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ABSTRACT
Along with emission reduction targets, carbon abatement policies
increasingly target the reduction of carbon intensity. In this context,
uncovering factors that reduce carbon intensity is a timely research
subject and carries significant policy implications. The goal of this
study is to explore the dynamic relationships between carbon and
energy intensity, renewable energy, economic development, struc-
tural transformation, and globalization in a global panel comprising
126 countries and two income-based subpanels. Robust System-
GMM estimators indicate that increasing renewable sources in the
energy mix can assist countries in mitigating the carbon intensity
of electricity generation. Moreover, current results highlight that
economic growth is the most effective mitigating factor of carbon
intensity at the global level, revealing that on average, countries
have managed to decouple economic and pollution (carbon inten-
sity) growth. Results document these links both in the short-and,
most importantly, the long-run setting. Other important results
reveal that the mitigating effect of renewable energy is stronger
with the increase of economic development, whereas structural
transformation only decreases carbon intensity in low- and middle-
income countries. Consequently, consistent long-term climate poli-
cies that promote these mitigating factors and decrease docu-
mented driving factors such as energy intensity could work
synergistically across multiple SDGs of the 2030 Agenda.
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1. Introduction

The process of industrialization, which drove global economic expansion over the last
two centuries, has been closely linked to increased environmental pollution (Chen et al.,
2021). Worldwide, ambient air pollution has emerged as a significant contributor to ill-
ness and mortality (Khomenko et al., 2021; Tudor, 2022), with the World Health
Organization (WHO) labelling it as the greatest environmental health risk (World
Health Organization (WHO), 2019). Furthermore, air pollution is one of the primary
causes of lost labour productivity, cognitive deterioration, mental health issues, criminal
behavior and decline in the average human expectancy (Yang & Tang, 2022; World
Economic Forum, 2022). Moreover, the economic cost of air pollution is estimated at
$2.9 trillion, or 3.3% of global GDP (World Economic Forum, 2020).

In this context, international efforts, such as the Paris Agreement (United Nations
Framework Convention on Climate Change (UNFCCC),), 2021), aim to substantially
reduce global greenhouse gas (GHG) emissions to mitigate the devastating consequences
of climate change (Natural Resources Defense Council (NRDC),), 2021; Tudor & Sova,
2021). Moreover, significant concern is dedicated to preserving economic growth while
reducing emissions—and particularly carbon emissions that accounted for 74% of GHG
emissions in 2016 (OWID—Our World in Data). This process, called ‘decoupling’, rep-
resents the dissociation between economic growth and fossil fuels consumption, given
that the latter is the main contributor to emissions (Ruffing, 2007; Le et al., 2021).
Although in the years before the pandemic, a significant proportion of the global econ-
omy has experienced ‘absolute decoupling’, IEA documented in 2021 the strongest cou-
pling of carbon emissions with GDP growth since 2010 (International Environment
Agency (IEA),), 2022). This raises concerns over a temporary delay in the decarboniza-
tion process globally, particularly considering estimates that the war in Ukraine will
affect the attainment pollution control and sustainable development goals (Rawtani
et al., 2022).

Therefore, while quantifying total GHG or carbon emissions is essential, this
approach does not address the efficiency of resource utilization, nor the link between
emissions mitigation and economic growth (Fortune, 2021). In this vein, inspired by
the DPSIR (Driving forces, Pressure, State, Impact, Response) typology of environmen-
tal indicators (Smeets & Weterings, 1999), we propose an analysis of emissions comple-
mented by carbon intensity–based metrics that reveal the efficiency of resource use can
identify potential decoupling of economic and emissions growth that is, in turn, a key
factor for global decarbonization. Figure 1 reveals a strong positive relationship between
carbon intensity (CI) and total GHG for top polluting countries (Climate Trade, 2021),
particularly in the case of China and the United States, further attesting to the import-
ance of mitigating carbon intensity in the global climate fight arena.

Furthermore, a thorough analysis of CI cannot ignore technological changes that
lead to increased shares of low-carbon and renewable sources in energy production and
consumption (Geels, 2018). In this context, the mitigating effect of low-carbon and
renewable (or sustainable) energy production and consumption on polluting emissions
has long been recognized (Apergis et al., 2018; Wang et al., 2021). Our data confirm
this link in the case of the top five global polluters—see Figure 2. However, there is
quite a high variation of the low-carbon energy share in electricity and energy sources
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across countries, which reflects countries’ endowments of fossil versus non-fossil fuels,
development policies or commitments to reductions in GHG emissions (Cheng et al.,
2016; Oshiro et al., 2018).

Renewable sources have become a strategic decision for energy consumption with a
prominent role in the long-term global energy mix (Rahman et al., 2022). However, the

Figure 1. Carbon intensity of electricity production (CI) and total GHG emissions for the top pollut-
ing countries (last year of available data). Source: Authors’ representation based on World Bank
Development Indicators (WDI) and the BP Statistical Review of World Energy and Ember.

Figure 2. Share of primary energy consumption from renewable sources and total GHG emissions
(GHG) for top polluting countries (last year of available data). Source: Authors’ representation based on
World Bank Development Indicators (WDI) and the BP Statistical Review of World Energy and Ember.
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relationship between renewable energy consumption and CI remains under-investi-
gated, which strongly motivates the current research. In this context, the present study
assesses the role of renewable energy in carbon intensity for a large global panel of
countries and on sub-panels delineated by countries’ development level. We thus shed
light on the particularities of the renewable energy—carbon intensity link for economies
that are located on different development phases, with implications for the formulation
of decarbonization policies. Moreover, we support a better grasp of the uneven distribu-
tion of the exposure to the desired net-zero transition in the developed and developing
world, with potential consequences on both development goals and environmental
management.

