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THE QUASIREGULAR PROJECTIVE PLANES OF ORDER

16

Marc Röder

National University of Ireland, Galway

Abstract. The projective planes of order 16 admitting a large (≥
137) quasiregular group of collineations are classified. The classification is
done using the theorem of Dembowski and Piper [DP67] and a complete
search by computer. No new planes are found.

1. Introduction

Let P be a projective plane of order n and G a group of collineations of
P. The group G is called quasiregular if it acts regularly on its point and
line orbits, i.e. if the point-(line-)stabiliser is a normal subgroup in G. The
quasiregular group is called large if |G| > 1

2 (n2 + n + 1). By [Dem68, 4.2.8,
p.181], a group of collineations of a projective plane acts faithfully on at least
one point or line orbit. Up to duality, we may assume that this is an orbit of
points. So a large quasiregular group of collineations has exactly one orbit of
size |G| on points. One has:

Theorem 1.1 (Dembowski-Piper, [DP67], [Dem68, 4.2.10, p.182]). Let
G be a quasiregular group of collineations of the projective plane P of order
n. Denote by m = m(G) the number of point (or line) orbits of G, and by
F = F(G) the substructure of the elements fixed by G. If |G| > 1

2 (n2 +n+1),
then there are only the following possibilities:

DPa |G| = n2 + n + 1, m = 1 and F = ∅. Here G is transitive.
DPb |G| = n2, m = 3 and F is a flag.
DPc |G| = n2, m = n + 2 and F is either a unique line A and all x ∈ A or

dually a unique point c and all lines X ∈ [c].
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DPd |G| = n2 − 1, m = 3 and F is a unique non-incident point-line pair.
DPe |G| = n2 −√

n, m = 2 and F = ∅. In this case, one point and one line
orbit together form a Baer subplane.

DPf |G| = n(n − 1), m = 5 and F consists of two points u, v, the line
containing u and v and one other line through one of u, v.

DPg |G| = (n − 1)2, m = 7 and F consists of the vertices and sides of a
triangle.

In the following we will describe a computer search which leads to the
classification result of Theorem 1.2.

Theorem 1.2. Let P be a projective plane of order 16 with a large
quasiregular collineation group G and a regular point orbit. Then P is a
translation plane or the Mathon plane. Moreover the desarguesian plane oc-
curs as types DPa, DPb, DPc, DPd, DPf or DPg. The two semifield planes
occur as types DPb or DPc. The remaining translation planes occur only as
type DPc and the Mathon plane has type DPb.

The translation planes of order 16 have been classified in [DR83], i.e. only
types different from DPc have to be considered. In each of these cases, regular
orbits on points and lines exist. This leads to the difference set construction
which we describe in the next section.

A complete list of all groups and the types of planes they act on is given
in the appendix.

2. Notation, relative difference sets

Let G be a finite group and D, N ⊆ G. We say that D is a relative
difference set with forbidden set N , if there exists 0 < λ ∈ Z such that every
element of G−N can be expressed in exactly λ ways as a quotient d1d

−1
2 with

d1, d2 ∈ D and no element of N − 1 can be written like this. In group ring
notation: DD(−1) = k + λ(G − N).

We call (|G|/|N |, |N |, k, λ) with k = |D| the parameter tuple of the dif-
ference set D.

A relative difference set is called ordinary difference set or simply differ-
ence set if N = 1 holds. The incidence structure dev D := (G, {Dg

∣

∣ g ∈
G},∈) is called development of D and G acts (via right multiplication) as a
regular group of collineations on devD.

A set D ⊂ G is called partial relative difference set with forbidden set
N ⊆ G, if every element outside N can be written in at most λ ways as a
quotient in D and no element of N − 1 is a quotient of two elements of D.

Two partial relative difference sets D, D′ ⊆ G are called equivalent if
there is a g ∈ G and φ ∈ Aut(G) such that D = (Dg)φ. Two partial relative
difference sets D, D′ ⊆ G are called strongly equivalent if they are equivalent
and have the same forbidden set.



