of Hierarchical Clustering were tested, and the most
viable option for each one of the considered scenarios was to group the DMUs by
degree of similarity, considering the average and variance of the six variables adopted
in this study.

This made it possible to group the DMUs by increasing the degree of simi-
larity between the groups in which the efficiencies can be analyzed. Figure 1
shows the DMU grouping using Hierarchical Clustering for complete asset
information (n¼ 1).

8 P. ROTELLA JUNIOR ET AL.



Figure 2 shows the DMU grouping for worst-case market periods, defined as
n¼ 4. These Figures were obtained using the MinitabVR software program.

Two groupings were performed for each of the two proposed scenarios for the
assets that make up the more similar groups.

Grouping can be done in a larger number of groups, however, given the number
of variables, the model required a minimum number of DMUs for good data discrim-
ination (Cooper et al., 2007), and so only two groups were formed. This solution can
be adopted to facilitate meeting the constraints in the CCDEA model, since they
respect the recommendations in the model application.

Table 1 shows the descriptive statistics of the DMU input and output variables
that comprise group 1 and 2 considering information on the total market state. Table 2
presents the same information for worst-case market periods.

Similar to other studies, negative data were transformed by adding a value that
makes the most negative value in the series positive for the same variable, without
changing the efficiency analysis (Cook & Zhu, 2014). It is worth mentioning that the
input and output variables were independent in this study.

Figure 1. Dendrogram of the grouping considering complete market data information.
Source: Authors.

Figure 2. Dendrogram of the grouping considering information from worst-case market periods.
Source: Authors.
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5.2. Efficiency analysis

Efficiency assessments were carried out for the proposed groups. The efficiency level
(bi) was equal to 1. We observed in the studied data that a good range of discrimin-
ation was obtained in the analysis units when the risk criterion (ai) was varied
between 0.5 and 0.6. This range will change according to the data submitted to the
CCDEA model.

The variation within the range stipulated in the previous step may be related to
investor’s aversion to risk. In this study, a variation of 1% was chosen within the rele-
vant range defined for probability variation to fulfill constraints (1-ai), generating
eleven portfolios for each market state.

Table 3 shows the efficiency results with different compliance probability levels
(defined by 1- ai) of the constraints for groups 1 and 2, respectively, when supplied
with worst-case market scenario information.

Table 1. Descriptive statistics of the variables considering total market state information.
Group 1

Return Liquidity EPS Beta PE Volatility

m1 r1
2 m2 r2

2 m3 r3
2 m4 r4

2 m5 r5
2 m6 r6

2

Mean 0.07 3.52 0.65 0.09 7.03 9.19 0.63 0.01 19.11 132.21 1.87 0.09
Median 0.07 3.39 0.59 0.03 6.31 1.89 0.61 0.01 19.49 18.88 1.77 0.08
Standard Deviation 0.03 0.78 0.26 0.22 3.13 18.73 0.18 0.01 9.55 327.64 0.25 0.06
Minimum 0.01 2.17 0.29 0.00 2.55 0.18 0.30 0.00 1.00 1.98 1.45 0.01
Maximum 0.13 4.79 1.30 1.19 14.42 92.35 0.99 0.02 42.94 1706.57 2.31 0.27

Group 2

Mean �0.02 6.02 1.62 0.27 3.36 286.57 1.05 0.01 12.27 3365.30 2.39 0.19
Median �0.02 5.41 1.04 0.10 6.32 31.91 1.06 0.01 10.24 1393.75 2.33 0.14
Standard Deviation 0.06 2.29 1.63 0.59 10.38 650.30 0.22 0.01 15.98 4451.30 0.45 0.15
Minimum �0.17 3.10 0.35 0.01 �26.73 0.54 0.59 0.00 �30.46 2.07 1.70 0.03
Maximum 0.08 10.70 7.05 2.59 17.39 3173.20 1.50 0.05 47.87 14978.71 3.29 0.60

Source: Authors.