Another critical relationship that needs to be properly understood refers to CI and
energy intensity. Although both influence GHG emissions, their impact on emissions
may be congruent or opposite (Le et al., 2019; Xia et al., 2021). Moreover, energy
intensity is an important driving force of declining CI (Bhattacharyya & Matsumura,
2010; Ling et al., 2021), which associates well with the long-term trends in energy
intensity at global level fuelled by increased energy efficiency and the economic shift
towards services (Peters et al., 2017). Hence, we include energy intensity as a factor
in our models to uncover interesting interaction patterns with CI, further leading to
more nuanced policy approaches towards environmental challenges.

Furthermore, we include economic growth as an explanatory factor to determine
whether countries are decoupling their economies to achieve decarbonization. We
thereby contribute to the literature on decoupling drivers and, indirectly, to research
on the Environmental Kuznets Curve (EKC), the conceptual cornerstone of the effects
of economic growth on the environment (Grossman & Krueger, 1993).

In addition to the main variables of interest, the role of relevant covariates such as
structural transformation (high-tech exports) and globalization (international trade) is
also considered. These represent more recent additions to empirical research on envir-
onmental degradation, which capture the role of intensified global trade and invest-
ments as channels for economic development and for GHG emissions. We also test the
relevance of economic/structural transformation as a distinguishing characteristic of
growth accompanied by distributional changes in economic activities across the main
sectors of the economy—agriculture, industry, and services (Herrendorf et al., 2014;
Beylis et al., 2020). Therefore, we significantly enrich the research on CI and environ-
mental issues by studying the joint influence of these developments on carbon emis-
sions generated in the process of electricity production that accompanies economic
growth.

The original contributions of this research are outlined below. First, we concentrate
on carbon emissions from the energy system, or CI, which adds to a rather limited litera-
ture that has traditionally preferred CO2 or GHG emissions to capture environmental
damage. Second, the System-GMM panel estimators we use concurrently with the delta
method deal with endogeneity and cross-sectional dependence reveal both the short- and
long-run dynamics between the variables of interest in our model, allowing for a more
nuanced understanding of decarbonization and its drivers and, ultimately, better-fitting
environmental policies. Third, in addition to the importance of renewable energy in
achieving decarbonization, which is a traditional variable in environmental models, we
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examine the combined impact of structural transformations in economies around the
world and globalization, as proxied by trade openness, on CI, demonstrating how their
interaction may support decarbonization and ultimately producing evidence on synergis-
tic effects across multiple SDGs of the 2030 Agenda. To the best of our knowledge, this is
the first contribution that examines the relationship between CI, renewable energy, and
energy intensity in relation to economic transformation and globalization. This provides
significant insight into the policy tools required to stimulate decarbonization while
maintaining economic growth. Finally, by categorizing the countries in our panel based
on their development level, we reveal the potential differences that the demands of
growth in the developing world impose on decarbonization drivers as well as the paths
taken by developed countries toward less polluting economic activity.

The remainder of our paper is divided into four major sections. Section 2 presents
the relevant theoretical and empirical approaches in the literature, Section 3 outlines
the research methodology, Section 4 shows the main results and discusses them in rela-
tion to previous findings, and Section 5 concludes by highlighting the main avenues for
decarbonization policies revealed by research, as well as future explorations of the topic.

2. Literature review

Urgent action is needed to combat the impact of climate change, and the inter-
national community has started taking steps in this respect as part of the Paris
Agreement and COP26, which aim to maintain global warming to below 2 �C by
2100. To achieve this, several countries vowed to reduce their total GHG emissions
by adhering to nationally determined contributions (NDCs) and net-zero targets.

However, it is increasingly important to make the distinction between absolute pollu-
tion, or total GHG emissions (IEA, 2017; Lin et al., 2011), and relative pollution, or car-
bon intensity (Wilson et al., 2018; Vuuren et al., 2018), which measures the volume of
emissions per unit of GDP or per electricity produced or consumed. Jaller and
Matthews (2021) argue that measuring total emissions do not clearly explain how effi-
ciently entities use their resources, and what kind of economic growth leads to changes
in total emissions. The authors argue that whilst making intensity improvements do not
guarantee short-term reductions in total emissions, the trajectory of whether an entity
is emitting less for a unit of output is relevant. To this end, it is important to consider
economic growth in the context of intensity-based measures to determine whether enti-
ties are decoupling their economies in their road to decarbonization. Otherwise, total
carbon reduction targets could make it more difficult for entities to meet their climate
goals and remain competitive by reducing their flexibility to make incremental
improvements. Similarly, Khan (2019) supports the use of CI with the aim of finding
opportunities for emissions reductions in the electricity sector.

One of our key research questions is whether entities are decoupling their econo-
mies to eventually drive absolute decarbonization. To address this, we compare inten-
sity-based measures (e.g., renewable energy consumption) with economic growth and
structural transformation, in line with the use of GDP (for countries) or revenues
(for firms) by groups such as S&P Dow Jones in their carbon intensity indices.
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According to the Environmental Kuznets Curve (EKC) theory proposed by
Kuznets (1955), there is an ‘inverted U curve’ between environmental pollution and
economic growth, which means that economic growth initially generates high levels
of environmental deterioration relative to income, but the trend reverses as incomes
rise (Uchiyama, 2016). Extant literature remains mixed regarding the validation of
EKC (Sarkodie & Strezov, 2019), but we find interesting the results of Li et al. (2019)
that identified two high-order clusters during 1971–2010, namely higher and lower-
income countries, which showcased distinct features in respect to their carbon inten-
sities. In our paper, we similarly group countries using World Bank (2022) income
level country classification.

