THE QUASIREGULAR PROJECTIVE PLANES OF ORDER 16

Marc RÖDER
National University of Ireland, Galway

Abstract

The projective planes of order 16 admitting a large (\geq 137) quasiregular group of collineations are classified. The classification is done using the theorem of Dembowski and Piper [DP67] and a complete search by computer. No new planes are found.

1. Introduction

Let \mathfrak{P} be a projective plane of order n and G a group of collineations of \mathfrak{P}. The group G is called quasiregular if it acts regularly on its point and line orbits, i.e. if the point-(line-)stabiliser is a normal subgroup in G. The quasiregular group is called large if $|G|>\frac{1}{2}\left(n^{2}+n+1\right)$. By [Dem68, 4.2.8, p.181], a group of collineations of a projective plane acts faithfully on at least one point or line orbit. Up to duality, we may assume that this is an orbit of points. So a large quasiregular group of collineations has exactly one orbit of size $|G|$ on points. One has:

Theorem 1.1 (Dembowski-Piper, [DP67], [Dem68, 4.2.10, p.182]). Let G be a quasiregular group of collineations of the projective plane \mathfrak{P} of order n. Denote by $m=m(G)$ the number of point (or line) orbits of G, and by $\mathbf{F}=\mathbf{F}(G)$ the substructure of the elements fixed by G. If $|G|>\frac{1}{2}\left(n^{2}+n+1\right)$, then there are only the following possibilities:
$\mathbf{D P}_{a}|G|=n^{2}+n+1, m=1$ and $\mathbf{F}=\emptyset$. Here G is transitive.
$\mathbf{D P}_{b} \quad|G|=n^{2}, m=3$ and \mathbf{F} is a flag.
$\mathbf{D P}_{c} \quad|G|=n^{2}, m=n+2$ and \mathbf{F} is either a unique line A and all $x \in A$ or dually a unique point c and all lines $X \in[c]$.

2000 Mathematics Subject Classification. 05B10, 05B25.
Key words and phrases. Projective planes, relative difference sets, quasiregular group of collineations, complete computer search.
$\mathbf{D P}_{d} \quad|G|=n^{2}-1, m=3$ and \mathbf{F} is a unique non-incident point-line pair.
$\mathbf{D P}_{e} \quad|G|=n^{2}-\sqrt{n}, m=2$ and $\mathbf{F}=\emptyset$. In this case, one point and one line orbit together form a Baer subplane.
$\mathbf{D P}_{f}|G|=n(n-1), m=5$ and \mathbf{F} consists of two points u, v, the line containing u and v and one other line through one of u, v.
$\mathbf{D P}_{g} \quad|G|=(n-1)^{2}, m=7$ and \mathbf{F} consists of the vertices and sides of a triangle.

In the following we will describe a computer search which leads to the classification result of Theorem 1.2.

ThEOREM 1.2. Let \mathfrak{P} be a projective plane of order 16 with a large quasiregular collineation group G and a regular point orbit. Then \mathfrak{P} is a translation plane or the Mathon plane. Moreover the desarguesian plane occurs as types $\mathbf{D P}_{a}, \mathbf{D P}_{b}, \mathbf{D} \mathbf{P}_{c}, \mathbf{D} \mathbf{P}_{d}, \mathbf{D P}_{f}$ or $\mathbf{D} \mathbf{P}_{g}$. The two semifield planes occur as types $\mathbf{D P}_{b}$ or $\mathbf{D} \mathbf{P}_{c}$. The remaining translation planes occur only as type $\mathbf{D P}_{c}$ and the Mathon plane has type $\mathbf{D P}_{b}$.

The translation planes of order 16 have been classified in [DR83], i.e. only types different from $\mathbf{D P}{ }_{c}$ have to be considered. In each of these cases, regular orbits on points and lines exist. This leads to the difference set construction which we describe in the next section.

A complete list of all groups and the types of planes they act on is given in the appendix.

2. Notation, Relative difference sets

Let G be a finite group and $D, N \subseteq G$. We say that D is a relative difference set with forbidden set N, if there exists $0<\lambda \in \mathbb{Z}$ such that every element of $G-N$ can be expressed in exactly λ ways as a quotient $d_{1} d_{2}^{-1}$ with $d_{1}, d_{2} \in D$ and no element of $N-1$ can be written like this. In group ring notation: $D D^{(-1)}=k+\lambda(G-N)$.

We call $(|G| /|N|,|N|, k, \lambda)$ with $k=|D|$ the parameter tuple of the difference set D.

A relative difference set is called ordinary difference set or simply difference set if $N=1$ holds. The incidence structure $\operatorname{dev} D:=(G,\{D g \mid g \in$ $G\}, \in)$ is called development of D and G acts (via right multiplication) as a regular group of collineations on $\operatorname{dev} D$.