Table 2. Descriptive statistics of the variables considering information from the worst-case market
periods.
Group 1

Return Liquidity EPS Beta PE Volatility

m1 r1
2 m2 r2

2 m3 r3
2 m4 r4

2 m5 r5
2 m6 r6

2

Mean �0.98 3.15 0.65 0.09 7.12 9.46 0.63 0.01 19.39 123.06 1.86 0.09
Median �0.97 3.12 0.60 0.03 6.32 2.12 0.60 0.01 19.27 18.35 1.77 0.07
Standard Deviation 0.29 0.70 0.26 0.22 3.13 20.24 0.18 0.01 8.48 318.48 0.24 0.06
Minimum �1.52 1.95 0.29 0.01 2.62 0.20 0.29 0.00 7.77 2.14 1.45 0.01
Maximum �0.46 4.53 1.31 1.19 14.61 102.62 0.98 0.02 40.20 1686.56 2.29 0.23

Group 2

Mean �1.86 4.42 1.62 0.31 3.25 308.54 1.05 0.01 12.70 3152.21 2.37 0.20
Median �1.78 4.12 1.04 0.10 6.44 35.82 1.06 0.01 10.61 1127.46 2.31 0.14
Standard Deviation 0.39 1.93 1.63 0.69 10.92 692.02 0.22 0.01 18.73 4112.77 0.44 0.15
Minimum �2.79 2.01 0.36 0.01 �29.27 0.58 0.60 0.00 �30.61 1.89 1.70 0.03
Maximum �1.14 9.85 7.10 3.17 18.03 3312.95 1.51 0.05 65.25 13506.95 3.25 0.64

Source: Authors.
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We evaluated the efficiency of the proposed groups considering the risk criteria
adopted. Table 3 shows the efficiency results for groups 1 and 2, respectively, when sub-
mitted to the CCDEA model under different probability levels for fulfilling the model con-
straints, supplied with complete market information taken from the stipulated period.

Likewise, Table 4 presents the efficiency results for groups 1 and 2, respectively.
However, the CCDEA model was supplied with information taken from market
downturns. It is important to highlight that the likelihood of complying with the con-
straints of the optimization model increases by reducing the risk criterion (ai), mak-
ing the model more critical. Therefore, fewer assets will be efficient.

The assets pre-selected by the CCDEA model will be submitted to the Sharpe
approach (Sharpe, 1963) for optimal allocation within the portfolio. A similar strategy
of pre-specification for assets was adopted by Chakrabarti (2021).

5.3. Asset allocation and comparative analysis

Since traditional DEA models ignore diversification between investment opportunities
(Adam & Branda, 2020), Sharpe’s model could be necessary to build the portfolio.

Table 3. Descriptive statistics for efficiencies considering full market information.
Group 1

(1-ai) 40% 41% 42% 43% 44% 45% 46% 47% 48% 49% 50%

Mean 1.25 1.19 1.13 1.08 1.04 1.00 0.96 0.93 0.90 0.88 0.86
Median 1.24 1.17 1.11 1.06 1.02 0.99 0.96 0.95 0.92 0.89 0.87
Standard Deviation 0.17 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.11
Minimum 0.97 0.92 0.88 0.83 0.80 0.76 0.73 0.70 0.68 0.67 0.66
Maximum 1.56 1.49 1.40 1.34 1.27 1.22 1.17 1.12 1.08 1.04 1.00

Group 2

Mean 2.25 2.07 1.93 1.81 1.69 1.50 1.34 1.22 1.10 1.00 0.82
Median 1.80 1.68 1.58 1.47 1.37 1.25 1.11 1.02 0.96 0.90 0.82
Standard Deviation 2.12 2.02 1.84 1.77 1.71 1.37 1.16 1.04 0.81 0.63 0.15
Minimum 1.10 1.02 0.96 0.90 0.83 0.74 0.66 0.60 0.55 0.51 0.47
Maximum 13.53 12.77 11.70 11.24 10.81 8.77 7.52 6.77 5.39 4.34 1.00

Source: Authors.