Scale, composition, and technique/technology are the main drivers of the economic
growth impact on the environment, with different relative importance depending on
the position on the curve (Grossman & Krueger, 1995; Nathaniel et al., 2021). Thus, the
scaling-up of economic activities at the initial stages of growth, driven by increased
demand for energy, results in high GHG emissions, particularly when the demand is
satisfied mostly by fossil fuels (Baloch et al., 2019). As the economy continues to grow,
the scale effect is replaced by a composition effect determined by a structural shift asso-
ciated with the development and consolidation of industrialization (Hettige et al., 2000;
Shahbaz & Sinha, 2019). However, in the advanced stages of growth, the technique/-
technological effect enters the picture forcefully, as economies begin investing in cleaner
processes that mitigate more successfully the negative impact of development on the
environment (Balsalobre-Lorente et al., 2018). Murshed et al. (2022) drew attention on
the threshold level of economic development level that leads to the EKC to bend and
suggest that, typically, the scale and composition effects are prominent before the
threshold is reached, while the technological effect is more powerful after the threshold
level. Therefore, one should expect finding a more substantial significance of the first
two effects for the relationship between economic growth and emissions for less devel-
oped economies and of the third effect for more developed countries.

The impact of economic structural transformations on environmental quality must
thus not be overlooked. Scholars agree that large GHG emission reductions cannot be
realized without transitioning to more sophisticated economic activities that enable
technologically improved manufacturing that increases productivity and reduces emis-
sions (Andreoni et al., 2021; Markaki et al., 2021). Scholars have tried many methods to
incorporate economic developments into emissions or carbon intensity models. Zheng
et al. (2020) used the Logarithmic Mean Divisia Index (LDMI) decomposition to separate
industry segments into emission- and non-emissions-dominating groups and examine
CO2 emission reduction in many Chinese cities under different industrial transformation
trajectories. Ma et al. (2019) employed a similar technique. Dynamic spatial models that
study industrial structure and technological growth under environmental constraints
have also been suggested in the literature (Li et al., 2017; Usman & Hammar, 2021).

An emerging line of research, that we also embrace, included the level of structural
transformation of economies in econometric models through high-tech exports (HTE),
considered a good indicator of a country’s industrialization and economic transform-
ation process (Freire, 2021). Beser and Soyyigit (2019) discover that per capita income
has a greater impact on CO2 emissions than HTE in G20 nations, even while developed
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countries grow their emissions through production and export. Tnani (2018) found
that HTE, R&D, innovation, and environmental levies can reduce emissions in leading
innovative countries with the most patent applications. These findings encourage us to
use HTE to represent structural transformation.

Urban and Nordensv€ard (2018) demonstrate that Nordic nations’ high low-carbon
energy shares explain their decoupling of economic development from carbon emis-
sions. Their findings suggest that adding low-carbon and renewable energy to the
energy mix could boost economic growth and reduce pollution. According to Zafar
et al. (2019) and Nathaniel et al. (2021), preferring low-carbon energy can alleviate
environmental harm without affecting economic growth, allowing the economy to enter
the descending phase of the EKC sooner and improving environmental conditions. In
their study of low-carbon technologies’ direct and spillover effects on carbon emissions,
Sun et al. (2019) found that technological improvement can hasten the EKC’s inflection
point. Su et al. (2021) and Pincheira and Zuniga (2021) also concluded that technology
positively impacts emissions and, further, EKC.

There are several ways to accomplish climate commitments without impeding eco-
nomic growth. Horobet et al. (2022) concluded that globalization measured by trade
openness might reduce the CI of energy production, but biofuels could raise it. This
suggests that switching to nuclear and renewable energy could assist countries achieve
their sustainable development goals faster. York (2016) shows that decarbonization may
increase energy demand, thus authorities must ensure that green energy replaces car-
bon-based energy consumption. This is consistent with Zehner (2012) and Molyneaux
et al. (2010) who found that reducing carbon emissions per unit of energy may ultim-
ately increase energy demand.

Other factors may affect carbon emissions; however literature is inconsistent regard-
ing their underlying relationship. Our study examines the dynamic links between car-
bon and energy intensity, renewable energy, economic development, structural
transformation, and globalization in 126 countries with different economic develop-
ment levels. Cheng et al. (2019) explored how renewable energy supply, economic
development, exports, foreign direct investment, and domestic lending to the private
sector affected carbon emissions per capita for Brazil, Russia, India, Indonesia, China,
and South Africa (BRIICS) between 2000 and 2013. The analysis reveals that while
renewable energy, foreign direct investment, and domestic credit to the private sector
might dramatically reduce carbon emissions per capita, GDP per capita and exports
tend to raise them. However, Wu et al. (2018) used the Gini coefficient to show that the
CI gap between 30 Chinese provinces between 1997 and 2014 increased. Economic
growth, foreign direct investment, and trade openness negatively affected CI, while
urbanization was its main driver in China’s provinces.

Sarkodie and Strezov (2019) observed that foreign direct investments targeting sus-
tainable energy can help emerging economies meet their environmental targets.
However, Zhu et al. (2016) found a negative link between carbon emissions and foreign
direct investment, with the result becoming significant at higher quantiles. The study
also indicated that trade liberalization reduced carbon emissions. Hu et al. (2018)
agreed that emerging economies should expand commercial services trade for low-car-
bon economic growth.
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Our contribution to the existing body of research is to observe the common effects
of various evolutions on environmental challenges but provide a deeper understand-
ing of the interactions between economic transformation, technology, trade and glo-
balization, renewable energy, energy intensity, and carbon intensity.