A set $D \subset G$ is called partial relative difference set with forbidden set $N \subseteq G$, if every element outside N can be written in at most λ ways as a quotient in D and no element of $N-1$ is a quotient of two elements of D.

Two partial relative difference sets $D, D^{\prime} \subseteq G$ are called equivalent if there is a $g \in G$ and $\phi \in \operatorname{Aut}(G)$ such that $D=(D g)^{\phi}$. Two partial relative difference sets $D, D^{\prime} \subseteq G$ are called strongly equivalent if they are equivalent and have the same forbidden set.

Table 1. The difference set parameters of Theorem 1.1

type	$(\|G\| /\|N\|,\|N\|, k, \lambda)$	
$\mathbf{D P}_{a}$	$\left(n^{2}+n+1,1, n+1,1\right)$	$N=1$
$\mathbf{D P}_{b}$	$(n, n, n, 1)$	$N \unlhd G$
$\mathbf{D P}_{d}$	$(n+1, n-1, n, 1)$	$N \unlhd G$
$\mathbf{D P}_{e}$	$(n+\sqrt{n}+1, n-\sqrt{n}, n-1,1)$	$N \unlhd G$
$\mathbf{D P}_{f}$	$(n / 2,2 n-2, n-1,1)$	$N=A \cup B, A, B \unlhd G$
		$\|B\|+1=\|A\|=n, A \times B=G$
$\mathbf{D P}_{g}$	$\left((n-1)^{2} / 3 n-5,3 n-5, n-1,1\right)$	$N=A \cup B \cup C, A \times B=G$
		$\|A\|=\|B\|=\|C\|=n-1$

Obviously, equivalent relative difference sets induce isomorphic developments. Note that, in general $\operatorname{dev} D^{-1} \nsim \operatorname{dev} D$. Instead, it is easy to see that $\operatorname{dev} D^{-1} \sim(\operatorname{dev} D)^{d}$, where $\cdot{ }^{d}$ denotes the dual incidence structure.

For more about relative difference sets see [Pot95, Sch02, GJ03].
2.1. Difference sets from projective planes. Assume now that \mathfrak{P} is a projective plane of order n and G a large quasiregular group of collineations which has a regular point and line orbit. We identify the elements in that point orbit with the elements of G. Let D be the intersection of the regular point orbit with a line from the regular line orbit. Then D is a relative difference set. In table 1 , the parameters for the difference sets of the Dembowski-Piper theorem are given. The last column contains a description of the forbidden set. Observe that in all cases, N is either a normal subgroup of G or a union of normal subgroups. As $\mathbf{D P} \mathbf{P}_{c}$ defines translation planes, it does not have a description in terms of relative difference sets.

It is not difficult to see that in all cases $\operatorname{dev} D$ can be extended to a projective plane of order n and that this extension is uniquely determined. So in order to obtain Theorem 1.2 we have to classify all relative difference sets of the respective types for $n=16$.

3. The search

Before we give an algorithm to calculate all relative difference sets for each of the cases of Theorem 1.1, we introduce an invariant for partial relative difference sets which will be used during the search.
3.1. An invariant for partial relative difference sets. The following lemma is a generalisation of a lemma of Bruck [Bru55] and the proof is very similar to the original one.

Lemma 3.1. Let G be a finite group and $U \unlhd G$. Furthermore, let $D \subseteq G$ be a relative difference set with forbidden set N. We define $v_{i}:=\left|D \cap g_{i}\right|$, where $\left\{g_{1}, \ldots, g_{|G: U|}\right\}=G / U=G^{\rho}$ and ρ is the natural homomorphism. Let $g_{1}=U$ and $v_{i j}=\left|D \cap g_{i} g_{j}\right|$. Then

1. $\sum v_{i}=k$.
2. $\sum v_{i}^{2}=\lambda(|U|-|U \cap N|)+k$.
3. $\sum_{j} v_{j} v_{i j}=\lambda\left(|U|-\left|g_{i} \cap N\right|\right)$ for $i \neq 1$.
4. If $N \leq G$, then

$$
\sum_{j} v_{j} v_{i j}= \begin{cases}\lambda(|U|-|U \cap N|), & \text { if } g_{1} \neq g_{i} \in N^{\rho} \\ \lambda|U|, & \text { if } g_{i} \notin N^{\rho}\end{cases}
$$

Note that $v_{i j} \in\left\{v_{1}, \ldots, v_{|G: U|}\right\}$ is just the coefficient of $g_{i} g_{j} \in G / U$ in $D^{\rho} \in \mathbb{Z}[G / U]$. As the right sides in equations 1.-4. are known, we may calculate solutions $\left(v_{1}, \ldots, v_{|G: U|}\right)$ of these equations before we search for a difference set D. This results in a significant reduction of the search space.