Table 4. Descriptive statistics for the efficiencies considering worst-case scenario market
information.
Group 1

(1-ai) 40% 41% 42% 43% 44% 45% 46% 47% 48% 49% 50%

Mean 0.96 0.95 0.94 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.85
Median 0.97 0.95 0.93 0.92 0.90 0.89 0.87 0.87 0.87 0.86 0.85
Standard Deviation 0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.12
Minimum 0.70 0.68 0.69 0.68 0.68 0.67 0.66 0.66 0.66 0.65 0.65
Maximum 1.22 1.20 1.17 1.15 1.13 1.10 1.08 1.06 1.04 1.02 1.00

Group 2

Mean 1.25 1.14 1.09 1.03 0.99 0.95 0.89 0.85 0.82 0.79 0.75
Median 1.08 1.03 0.97 0.93 0.91 0.88 0.85 0.83 0.81 0.79 0.76
Standard Deviation 1.09 0.79 0.70 0.62 0.57 0.54 0.38 0.31 0.27 0.25 0.21
Minimum 0.39 0.39 0.38 0.38 0.37 0.36 0.32 0.33 0.35 0.31 0.31
Maximum 6.79 5.05 4.47 4.01 3.68 3.48 2.37 1.83 1.49 1.34 1.00

Source: Authors.

ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA 11



Efficient assets from Table 3 were submitted to Sharpe’s proposal taking information
from the total market state into account for each risk criterion (ai) adopted. It is
interesting to observe that not all efficient assets considered will be used in the alloca-
tion when submitted to the Sharpe model.

Eleven portfolios were proposed from varying the risk criterion for the total mar-
ket state (TS) information. These were identified as TS-1 to TS-11, to simplify discus-
sion. Another eleven portfolios were proposed according to the risk criterion (ai) for
the worst-case (WS) market information. It is interesting to notice that there were
fewer efficient assets when the model was supplied with WS market information.
These portfolios were identified as WS-1 to WS-11, to simplify discussion.

We use the Capital Asset Pricing Model (CAPM), presented by Sharpe (1964), to
analyze the results and to identify any abnormal returns (Rotela Junior et al., 2014,
2015). The accumulated abnormal return of the portfolios was obtained from infor-
mation collected during the validation period and daily information was used.
Furthermore, the Sharpe ratio was used, being the most commonly used metric for
measuring and comparing portfolio performance (Homm & Pigorsch, 2012; Kourtis,
2016).

Table 5 presents the adopted risk criterion (ai), portfolio beta (b), return results
(RE and R), standard deviation (SD), Sharpe ratio (SR), number of assets (N), and the
accumulated abnormal return (AAR) for each TS optimized portfolio. Table 6
presents the same content, but for WS optimized portfolios.

The main discussion shows the importance of information taken from periods of
market crisis and recession and how this information contributes to robust portfolio
optimization. Tables 5 and 6 analyze and compare the TS optimized portfolios (port-
folios TS-1 to TS-11) and WS optimized portfolios (portfolios WS- 1 to WS-11). The
portfolios are compared in pairs according to the ai value adopted.

Table 5. Results by risk criteria based on complete market information.
TS-1 TS-2 TS-3 TS-4 TS-5 TS-6 TS-7 TS-8 TS-9 TS-10 TS-11

ai 60% 59% 58% 57% 56% 55% 54% 53% 52% 51% 50%
b 0.702 0.700 0.691 0.691 0.763 0.713 0.680 0.689 0.668 0.674 0.616
RE 1.07% 1.07% 1.06% 1.07% 1.09% 1.07% 1.06% 1.06% 1.05% 1.06% 1.03%
SD 8.80% 8.51% 8.71% 8.90% 8.69% 8.87% 8.97% 8.95% 8.70% 8.61% 9.65%
R �3.05% �2.68% �3.33% �2.10% �1.00% �0.22% 0.35% 0.39% 2.10% 1.54% 2.96%
SR �0.467 �0.440 �0.504 �0.356 �0.240 �0.145 �0.079 �0.074 0.120 0.055 0.200
N 57 54 52 48 45 41 34 26 19 17 12
AAR �1.59% �1.12% �1.84% 0.05% 1.48% 2.57% 3.90% 4.70% 7.44% 6.53% 9.31%

Source: Authors.