3. Research methodology

3.1. Panel data set

This study uses a set of panel data for 126 countries from 2007 to 2021. To allow for
the estimation of a dynamic model while maximizing the number of observations, the
countries have been selected based on the criteria of at least two years of available
data. Consequently, an unbalanced global panel has emerged.

The dependent variable in the empirical investigation is represented by the CI of
electricity production, measured in grams of carbon emitted per kilowatt-hour. Based
on the Kaya identity, Peters et al. (2017) suggest using the energy CI (CO2/energy) to
track Paris Agreement progress (Yamaji et al., 1993; Kaya & Yokobori, 1997). The latter
is a mathematical identity that explains total GHG emissions as a product of popula-
tion, GDP per capita, energy intensity (energy per unit of GDP), and CI, commonly
used in environmental literature to examine the complex and multidirectional relation-
ships between these elements (Calbick & Gunton, 2014; Tavakoli, 2017). Thus, this
study’s goal is to examine the dynamic links between carbon intensity (CI), energy
intensity (EI), renewable energy (REC), economic development (GDP), structural trans-
formation (HTE), and globalization (GLOB)—see Equation (1). Variables are based on
carbon intensity and environmental anthropogenic literature.

CI � EIþ RECþ GDP þ GLOB þHTE (1)

Table 1 reports the variables included in the dynamic model, including abbrevia-
tions, definitions, and sources.

3.2. Method

We model the relationship between CI, energy intensity, and renewable energy using
dynamic panel data regression, moderated by globalization, economic development,
and structural transformation. Panel models are a robust methodology used in environ-
mental economics because of their numerous advantages over traditional cross-sec-
tional or time-series models, given the limitations of econometric analyses due to a lack
of observations (Tugcu, 2018). Furthermore, due to the speed with which they adjust to
changes in economic policies, panel data approaches are enticing for empirical analyses
in energy economics (Baltagi, 2005). These methodologies are particularly appealing to
our research topic because they allow us to investigate the short- and long-run dynam-
ics between the variables of interest, allowing for a more nuanced understanding of
decarbonization and climate change that may support better-adjusted energy and envir-
onmental policies. This represents, as outlined in the Introduction section, one of the
main contributions this paper makes to the literature.
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The generalized method of moments (GMM) that introduces the lagged dependent
variable among regressors is employed in this study to explore the relationships of inter-
est. The system-GMM (Sys-GMM) estimator proposed by Arellano and Bover (1995)
and Blundell and Bond (1998) has been confirmed as a strong estimator (Canh et al.,
2019) and is particularly suitable for wide short panels when N>T (Oseni, 2016; Wang
et al., 2022). Moreover, as opposed to the difference-GMM estimator, due to the inclu-
sion of the lagged dependent variable, Sys-GMM handles well omitted dynamics in static
panel data models (Omri & Nguyen, 2014). Equally important, Sys-GMM is robust in the
presence of potential endogeneity of regressors and/or heteroskedasticity and autocorrel-
ation within individuals (Canh et al., 2019; Konstantakopoulou, 2022; Roodman, 2009).
Consequently, as panel GMM techniques can effectively deal with endogeneity and
cross-sectional dependence (Apergis et al., 2022; Fang et al., 2022), they are implemented
in the empirical investigation to uncover the short-run dynamics in estimating the pro-
posed carbon intensity model. Of note, both the Difference and System-GMM estimators
are available, and both can be implemented in a one-step or two-step version. However,
it has been acknowledged that the System-GMM (Sys-GMM) technique is more efficient
than the difference-GMM, given its ability to improve precision and reduce finite sample
bias (Baltagi, 2008; Oseni, 2016), which motivated its choice in this research.

The extended form of the empirical model is given by Equation (2). Of note, li
stand for fixed country effects, ut stand for time-effects, eit is the error term with
zero-mean, whereas all other variables are presented in Table 1.

CIit ¼ b0 þ b1CIit�1 þ b2LnðGDPÞit þ b3EIit þ b4RECit

þ b5GLOBit þ b6HTEit þ li þ ut þ eit
(2)

where i¼ 1,… ,126 and t¼ 2007,… ,2021.
We estimate this dynamic model with a one-stage and a two-stage system GMM esti-

mator. Of note, in the framework of a dynamic panel model as per Equation (2), all the
estimated coefficients are interpreted as short-term effects of the driving factors.
However, as the global fight against pollution is a long-term process, the assessment of

Table 1. Variable description and data sources.
Variable Notation Variable description Data source

Carbon intensity CI Carbon intensity of electricity
production–grams of carbon emitted
per kilowatt-hour.

BP Statistical Review of World
Energy and Ember via Our World
in Data (OWID) database

Energy intensity EI Energy intensity or energy consumption
per unit of GDP–kilowatt-hours per
2011 international-$

Renewable energy REC Share of primary energy consumption
that comes from renewable
sources (%)

Economic development GDP GDP per capita (constant 2015 US$) World Development Indicators
(WDI) database, World BankGlobalization GLOB Globalization, as proxied by trade

openness, is the sum of exports and
imports of goods and services
measured as a share of gross
domestic product (%)

Structural transformation HTE Proxied by high-technology exports
share in manufactured exports (%)

Source: Authors’ computation.
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the long-term effects of the explanatory variables is equally relevant. In this context, we
additionally implement the procedure developed by Papke and Wooldridge (2005) to
reveal the long-run coefficients for the main variables. In particular, the procedure
requires rescaling each short-term coefficient by a factor of (1-the coefficient of the
lagged dependent variable)-1. Furthermore, the standard errors for the long-run coeffi-
cients are produced using the delta method, via the ‘deltaMethod’ function within R’s
‘car’ package (Fox & Weisberg, 2019), similar to Kripfganz and Schwarz (2019) and
Sakyi and Immurana (2021). Additionally, the asymmetric effects of driving factors are
also assessed though re-estimating the main model depicted in Equation (2) on two dif-
ferent income-based subpanels of countries according to the World Bank classification.