PROJECTIVE PLANES OF ORDER 16 233

Table 1. The difference set parameters of Theorem 1.1

type (|G|/|N |, |N |, k, λ)
DPa (n2 + n + 1, 1, n + 1, 1) N = 1
DPb (n, n, n, 1) N E G
DPd (n + 1, n − 1, n, 1) N E G
DPe (n +

√
n + 1, n −√

n, n − 1, 1) N E G
DPf (n/2, 2n− 2, n − 1, 1) N = A ∪ B, A, B E G

|B| + 1 = |A| = n, A × B = G
DPg ((n − 1)2/3n − 5, 3n− 5, n− 1, 1) N = A ∪ B ∪ C, A × B = G

|A| = |B| = |C| = n − 1

Obviously, equivalent relative difference sets induce isomorphic develop-
ments. Note that, in general dev D−1 6∼ dev D. Instead, it is easy to see that
dev D−1 ∼ (dev D)d, where ·d denotes the dual incidence structure.

For more about relative difference sets see [Pot95, Sch02, GJ03].

2.1. Difference sets from projective planes. Assume now that P is a projective
plane of order n and G a large quasiregular group of collineations which has a
regular point and line orbit. We identify the elements in that point orbit with
the elements of G. Let D be the intersection of the regular point orbit with a
line from the regular line orbit. Then D is a relative difference set. In table
1, the parameters for the difference sets of the Dembowski-Piper theorem are
given. The last column contains a description of the forbidden set. Observe
that in all cases, N is either a normal subgroup of G or a union of normal
subgroups. As DPc defines translation planes, it does not have a description
in terms of relative difference sets.

It is not difficult to see that in all cases dev D can be extended to a
projective plane of order n and that this extension is uniquely determined.
So in order to obtain Theorem 1.2 we have to classify all relative difference
sets of the respective types for n = 16.

3. The search

Before we give an algorithm to calculate all relative difference sets for
each of the cases of Theorem 1.1, we introduce an invariant for partial relative
difference sets which will be used during the search.

3.1. An invariant for partial relative difference sets. The following lemma is
a generalisation of a lemma of Bruck [Bru55] and the proof is very similar to
the original one.

Lemma 3.1. Let G be a finite group and U E G. Furthermore, let D ⊆ G
be a relative difference set with forbidden set N . We define vi := |D ∩ gi|,
where {g1, . . . , g|G:U|} = G/U = Gρ and ρ is the natural homomorphism. Let
g1 = U and vij = |D ∩ gigj |. Then
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1.
∑

vi = k.
2.

∑

v2
i = λ(|U | − |U ∩ N |) + k.

3.
∑

j vjvij = λ(|U | − |gi ∩ N |) for i 6= 1.
4. If N ≤ G, then

∑

j

vjvij =

{

λ(|U | − |U ∩ N |), if g1 6= gi ∈ Nρ,

λ|U |, if gi 6∈ Nρ.

Note that vij ∈ {v1, . . . , v|G:U|} is just the coefficient of gigj ∈ G/U in
Dρ ∈ Z[G/U ]. As the right sides in equations 1.–4. are known, we may
calculate solutions (v1, . . . , v|G:U|) of these equations before we search for a
difference set D. This results in a significant reduction of the search space.

Definition 3.2. Let N, U, G be as in Lemma 3.1. Let G/U =
{g1, . . . , g|G:U|} with g1 = U and v = (v1, . . . , v|G:U|) a solution of 1.–4. (with
vij = vgigj

). Then v is called ordered signature for U (relative to N). The
corresponding multiset ‖v‖ is called admissible signature for U (relative to N).
Moreover we define a mapping sU : P(G) → N

|G:U| by sU (S)(i) = |S∩gi| and
denote by σU (S) the multiset ‖sU (S)‖.

For every relative difference set D and every U E G, the tuple sU (D) is
an ordered signature and the multiset σU (D) is an admissible signature.

It is obvious that if U is a system of representatives of the Aut(G)-orbits
on {U E G

∣

∣ |U | ∈ I} for some I ⊆ N, and S a partial relative difference set,
we have

‖
(

σU (S)
)

U∈U
‖ = ‖

(

σU ((Sg)φ)
)

U∈U
‖ for all g ∈ G and all φ ∈ Aut(G).

So the mappings σU can be used as an invariant for equivalence classes of
partial relative difference sets. And we may in some cases even be able to
decide that a partial relative difference set can not be extended to a full rela-
tive difference set by comparing its image under σU to admissible signatures.
Note that using Aut(G)N instead of Aut(G) gives an invariant for strong
equivalence.