Table 6. Results by risk criterion based on information from periods of market downturns.
WS-1 WS-2 WS-3 WS-4 WS-5 WS-6 WS-7 WS-8 WS-9 WS-10 WS-11

ai 60% 59% 58% 57% 56% 55% 54% 53% 52% 51% 50%
b 0.458 0.458 0.446 0.444 0.444 0.438 0.432 0.429 0.429 0.429 0.429
RE 0.96% 0.96% 0.96% 0.96% 0.96% 0.96% 0.95% 0.95% 0.95% 0.95% 0.95%
SD 7.67% 7.67% 8.16% 8.05% 8.05% 8.38% 8.36% 8.32% 8.32% 8.32% 8.32%
R 2.52% 2.52% 2.65% 3.85% 4.03% 5.34% 5.73% 5.73% 5.73% 5.73% 5.73%
SR 0.202 0.203 0.206 0.358 0.358 0.366 0.525 0.575 0.575 0.575 0.575
N 11 11 11 10 10 10 9 8 8 8 8
AAR 5.58% 5.58% 5.42% 6.62% 6.62% 7.24% 8.91% 9.16% 9.16% 9.16% 9.16%

Source: Authors.
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Tables 5 and 6 present the expected return values for the portfolios that were cal-
culated as presented before. We needed to calculate the beta values (b) for each of
the portfolios (also shown in the Tables). For the TS optimized portfolios (TS-1 to
TS-11), the expected returns (RE) vary from 1.03% to 1.09% a.m. For the WS opti-
mized portfolios (WS-1 to WS-11), the expected returns (RE) were concentrated
between 0.95% and 0.96% a.m. And, the obtained mean profitability (R) were
�3.05%, �2.68%, �3.33%, �2.10%, �1.00%, �0.22%, 0.35%, 0.39%, 2.10%, 1.54%,
and 2.96% for TS-1 to TS-11, respectively. The obtained mean profitability (R) were
2.52%, 2.52%, 2.65%, 3.85%, 4.03%, 5.34%, 5.73%, 5.73%, 5.73%, 5.73%, and 5.73%
for WS-1 to WS-11, respectively.

Figures 3 and 4 show the accumulated return in pairs established according to the
probability level (1-ai) of fulfilling constraints from the CCDEA model. Figure 3
shows the AAR of the portfolio pairs when a risk range (ai) criterion of 60% to 55%
is adopted. Figure 4 shows the AAR of the portfolio pairs when a risk range (ai) cri-
terion of 54% to 50% is adopted.

It is important to highlight that the WS optimized portfolios (WS-1 to WS-11)
had better results when reading the Sharpe ratio (SR) considering different ai values.
Regardless of the risk criterion adopted, the beta values of the proposed portfolios
were lower than portfolios TS-1 to TS-11.

After developing the accumulated return graphs, we conducted a statistical test to
compare the obtained series of abnormal accumulated returns for each pair of port-
folios associated by the risk criterion. We decided to use the Mann-Whitney non-
parametric test. The P-value results obtained in these tests (when portfolios are

Figure 3. Accumulated return of the pairs of portfolios considering risk criterion variation
(60% - 55%).
Source: Authors.
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analyzed in pairs) were less than 0.05. This result allows us to affirm that the abnor-
mal accumulated return of WS optimized portfolios is statistically higher than the
accumulated returns of TS optimized portfolios for the entire period. Figure 5
presents a boxplot diagram for the pairs of portfolios.

The results have shown that the proposed method supplied with WS information
has better results than TS information for the total period.

However, to confirm the applicability of this method, we needed to compare these
portfolios with other portfolios build using classic models for portfolio optimization.
Models presented by Markowitz (1952), and Sharpe (1963), were used for this
comparison.

TS (n¼ 1) information assets were ideally allocated using the Markowitz (1952)
model and by maximizing the Sharpe ratio of the assets. This portfolio was named
the Comparative Markowitz (MC) portfolio. Using the same set of information, assets
were ideally allocated using the Sharpe model (1963). This portfolio was named the
Comparative Sharpe (SC) portfolio. Table 7 shows the share of assets in the compara-
tive portfolios. Additionally, the shares are again presented for four of the eleven pro-
posed portfolios, with two of them (TS-1 and TS-11) supplied with the same set of
information as the Comparative portfolios, and two other portfolios (WS-1 and WS-
11) from WS (n¼ 4) market periods. For this comparison, we chose to consider only
portfolios with risk criteria 60% and 50%, which are limit values for the adopted
range.

The same validation period employed in the previous comparison was used to val-
idate the results obtained in the portfolios.