Overall, this research employs several investigative techniques, as follows: (i) It per-
forms an exploratory analysis of data to assess the main relationships and the heterogen-
eity across countries; (ii) It estimates System-GMM dynamic panel models in one-step
and two-steps variant to assess the relationship of interest on the short-run; further-
more, it applies the Windmeijer (2005) correction to produce robust covariance matrix
within the two-step Sys-GMM estimation; (iii) It employs the Papke and Wooldridge
(2005) technique corroborated with the delta method to assess the relationship of inter-
est on the long-run; (iv) It performs diagnostic tests to confirm the reliability of the
results, including the J-test of over-identifying restrictions developed by Sargan (1958)
and Hansen (1982) for the null hypothesis of instrument validity and the test for
second-order serial correlations in the residuals proposed by the Arellano and Bond
(1991). Additionally, Wald tests for the coefficients and for time dummies are estimated
and reported (Wooldridge, 2010). Also, time dummies included in estimations can also
capture any potential structural break in the time series (Corbacho et al., 2010; Rahman
et al., 2022); (v) It explores potential asymmetry in the impact of explanatory variables
on carbon intensity, which concurrently contributes to assure the robustness of results,
and (vi) It further checks the findings’ robustness by employing the Dumitrescu-Hurlin
causality test (Dumitrescu & Hurlin, 2012) to confirm the bidirectional causal nexus
between the proposed driving factors and carbon intensity at the world level.

All estimations are carried out in R software. Specifically, System-GMM models
are estimated by calling the dedicated ‘pgmm’ function in the R ‘plm’ package devel-
oped by Croissant and Millo (2008).

4. Results and discussion

This section of the study presents the main findings resulting from the Sys-GMM panel
regressions, complemented with a Granger causality analysis to verify the robustness of
outcomes. We first present an exploratory analysis of the underlying variables in the
panel and then proceed to estimation results and discuss them against existing literature.

4.1. Exploratory data analysis

Table 2 presents descriptive statistics. The global panel reported significant heterogeneity
among countries for all variables, with notably high ranges in economic development
and structural transformation, as evidenced by the share of high-technology exports in
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manufactured exports. The CI of electricity production ranges from zero to 819.44 grams
of carbon emitted per kilowatt-hour, with a 381.44 mean. Energy intensity ranges from
0.23 to 6.30, averaging 1.31. As expected, the global energy mix varies widely, with fossil-
fuel-reliant countries consuming zero renewable energy and decarbonized countries
using 82.83 percent. The global panel averages 13.32 percent renewable energy.
Globalization averages 88.57 and high-tech exports 12.44.

Figure 3 shows the worldwide panel’s energy-carbon intensity relationship in each
country’s most recent year of data. Even though most industrialized economies (exclud-
ing Singapore, Estonia, and the UAE) have both low energy intensity and high carbon
intensity, preliminary data suggest a positive association between the two (bottom left
quadrant of the graph). The same section of the graph shows other developing countries
with low energy and carbon intensity, including Angola, Kenya, Colombia, and Nepal.

Table 2. Descriptive statistics.
Variable Mean Standard deviation Min Max

CI 381.44 208.38 0.00 819.44
EI 1.31 0.79 0.23 6.30
RE 13.32 15.56 0.00 82.83
GDP 16401.37 20560.03 281.93 112417.88
GLOB 88.57 55.10 11.86 437.33
HTE 12.44 61.69 0.00 2200.24

Source: Authors’ computation.

Figure 3. The relationship between the Energy intensity (EI) and the Carbon intensity of electricity
production (CI) at the world level; the last year of available data per country. Source: Authors’ rep-
resentation with data from the BP Statistical Review of World Energy and Ember.
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This suggests that the relationship between the two variables is influenced by factors
other than development, such as the share of renewable energy in total energy sources,
which is linked to technological advancement and economic structural transformation.

Figure 4 shows global renewable energy-carbon intensity correlation. Visual inspec-
tion suggests a substantial negative association between the two factors and significant
diversity among countries. Like in Figure 3, most wealthy countries are on the bottom
left of the graph, indicating low CI but also low renewable energy shares, whereas
numerous developing economies show similar or even lower CI with greater renewable
energy shares (Kenya, Sierra Leone, Eswatini, Nepal, Paraguay, etc.). However, the latter
countries are not major polluters and may have significant renewables shares due to
natural endowments (mostly hydropower and biomass). At the other end, developed
economies and many developing countries with easy access to fossil fuels, which have
built their progress on fossil fuels and have low renewable energy shares in their pri-
mary energy consumption, have only started a sustained transition toward low-carbon
energy sources in the last decade (Chapman & Okushima, 2019; Wang et al., 2022).

4.2. Estimation results and discussion

All empirical results, including the two-step Sys-GMM estimates with their long-run
coefficients and the one-step estimates for the global panel of 126 countries, are

Figure 4. The relationship between the share of primary energy consumption that comes from
renewable sources (REC) and the Carbon intensity of electricity production (CI) at the world level;
last year of available data per country. Source: Authors’ representation with data from the BP
Statistical Review of World Energy and Ember.
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summarized in Table 3 and Appendix A, respectively. It should be mentioned that in the
Sys-GMM framework, a two-step estimator is acknowledged as more effective than a
one-step estimator (Biresselioglu et al., 2016). Thus, although the coefficients for both
versions are estimated and reported, the discussion of findings will concentrate on the
estimates produced by the two-step Sys-GMM version, included in Table 3.