3.2. The algorithm. We will now outline the algorithm used in the search for
quasiregular projective planes of order 16. For each case of Theorem 1.1 other
than DPc, all possible groups and the respective forbidden sets are calculated
using the small groups library provided by GAP. Restrictions on the forbidden
sets are given in table 1. For each group G and all possible forbidden sets N ,
relative difference sets are then constructed using the following method:

1. choose a set V of normal subgroups of G (representatives of Aut(G)N

orbits, for instance) and calculate admissible signatures for them
2. choose normal subgroup U 6∈ V of small index with “nice” admissible

signatures
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3. generate partial relative difference sets (of maximal length) in U . Use
the mappings σV with V ∈ V to partition the found partial relative
difference sets and a test for strong equivalence on the partition ele-
ments

4. continue generating partial difference sets by adding elements from
non-trivial cosets modulo U as above (coset by coset) or by brute force
search (omitting partitioning and equivalence tests)

5. generate projective planes from the relative difference sets found
6. run isomorphism test on planes

The algorithm was implemented for each of the relevant cases of Theorem
1.1. Depending on the special case, slightly different implementations were
used for the above steps. For example, equivalence tests can be performed
at step 3. before the maximal length of partial relative difference sets in U is
reached. Some further aspects of the implementation will be discussed in the
next section. A more detailed description is given in [Röd06a].

3.3. Remarks concerning implementation. The calculation was done using the
computer algebra system GAP [GAP] and a package especially written for this
purpose [Röd06b]. GAP’s small groups library is used to look up all possible
groups. Implementations are available at [Röd].

3.3.1. Signatures and “nice” normal subgroups. For normal subgroups of
low index, it is possible to calculate not only admissible, but even ordered
signatures. Subgroups for which ordered signatures are known are considered
“nice” for step 2. of the algorithm. Of particular interest are those subgroups
which do only have one ordered signature (up to permutations induced by
right multiplication with group elements).

In case DPa, we also calculated ordered signatures for normal subgroups
of larger index using basic representation arguments for some groups G (see
[Röd06a] for details). Knowing ordered signatures enables us to use the map-
pings sV for some V in step 3. This is much more restrictive than using just
admissible signatures and σV .

3.4. Special methods for case DPb. In case DPb, all groups of order 28 have
to be considered. A preliminary argument is used to reduce the number of
groups in which a search for relative difference sets is actually conducted.

Lemma 3.3. Let D ⊆ G be a relative difference set of order n ≡ 0 mod 2
and type DPb with forbidden subgroup N E G. Let ι ∈ G be an involution.
Then ι ∈ N .

Proof. Let P be a projective plane of type DPb and order n. Let L∞

the line fixed by G. Any involutorial collineation of P is either planar or an
elation [Dem68, 4.1.9].

The affine points, i.e. the points not on L∞ form a regular orbit and are
identified with the elemets of G. Let ι ∈ G be an involution. Then ι is not
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planar as ι has no affine fixed-point. Thus ι is an elation. Then ι fixes n affine
lines which must be the cosets of N as ι acts fixed-point-freely on the affine
lines {Dg | g ∈ G}. Hence Nι = N and thus ι ∈ N .

In particular, a relative difference set of type DPb cannot exist in a group
containing “too many” involutions. This also rules out some subgroups as
forbidden subgroups (namely those not containing all involutions of the full
group).

3.4.1. Invariants for full projective planes. Isomorphism tests are done
using the number of Fano-subplanes as an invariant of projective planes. For
type DPb, the group of translations is calculated to determine if a plane is a
translation plane. By [Roy], the translation planes of order 16 are uniquely
determined by the number of Fano-subplanes (all translation planes of order
16 are known by [DR83]). For the remaining case, explicit isomorphisms are
constructed. The data for the known planes is available from [Roy].

Acknowledgements.

The author would like to thank U. Dempwolff for his support and for
independently verifying the result of case DPb.

4. Appendix: detailed results

This appendix lists all groups that admit an action as a large quasiregular
group of collineations on a projective plane of order 16. Because of its size
the case DPb will be treated in a separate section below.

4.1. Cases DPa–DPgwithout DPb. Let P be a projective plane of order 16
and G a group acting on P as a large quasiregular group of collineations. If
P is of type

DPa then G ≃ C273 or G ≃ C3 ⋉ C91 ≃ 〈a, b | |a| = 3, |b| = 91, ba = b16〉.
Note that there are two isomorphism types of groups C3 ⋉ C91, but
only one admits an action of type DPa.

DPd then G ≃ C255.
DPf then G ≃ C15 × C4

2 .
DPg then G ≃ C2

15.