Figure 4. Accumulated return of the pairs of portfolios considering risk criterion variation
(54% - 50%).
Source: Authors.
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Table 8 shows some parameters for the proposed portfolios (TS-1, TS-11, WS-1,
and WS-11) and the comparative portfolios (MC and SC), like the adopted risk (ai),
the portfolio beta (b), the return results (RE and R), the standard deviation (SD), the
Sharpe ratio (SR), and the number of assets (N) that comprise the portfolio.

Figure 5. Boxplot of the accumulated returns from pairs of portfolios, by risk criterion (60% - 50%).
Source: Authors.
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Table 7. Assets allocation in the comparative and proposed portfolios.
(ai) – – 60% 60% 50% 50%
Portfolios MC SC TS-1 WS-1 TS-11 WS-11

DMU1 0.171 0.046 0.046 0.176 0.139 0.235
DMU2 0.000 0.014 0.015 0.000 0.061 0.000
DMU3 0.000 0.025 0.025 – – –
DMU4 0.000 0.024 0.024 0.000 0.091 0.000
DMU5 0.000 0.007 0.008 0.000 – –
DMU6 0.090 0.038 0.038 0.093 – –
DMU7 0.000 0.017 0.017 0.000 – –
DMU8 0.000 0.017 0.017 – – –
DMU9 0.000 0.012 0.013 – – –
DMU10 0.000 0.027 0.028 – – –
DMU11 0.000 0.017 0.017 0.027 0.063 0.067
DMU12 0.120 0.033 0.033 0.095 0.096 0.127
DMU13 0.000 0.020 0.021 0.056 0.074 0.101
DMU14 0.000 0.028 0.029 – – –
DMU15 0.000 0.019 0.019 0.041 – –
DMU16 0.014 0.029 0.030 – – –
DMU17 0.000 0.022 0.023 – – –
DMU18 0.000 0.003 0.003 – – –
DMU19 0.103 0.032 0.032 – – –
DMU20 0.000 0.006 0.007 – – –
DMU21 0.000 0.013 – – – –
DMU22 0.000 0.004 0.004 0.000 – –
DMU23 0.000 0.006 0.007 0.000 – –
DMU24 0.000 0.004 0.004 0.000 0.046 0.019
DMU25 0.083 0.027 0.027 – – –
DMU26 0.000 0.020 0.020 0.097 – –
DMU27 0.106 0.028 0.028 – – –
DMU28 0.000 0.011 0.011 – – –
DMU29 0.000 0.012 0.012 0.000 – –
DMU30 0.000 0.001 0.001 – – –
DMU31 0.000 0.006 0.006 – – –
DMU32 0.000 0.006 0.006 – – –
DMU33 0.000 0.005 0.005 – – –
DMU34 0.032 0.023 0.023 – – –
DMU35 0.000 0.012 0.012 0.000 – –
DMU36 0.000 0.021 0.021 0.000 – –
DMU37 0.000 0.021 0.021 0.000 – 0.000
DMU38 0.000 0.010 0.010 0.000 – –
DMU39 0.000 0.021 0.022 – – –
DMU40 0.000 0.021 0.021 0.045 – –
DMU41 0.000 0.021 0.021 – – –
DMU42 0.000 0.003 0.003 – – –
DMU43 0.000 0.006 0.006 – – –
DMU44 0.000 0.020 0.021 – – –
DMU45 0.000 0.000 0.000 0.000 – –
DMU46 0.017 0.029 0.029 – – –
DMU47 0.000 0.000 0.000 – – –
DMU48 0.000 0.003 0.003 – – –
DMU49 0.000 0.005 0.005 0.000 0.046 0.000
DMU50 0.042 0.023 0.024 – – –
DMU51 0.000 0.022 0.022 – – –
DMU52 0.000 0.000 0.000 – – –
DMU53 0.000 0.013 0.013 – – –
DMU54 0.000 0.023 0.023 0.046 – –
DMU55 0.000 0.011 0.011 0.000 0.050 0.015
DMU56 0.043 0.038 0.038 0.166 0.134 0.214
DMU57 0.000 0.020 0.020 – – –
DMU58 0.169 0.001 0.001 0.000 – –
DMU59 0.009 0.011 0.011 0.000 – –
DMU60 0.000 0.011 0.012 0.000 0.077 0.000
DMU61 0.000 0.033 0.034 0.158 0.123 0.222

Source: Authors.
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Next, the portfolios optimized according to this proposal are compared to those
formulated from the classical and deterministic models of portfolio theory.