Firstly, complying with two key conditions is paramount to assure the consistency of
System GMM estimations, as follows: (i) the lack of serial correlation in the error term;
and (ii) the lack of correlation between the instruments and the error term. As men-
tioned, these conditions are tested with the AR(2) and the J-test of over-identifying
restrictions, respectively, which are reported within the results tables. Test results con-
sistently indicate that both the null hypothesis of no second-order serial correlation in
the error term, as well as the null hypothesis of valid instrumentation, are accepted in
all specifications. Consequently, all diagnostic tests support the model’s validity, which
allows for the discussion of empirical findings.

The estimation results show that energy intensity affects carbon intensity positively
and significantly, suggesting that if energy intensity increases by one unit, we expect the
carbon intensity to increase by 88 units, on average. This finding is in line with the
results obtained by Eluwole et al. (2020) in the case of the top 10 polluting countries,
Yu et al. (2020) for Chinese provinces, and Rahman et al. (2022) for large emerging
economies. Considering the long-term declining trend in energy intensity (Peters et al.,
2017), this result points towards expectations of reducing carbon intensity at global
level. Moreover, lower emissions from manufacturing and transportation were the effect
of lower energy intensity, along with changes in fuel mix towards increased low-carbon
energy (Greening, 2004; Schipper et al., 2001).

Other findings indicate that renewable energy consumption negatively and signifi-
cantly affects carbon intensity, suggesting that increasing renewable sources in the
energy mix can help countries mitigate the carbon intensity of electricity generation
and meet Paris Agreement NDC emissions reduction targets. This result agrees with
Adams and Acheampong (2019), Saidi and Omri (2020a), Wang et al. (2022), and
Rahman et al. (2022). Thus, we contribute to scholarly literature and international
bodies’ research and guidance on renewable energy’s crucial role in pollution mitiga-
tion. Changing the fuel mix to low-carbon energy sources is difficult, but technology

Table 3. Two-step system GMM estimates for the carbon intensity model.
Dependent variable: carbon intensity (CI) Two-step

Independent variables Estimatea

CI(-1) 0.08 (0.10)
EI 87.96��� (18.74)
RE �8.26��� (1.76)
GDP �59.30�� (24.15)
GLOB 0.27 (0.23)
THE 1.85� (1.00)
Hansen/Sargan J-test (p-value) 0.70
AR2 test (p-value) 0.88
Wald test for coefficients (p-value) 0.00
Wald test for time dummies(p-value) 0.00
�, �� and ���: significant at 10%, 5% and 1%, instruments are collapsed; standard errors are reported in parenthesis.
aThe robust covariance matrix proposed by Windmeijer (2005) is enabled through the ‘robust’ argument in the
‘pgmm’ object summary method (see Croissant & Millo, 2008).
Source: Authors’ computation.
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developments and the growing difficulty of fossil fuel exploitation have made renewable
energy cheaper and more affordable (Bazilian et al., 2013; Kalair et al., 2021). As
Fernandez et al. (2016) shown for Spain, the more persistent the integration of renew-
ables into the energy mix, the lower the power price since cheaper renewables would
replace more expensive traditional producers.

Most importantly, for the entire world panel, increased GDP per capita offers the
economic underpinning for carbon intensity reduction and decarbonization. Thus, eco-
nomic growth emerges as the most effective global carbon intensity moderating factor,
showing that, on average, countries have decoupled economic and pollution growth.
These findings support Davidsdottir and Fisher (2011), Cheng et al. (2018), and Dogan
and Seker (2016), who discovered a link between economic growth and carbon intensity
reduction in the US and EU-28 countries. However, current research shows a decou-
pling between economic development and carbon intensity, not only in developed
economies like the US or EU, which may indicate that world economies have achieved
a level of economic development that supports environmental degradation decrease.

In turn, the structural transformation factor coefficient is positive and statistically
significant at 10%, indicating that progress towards structural transformation will
increase electricity generation’s CI. This mirrors research that show early economic
development falls due to excessive resource exploitation, fossil fuel focus, and unsus-
tainable industrialization (Baloch et al., 2019; Copeland & Taylor, 2004; Nathaniel
et al., 2021). Thus, structural transformation limits carbon intensity improvement glo-
bally and on average. We agree with Fankhauser et al. (2013) and Golub and Toman
(2016) that structural transformation, including technological innovations, is one of
the main inducers of emissions mitigation, along with intelligent carbon policies and
renewable energy investments. We also concur with Andersson and Karpestam (2013)
that reconfiguring economic structures and instituting a worldwide carbon price will
make green technology investments more profitable.

It should also be noted that current findings do not establish a link between globaliza-
tion and the carbon intensity of electricity generation for the panel of 126 countries con-
sidered in this study. This contradicts the findings of Rafiq et al. (2016) and Fang et al.
(2020), which demonstrate that trade openness reduces carbon intensity. However, both
papers included urbanization as a regressor, which may have affected their conclusions
compared to ours. However, Ezcurra (2007) found no evidence of trade openness as a
possible explanatory variable for the dispersion of carbon emissions per capita in a panel
of 87 countries, while Wang and Zhang (2021) reported a heterogeneous effect of trade
openness on the decoupling of economic development and carbon emissions.