Definition 3.2. Let N, U, G be as in Lemma 3.1. Let $G / U=$ $\left\{g_{1}, \ldots, g_{|G: U|}\right\}$ with $g_{1}=U$ and $v=\left(v_{1}, \ldots, v_{|G: U|}\right)$ a solution of 1.-4. (with $v_{i j}=v_{g_{i} g_{j}}$). Then v is called ordered signature for U (relative to N). The corresponding multiset $\|v\|$ is called admissible signature for U (relative to N). Moreover we define a mapping $s_{U}: \mathcal{P}(G) \rightarrow \mathbb{N}^{|G: U|}$ by $s_{U}(S)(i)=\left|S \cap g_{i}\right|$ and denote by $\sigma_{U}(S)$ the multiset $\left\|s_{U}(S)\right\|$.

For every relative difference set D and every $U \unlhd G$, the tuple $s_{U}(D)$ is an ordered signature and the multiset $\sigma_{U}(D)$ is an admissible signature.

It is obvious that if \mathcal{U} is a system of representatives of the $\operatorname{Aut}(G)$-orbits on $\{U \unlhd G||U| \in \mathcal{I}\}$ for some $\mathcal{I} \subseteq \mathbb{N}$, and S a partial relative difference set, we have

$$
\left\|\left(\sigma_{U}(S)\right)_{U \in \mathcal{U}}\right\|=\left\|\left(\sigma_{U}\left((S g)^{\phi}\right)\right)_{U \in \mathcal{U}}\right\| \text { for all } g \in G \text { and all } \phi \in \operatorname{Aut}(G)
$$

So the mappings σ_{U} can be used as an invariant for equivalence classes of partial relative difference sets. And we may in some cases even be able to decide that a partial relative difference set can not be extended to a full relative difference set by comparing its image under σ_{U} to admissible signatures. Note that using $\operatorname{Aut}(G)_{N}$ instead of $\operatorname{Aut}(G)$ gives an invariant for strong equivalence.
3.2. The algorithm. We will now outline the algorithm used in the search for quasiregular projective planes of order 16. For each case of Theorem 1.1 other than $\mathbf{D} \mathbf{P}_{c}$, all possible groups and the respective forbidden sets are calculated using the small groups library provided by GAP. Restrictions on the forbidden sets are given in table 1. For each group G and all possible forbidden sets N, relative difference sets are then constructed using the following method:

1. choose a set \mathcal{V} of normal subgroups of G (representatives of $\operatorname{Aut}(G)_{N}$ orbits, for instance) and calculate admissible signatures for them
2. choose normal subgroup $U \notin \mathcal{V}$ of small index with "nice" admissible signatures
3. generate partial relative difference sets (of maximal length) in U. Use the mappings σ_{V} with $V \in \mathcal{V}$ to partition the found partial relative difference sets and a test for strong equivalence on the partition elements
4. continue generating partial difference sets by adding elements from non-trivial cosets modulo U as above (coset by coset) or by brute force search (omitting partitioning and equivalence tests)
5. generate projective planes from the relative difference sets found
6. run isomorphism test on planes

The algorithm was implemented for each of the relevant cases of Theorem 1.1. Depending on the special case, slightly different implementations were used for the above steps. For example, equivalence tests can be performed at step 3 . before the maximal length of partial relative difference sets in U is reached. Some further aspects of the implementation will be discussed in the next section. A more detailed description is given in [Röd06a].
3.3. Remarks concerning implementation. The calculation was done using the computer algebra system GAP [GAP] and a package especially written for this purpose [Röd06b]. GAP's small groups library is used to look up all possible groups. Implementations are available at [Röd].
3.3.1. Signatures and "nice" normal subgroups. For normal subgroups of low index, it is possible to calculate not only admissible, but even ordered signatures. Subgroups for which ordered signatures are known are considered "nice" for step 2. of the algorithm. Of particular interest are those subgroups which do only have one ordered signature (up to permutations induced by right multiplication with group elements).

In case $\mathbf{D P} \mathbf{P}_{a}$, we also calculated ordered signatures for normal subgroups of larger index using basic representation arguments for some groups G (see [Röd06a] for details). Knowing ordered signatures enables us to use the mappings s_{V} for some V in step 3 . This is much more restrictive than using just admissible signatures and σ_{V}.
3.4. Special methods for case $\mathbf{D P}_{b}$. In case $\mathbf{D P}_{b}$, all groups of order 2^{8} have to be considered. A preliminary argument is used to reduce the number of groups in which a search for relative difference sets is actually conducted.

Lemma 3.3. Let $D \subseteq G$ be a relative difference set of order $n \equiv 0 \bmod 2$ and type $\mathbf{D P}_{b}$ with forbidden subgroup $N \unlhd G$. Let $\iota \in G$ be an involution. Then $\iota \in N$.