It is noteworthy that the Comparative Markowitz portfolios (MC) and
Comparative Sharpe portfolios (SC) had only 13 and 58 assets after the optimization,
and SRs equal to �0.272 and �0.460, respectively. Again, we see that WS optimized
portfolios perform better.

Portfolios WS-1 and WS-11 had beta values equal to 0.458 and 0.429, while
Comparative portfolios MC and SC had beta values equal to 0.475 and 0.702.

The cumulative return for the portfolios (AAR) was obtained based on the infor-
mation from the period considered in the validation. Again, the results shown in
Table 8 show abnormal returns. Figure 6 shows the accumulated returns for the ana-
lyzed portfolios.

Figure 6a shows the accumulated returns of the proposed portfolios (when a risk
criterion (ai)¼60% is adopted) and the comparative portfolios: MC, SC, and the
Ibovespa Brazil Sao Paulo Stock Exchange Index (BVSP). Figure 6b shows the accu-
mulated return for proposed portfolios (when a risk criterion (ai)¼50% is adopted)
and the same comparative portfolios.

Table 8. Results for comparative portfolios and proposed portfolios.
MC SC TS-1 WS-1 TS-11 WS-11

ai – – 60% 60% 50% 50%
b 0.475 0.702 0.702 0.458 0.616 0.429
RE 0.96% 0.96% 0.96% 0.96% 0.95% 0.95%
SD 7.20% 8.60 % 8.80% 7.67% 9.65% 8.32%
R �1.00% �3.00% �3.00% 2.52% 2.96% 5.73%
SR �0.272 �0.460 �0.467 0.202 0.200 0.575
N 13 58 57 11 12 8
AAR 1.35% �1.57% �1.59% 5.58% 9.31% 9.16%

Source: Authors.

Figure 6. Accumulated return of proposed and comparative portfolios.
Source: Authors.
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After presenting the accumulated return graphs, we performed a statistical test for
the comparison between the series of accumulated returns obtained for the analyzed
portfolios. We used the Kruskal-Wallis test (one-way analysis of variance), which
allowed us to determine whether the medians of two or more groups differed. The P-
value results obtained were less than 0.05. We see that the accumulated returns of
WS optimized portfolios (WS-1 and WS-11) are statistically higher than the accumu-
lated returns of TS optimized portfolios (TS-1 and TS-11), when using the same risk
criterion. They are also statistically higher than the accumulated returns of the BVSP,
MC and SC comparative portfolios.

Figure 7 shows the boxplot diagram of the analyzed portfolios.

6. Conclusion

We were able to reduce the search space when identifying efficient assets. This study
used stochastic information for the different adopted variables. Subsequently, the effi-
cient assets were submitted to approaches that promoted ideal asset allocation within
the portfolios. It is interesting to note that both commonly used and fundamentalist
variables were considered in the asset allocation.

We identified that it is possible to represent more flexible models by considering
the different risk profiles of investors (conservative or risky) by varying the probabil-
ity of meeting the constraints (1-ai) in the CCDEA model.

In general, portfolios formed using our proposed method (WS-1 to WS-11) per-
formed better as measured by the Sharpe ratio (SR), and according to the accumula-
tion of abnormal returns in the validation period. The averages of the series of
abnormal returns were statistically higher than for the comparative portfolios.

The proposed model confirms that worse market state data generate portfolios
with lower beta values, thus reducing systematic risk. Furthermore, higher levels of
risk aversion also contribute to the formation of portfolios with lower beta values.
Paradoxically, the proposed model achieved portfolios that at the same time reduced

Figure 7. Boxplot diagram for proposed and comparative portfolios.
Source: Authors.
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systematic risk and maximized portfolio returns when working with worse market
state data and higher levels of risk aversion. A higher level of risk aversion also led to
better risk-return ratios, which can be seen in higher Sharpe ratio values.

Finally, we suggested that this proposed method be applied to different stock mar-
kets, to more mature stock markets, to more assets, with data coming from longer
historical series, and to validate data from different periods. We also suggest that
future research compare this proposed method with other methods of robust port-
folio optimization.
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