Notably, energy efficiency, renewable energy consumption, economic development, and
structural transformation all have large implied long-run coefficients that match the short-
term effects. Table 4 presents estimates of the independent variables’ long-term effects
based on Papke andWooldridge (2005) using the DeltaMethod() function in R’s ‘car’ pack-
age. This finding informs policymakers that these CI determinants are crucial both over
short- and long-term. Since renewable energy consumption and economic development
have a bigger long-term mitigating effect, energy mix and income improvements have a
higher marginal influence on long-term carbon intensity improvement. Thus, these results
highlight the major implications of consistent long-term climate policies.
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Subsequently, we apply the Dumitrescu and Hurlin (2012) Granger causality test
to uncover causal relations among the variables of interest that might have escaped in
the analysis of long-run coefficients. Additionally, the causal links among factors
complement the long-run estimates in informing effective energy policies (Bui et al.,
2021). Of note, Pesaran’s CD test (Pesaran, 2004, 2021) has been first applied to the
lagged variables to evaluate potential cross-sectional dependence in our sample. Test
results (available upon request) consistently confirm cross-sectional dependence,
which in turn indicates that Pesaran’s CIPS test (Pesaran, 2007) is appropriate to
assess data stationarity. Results (not reported) indicate that GLOB and HTE are I(0),
whereas all other variables are I(1). However, it should be mentioned that results
might be unreliable due to the unbalanced nature of the panel (i.e., countries with
non-consecutive periods), which can also affect Granger estimations.

The results of the Dumitrescu-Hurlin panel causality test results are reported in Table
5. As usual, non-stationary variables were first transformed into stationary variables by
taking the first difference. To estimate panel Granger (non)-causality tests, the global
panel has been redesigned to include all countries with at least 8 yearly observations,
meeting the minimal observations requirement for R’s ‘plm package’ pgrangertest()
function. Thus, Granger tests are estimated on a 57-country panel, making results unreli-
able for comparison. However, reverse causality can reveal endogeneity (Li et al., 2021).

Long-term estimates show that energy intensity causes carbon intensity, but not
the inverse. This finding is consistent with research on energy consumption, income,
and carbon emissions in the US (Soytas et al., 2007), Turkey (Shahbaz et al., 2013),
and China (Zhang & Cheng, 2009). However, we do not support previous findings of

Table 4. The long-run impact of driving factors on carbon intensity.
Dependent variable: carbon intensity (CI)

Independent variables Long-run coefficients
EI 96.61 (11.33)���
RE �9.07 (1.03)���
GDP �64.45���
GLOB 0.30 (0.11)
HTE 2.03 ���(0.3)
Hansen/Sargan J-test (p-value) 0.70
AR2 test (p-value) 0.88
Wald test for coefficients (p-value) 0.00
Wald test for time dummies (p-value) 0.00
�, �� and ���: significant at 10%, 5% and 1%, instruments are collapsed; standard errors are reported in parenthesis.
Source: Authors’ computation.

Table 5. Results (Z-tilde) of Dumitrescu-Hurlin panel causality test.
Hypothesis Z-tilde

EI!CI 2.65���
CI!EI �0.15
RE!CI �0.66
CI!RE 1.39
GDP!CI �1.35
CI!GDP 0.94
Trade!CI �0.20
CI!Trade �2.08��
HTE!CI 1.16
CI!HTE �0.25
�� significant at 5%; ��� significant at 1%. ‘!’ indicates that the first variable Granger causes the second variable.
Source: Authors’ computation.
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bi-directional relationships between energy intensity or consumption and emissions—
Sharif et al. (2020) for Turkey, Asumadu-Sarkodie and Owusu (2016) for Ghana. This
may be due to the large global panel of countries addressed in this study, as opposed
to single country estimates in previous studies.

Moreover, CI mitigates structural transformation (high-technology exports), sug-
gesting dynamic endogeneity may cause estimation issues. Thus, dynamic endogeneity
in the current setting biases conventional panel methods like fixed effects estimators,
calling into question past studies using similar approaches (Li et al., 2021). System-
GMM estimators can handle endogeneity produced by reverse causality and unob-
served heterogeneity by ‘internally altering the data’ (Ullah et al., 2018; Leszczensky &
Wolbring, 2022), boosting confidence in current findings.

In the final step, we evaluate the potential asymmetric effects of CI drivers due to
countries’ economic development stages. This method also assesses the robustness of
findings to economic progress (Chen et al., 2005). The entire sample is divided in two
income-level sub-panels, according to the World Bank classification: (1) 44-country
high-income (HI) sub-panel; (2) 34-country middle and low-income (MLI) sub-panel.
This analysis covers all countries with at least three years of observations, creating two
unbalanced income-based sub-panels. Table 6 shows that renewable energy and high-
technology export determinants differ across high-income and low- and middle-income
countries. Thus, renewable energy reduces carbon intensity in high-income countries
but has no statistically significant effect in low- and middle-income countries. These
findings confirm Taconet et al. (2020) and Nguyen and Kakinaka (2019) findings that
countries have different renewable energy potentials and that high-income countries
have a negative association between renewable energy consumption and CO2 emissions.
However, we cannot confirm the positive effect of renewables on emissions in low-
income countries as advanced by the latter authors, but our findings support the
‘neutrality’ between the two variables in low-income countries, explained by the uneven
and inadequate utilization of renewable energy sources (Saidi & Omri, 2020b).