In each of these cases, P is the Desarguesian plane.
There is no projective plane of type DPe and order 16. The planes of

type DPc are translation planes. For their classification we refer the reader
to [DR83].

4.2. Case DPb. The following table contains the 590 groups of order 256
which admit relative difference sets of type DPb.

The column labels “Des”, “Semi 2”, “Semi 4” and “Mathon” stand for
the Desarguesian plane, the semifield planes with kernel 2 and 4, respectively,
and the Mathon plane. Note that a group acts on the Mathon plane if and
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only if it acts on the dual Mathon plane. So there is no extra column for the
dual Mathon plane. And, of course, a mark means that there is an action on
the corresponding plane. Groups which are not in the table do not admit a
relative difference set of type DPb.

The groups are numbered as in the small groups library of GAP:

There are 56092 groups of order 256.

They are sorted by their ranks.

1 is cyclic.

2 - 541 have rank 2.

542 - 6731 have rank 3.

6732 - 26972 have rank 4.

26973 - 55625 have rank 5.

55626 - 56081 have rank 6.

56082 - 56091 have rank 7.

56092 is elementary abelian.

Group number 6732 is C4
4 .

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

296 • • •

331 • •

420 •

843 • • •

855 • •

874 •

876 •

909 •

938 • •

947 • •

956 •

961 •

963 • •

978 •

980 •

985 •

1001 •

1038 •

1052 •

1053 •

1060 • •

1066 •

1081 •

1086 • •

1101 •

1104 •

1108 •

3322 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

4509 • •

5287 •

5688 • •

5848 • • •

6732 •

6738 •

6753 •

6756 •

6760 •

6769 •

6774 •

6775 •

6781 • •

6785 •

6792 •

6794 •

6800 •

6807 •

6814 • •

6817 •

6821 • •

6822 •

6838 •

6842 • •

6843 •

6844 •

6848 • •

6851 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

6852 •

6873 •

6897 •

6916 •

6917 •

6919 • •

6920 •

6922 •

6938 • •

6942 •

6943 •

6949 • •

6952 • •

6964 •

6966 •

6973 •

6988 •

6991 •

6994 •

6997 •

7012 • •

7030 •

7036 •

7039 •

7043 •

7045 •

7046 •

7048 •
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Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

7049 •

7050 •

7053 •

7057 •

7071 •

7079 •

7080 •

7082 • •

7093 •

7101 •

7103 • •

7109 •

7111 •

7114 •

7121 •

7130 •

7139 •

7143 • •

7148 •

7149 •

7150 •

7151 •

7152 • •

7156 •

7162 • •

7167 •

7174 •

7179 •

7180 •

7191 •

7202 •

7205 •

7211 •

7214 •

7224 •

7226 •

7227 •

7233 •

7235 •

7238 •

7240 •

7258 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

7268 •

7272 •

7274 •

7284 •

7296 •

7306 •

7308 •

7316 •

7318 •

7334 •

7344 •

7366 •

7382 •

7402 •

7423 •

7429 •

7438 • •

7446 •

7447 •

7453 •

7454 • •

7458 •

7459 • • •

7460 •

7465 •

7471 • •

7473 •

7477 • •

7478 •

7489 •

7490 •

7498 •

7499 •

7519 •

7526 •

7538 •

7540 •

7542 •

7549 •

7562 •

7581 •

7583 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

7585 •

7586 •

7587 • •

7589 •

7593 •

7596 •

7602 •

7622 • •

7626 • •

7636 •

7638 •

7651 •

7652 •

7656 • •

7691 • •

7697 •

7698 •

7767 •

7769 •

7775 • •

7779 •

7788 •

7792 •

7838 •

7839 • •

7851 •

7855 •

7860 •

7866 •

7869 • •

7872 •

7926 •

7930 •

7938 •

7950 •

7963 •

7980 •

7982 •

7988 •

7996 •

7999 • •

8001 •
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Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