On the contrary, the structural transformation factor, denoted by high-technology
exports, has a negative and considerable influence on CI in low- and middle-income

Table 6. Robust two-step system GMM estimates for the carbon intensity model on income-based
sub-panels.
Dependent variable: carbon intensity (CI) High-income Lower middle income

Independent variables Estimatea Estimatea

CI(-1) 0.44��� (0.17) 0.80��� (0.11)
EI 31.83 (20.1) �12.91 (48)
RE �4.88��� (1.76) �2.25 (2.10)
GDP �56.48 (49.05) �32.10 (78.08)
GLOB �0.41 (0.29) �0.09 (1.20)
HTE �0.18 (0.44) �2.37��� (0.80)
Hansen/Sargan J-test (p-value) 0.90 0.97
AR2 test (p-value) 0.30 0.42
Wald test for coefficients (p-value) 0.00 0.00
Wald test for time dummies (p-value) 0.03 0.15
�, �� and ���: significant at 10%, 5% and 1%, Instruments are collapsed; standard errors are reported in
parenthesis.
aThe robust covariance matrix proposed by Windmeijer (2005) is enabled through the ‘robust’ argument in the
‘pgmm’ object summary method (see Croissant & Millo, 2008).
Source: Authors’ computation.

16 C. D. TUDOR ET AL.



countries. In high-income countries, this effect is absent. Thus, as economic develop-
ment increases, renewable energy impacts increase and high-technology export effects
decrease. Moreover, this finding reinforces the need for lower-income countries to shift
their economies toward less-polluting sectors and industries, profiting from natural
endowments in non-fossil fuels and/or trade and foreign direct investments (Horobet
et al., 2021). In a volatile global climate with unpredictable energy prices and political
conflicts, this will also boost resilience, competitiveness, and minimize exposure to fos-
sil fuel costs and carbon price risk (Bulai et al., 2021; Rodrik, 2009; Teignier, 2018).

5. Conclusions

Carbon intensity-based indicators that show resource efficiency and decoupling of eco-
nomic growth and pollution are becoming more important in global climate combat.
Thus, mitigating factors for CI are paramount for carbon abatement policies. In this con-
text, this study is a valuable contribution in the area of carbon intensity research that pro-
vides complex insights into the interactions between carbon intensity, renewable energy,
energy intensity, structural transformation, and globalization. Ultimately, the current
research produces evidence on synergistic effects across multiple SDGs of the 2030
Agenda. System-GMM panel estimators were used with the delta approach to address
endogeneity and cross-sectional dependence and highlight short- and long-term dynam-
ics between variables. By estimating short- and long-term effects, analyzing feedback
effects and endogeneity via panel Granger causality tests, and re-estimating the correla-
tions of interest on two income-level subpanels, the findings were proved to be robust.

Estimation results identified economic growth as the most effective mitigating factor
of carbon intensity globally, revealing that, on average, countries managed to decouple
economic and carbon intensity growth. This also suggests that global climate change
regulations and packages in recent decades have not hurt economic growth, suggesting
that continuing this route is the best approach to manage environmental degradation.
Furthermore, supporting low- and middle-income nations develop through energy sys-
tem reform and energy efficiency will accelerate the world’s progress toward the 2050
carbon neutrality objective.

Renewable energy consumption can also decrease carbon intensity significantly at
the world level. Moreover, the mitigating impact of renewable energy consumption and
economic development is stronger in the long term, highlighting the significant impli-
cations of consistent long-term climate policies. However, a disaggregation occurs
between high-income and low- and middle-income countries whereby renewable
energy has a strong mitigating effect on carbon intensity in high-income countries, but
not in low and middle-income countries. This finding supports international agendas
to adopt renewable energy as an effective pollution mitigant and strengthens the need
for lower-income countries to focus on growing less or non-polluting sectors, by taking
advantage of natural endowments in non-fossil fuels and/or trade and foreign direct
investments. In this regard, providing affordable financing to lower-income countries
to scale up their renewable energy infrastructure and supporting private sector renew-
able energy investments through international institutions or private-public partner-
ships may be successful in utilizing many lower-income countries’ natural endowments
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(water, wind, solar, etc.) in renewable energy. Besides, elaborating and, more crucially,
implementing national or regional plans to attract foreign direct investments in renew-
able energy and circular economy industries may help mitigate climate change, create
jobs, promote domestic industries, and boost economic growth. Furthermore, economic
structural transformations also affect environmental quality. Estimation results show
heterogenic effects: the structural transformation factor, proxied by high-technology
exports, significantly decreases carbon intensity in low and middle-income countries,
has no significant effect in high-income countries, and increases carbon intensity for
the global panel, implying that structural transformation progress leads to increased
carbon intensity of electricity generation globally. These findings show that lower-
income nations that escape commodity dependence and achieve structural change
(World Economic Forum, 2022) can profit from lowered pollution. This objective com-
plements the ‘twin transition’ goal of decarbonization and digitalization forged by ICT
development in both the developed and developing worlds. As structural transform-
ation continues, we advise countries to emphasize renewable energy sources and inte-
grate technological development into energy systems’ reform.

The limitations of our research reside around data availability, which limited the
options regarding the estimation methods. Also, several other variables may have been
included in the model, but this might have altered the information to be extracted from
the links we aimed at exploring. We intend to address these in future research, along
with investigating the impact of globalization considering foreign investments (direct
and portfolio) instead of trade, as well as the relevance of countries’ existing energy mix
and environmental measures, including commitments to fight climate change, on the
carbon—energy intensity relationship.
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Appendix A. One-step system-GMM estimates

Dependent variable: carbon intensity (CI) One-step

Independent variables
CI(-1) 0.09 (0.17)
EI 77.43 (54.53)
RE �5.37� (3.26)
GDP �66.15�� (31.21)
GLOB 0.40 (0.64)
HTE 1.59 (2.17)
Hansen/Sargan J-test (p-value) 0.45
AR2 test (p-value) 0.66
Wald test for coefficients (p-value) 0.00
Wald test for time dummies(p-value) 0.50
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