8016 •

8017 •

8024 •

8030 •

8032 •

8036 •

8039 •

8040 •

8041 •

8044 •

8048 •

8063 •

8073 •

8074 •

8077 • •

8082 • •

8084 •

8085 • •

8086 • •

8087 •

8092 •

8096 • •

8104 •

8107 • •

8109 •

8116 • •

8121 •

8131 •

8134 •

8152 •

8154 •

8172 •

8179 •

8181 •

8198 •

8227 •

8239 • •

8241 • •

8244 •

8306 •

8335 •

8337 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

8348 •

8355 •

8362 •

8370 •

8402 •

8423 •

8425 • •

8488 •

8491 •

8498 •

8509 •

8518 •

8521 •

8524 •

8530 •

8546 •

8561 •

8562 •

8569 •

8584 •

8589 •

8651 •

8671 •

8673 •

8679 • •

8680 •

8686 •

8687 • •

8691 •

8695 •

8708 •

8712 •

8717 •

8728 •

8735 •

8740 •

8748 •

8750 • •

8754 •

8755 •

8766 •

8767 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

8778 •

8781 •

8782 •

8787 •

8801 •

8805 •

8835 •

8837 • •

8842 • •

8845 • •

8846 • •

8848 •

8849 •

8850 •

8855 •

8860 •

8875 •

8876 •

8878 •

8879 •

8884 •

8891 •

8906 •

8921 •

8923 •

8925 •

8930 •

8952 •

8987 •

8989 •

8991 •

8995 •

8997 •

9010 •

9019 •

9021 •

9025 •

9028 •

9029 •

9046 •

9051 • •

9053 •
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Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

9054 •

9056 •

9063 •

9069 •

9070 •

9074 •

9081 • •

9083 •

9084 •

9096 •

9097 • •

9098 • •

9100 • •

9101 •

9104 •

9110 • •

9116 •

9118 •

9125 •

9126 •

9127 •

9128 • •

9131 •

9138 •

9143 •

9150 •

9151 •

9153 •

9154 •

9155 •

9156 •

9158 •

9160 •

9162 •

9164 •

9166 •

9167 •

9168 • •

9172 •

9173 •

9174 • • •

9176 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

9182 •

9189 •

9191 • •

9192 •

9204 •

9208 • •

9209 •

9213 •

9218 •

9219 •

9220 •

9223 •

9224 •

9225 •

9227 •

9229 •

9231 •

9236 •

9269 • •

9281 •

9364 •

9375 •

9376 •

9377 •

9394 •

9395 •

9397 •

9398 •

9400 •

9401 •

9424 •

9432 •

9436 •

9441 •

9448 •

9470 •

9471 •

9473 •

9481 •

9512 •

9541 •

9542 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

9553 •

9558 •

9564 •

9582 •

9586 •

9598 •

9599 •

9613 •

9617 • •

9618 • •

9674 • •

9675 •

9676 •

9683 •

9697 •

9698 •

9699 •

9701 •

9704 •

9709 •

9714 •

9720 •

9722 •

9727 •

9732 •

9733 •

9738 •

9740 •

9745 •

9748 •

9754 •

9757 •

9758 •

9764 •

9771 •

9772 •

9778 •

9780 •

9784 •

9794 •

9801 •

9814 •
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Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

9815 •

9828 •

9831 •

9837 •

9862 • •

9868 •

9877 •

9878 •

9885 •

9893 • •

9896 •

9900 •

9903 •

9906 •

9912 •

9919 •

9926 •

9930 • •

9932 •

9934 •

9935 •

9936 •

9938 •

9946 •

9947 •

9959 •

9960 •

9963 •

9967 •

9971 •

9976 •

9978 •

9981 •

9982 •

9983 •

9984 •

9986 •

9988 •

9990 •

9991 •

10009 •

10020 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

10022 •

10024 •

10030 •

10039 •

10041 • •

10042 • •

10043 •

10060 • •

10066 •

10069 •

10073 •

10100 •

10116 •

10120 •

10142 •

10150 •

10166 •

10173 • •

10179 •

10190 •

10197 •

10198 •

10200 •

10206 •

10207 •

10234 •

10244 •

10246 •

10254 •

10263 •

10266 •

10268 •

10269 • •

10272 • •

10277 • •

10283 •

10285 •

10287 •

10294 •

10295 • •

10296 •

10297 • • •

10313 •

Nr. D
es

S
em

i
2

S
em

i
4

M
a
th

o
n

10437 • •

10528 •

10572 •

10636 •

10655 • •

10730 •

10734 • •

10739 •

10785 •

10796 •

10808 •

13317 •

13780 •

14204 •

14819 •

14829 •

27067 •

27101 •

27106 •

27131 •

27333 • •

27534 • •

27588 •

27677 •

27848 •

27880 •

27887 •

27916 •

27928 •

27932 •

29622 •

29676 •

29677 •

45194 •

45224 •

45244 •

45253 •

45257 •

45259 • •

45274 • • •

53237 •

53830 •

53959 •
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