Proof. Let \mathfrak{P} be a projective plane of type $\mathbf{D P}_{b}$ and order n. Let L_{∞} the line fixed by G. Any involutorial collineation of \mathfrak{P} is either planar or an elation [Dem68, 4.1.9].

The affine points, i.e. the points not on L_{∞} form a regular orbit and are identified with the elemets of G. Let $\iota \in G$ be an involution. Then ι is not
planar as ι has no affine fixed-point. Thus ι is an elation. Then ι fixes n affine lines which must be the cosets of N as ι acts fixed-point-freely on the affine lines $\{D g \mid g \in G\}$. Hence $N \iota=N$ and thus $\iota \in N$.

In particular, a relative difference set of type $\mathbf{D P}_{b}$ cannot exist in a group containing "too many" involutions. This also rules out some subgroups as forbidden subgroups (namely those not containing all involutions of the full group).
3.4.1. Invariants for full projective planes. Isomorphism tests are done using the number of Fano-subplanes as an invariant of projective planes. For type $\mathbf{D} \mathbf{P}_{b}$, the group of translations is calculated to determine if a plane is a translation plane. By [Roy], the translation planes of order 16 are uniquely determined by the number of Fano-subplanes (all translation planes of order 16 are known by [DR83]). For the remaining case, explicit isomorphisms are constructed. The data for the known planes is available from [Roy].

Acknowledgements.

The author would like to thank U. Dempwolff for his support and for independently verifying the result of case $\mathbf{D P}_{b}$.

4. Appendix: Detailed results

This appendix lists all groups that admit an action as a large quasiregular group of collineations on a projective plane of order 16. Because of its size the case $\mathbf{D P}_{b}$ will be treated in a separate section below.
4.1. Cases $\mathbf{D} \mathbf{P}_{a}-\mathbf{D} \mathbf{P}_{g}$ without $\mathbf{D P}_{b}$. Let \mathfrak{P} be a projective plane of order 16 and G a group acting on \mathfrak{P} as a large quasiregular group of collineations. If \mathfrak{P} is of type
$\mathbf{D P}_{a}$ then $G \simeq C_{273}$ or $\left.G \simeq C_{3} \ltimes C_{91} \simeq\langle a, b||a|=3,|b|=91, b^{a}=b^{16}\right\rangle$. Note that there are two isomorphism types of groups $C_{3} \ltimes C_{91}$, but only one admits an action of type $\mathbf{D P}_{a}$.
$\mathbf{D P}_{d}$ then $G \simeq C_{255}$.
$\mathbf{D P}_{f}$ then $G \simeq C_{15} \times C_{2}^{4}$.
$\mathbf{D P}_{g}$ then $G \simeq C_{15}^{2}$.
In each of these cases, \mathfrak{P} is the Desarguesian plane.
There is no projective plane of type $\mathbf{D P}_{e}$ and order 16. The planes of type $\mathbf{D P}_{c}$ are translation planes. For their classification we refer the reader to [DR83].
4.2. Case $\mathbf{D P}_{b}$. The following table contains the 590 groups of order 256 which admit relative difference sets of type $\mathbf{D P}_{b}$.

The column labels "Des", "Semi 2", "Semi 4" and "Mathon" stand for the Desarguesian plane, the semifield planes with kernel 2 and 4, respectively, and the Mathon plane. Note that a group acts on the Mathon plane if and
only if it acts on the dual Mathon plane. So there is no extra column for the dual Mathon plane. And, of course, a mark means that there is an action on the corresponding plane. Groups which are not in the table do not admit a relative difference set of type $\mathbf{D P}_{b}$.

The groups are numbered as in the small groups library of GAP:
There are 56092 groups of order 256.
They are sorted by their ranks.
1 is cyclic.
2-541 have rank 2.
542 - 6731 have rank 3.
6732 - 26972 have rank 4.
26973 - 55625 have rank 5.
55626 - 56081 have rank 6.
56082 - 56091 have rank 7.
56092 is elementary abelian.
Group number 6732 is C_{4}^{4}.

Nr.	$\stackrel{y}{0}$	$\begin{gathered} \sim \\ \cdot \\ \vec{V} \\ \sim \end{gathered}$	H B U U	
296	\bullet	-	-	
331	\bullet			\bullet
420				\bullet
843		\bullet	\bullet	\bullet
855	-	\bullet		
874				\bullet
876				\bullet
909				\bullet
938		\bullet	\bullet	
947	\bullet	\bullet		
956				\bullet
961				\bullet
963		-	\bullet	
978				\bullet
980				\bullet
985				\bullet
1001				\bullet
1038				\bullet
1052				\bullet
1053				\bullet
1060		-	-	
1066				\bullet
1081				\bullet
1086		-	\bullet	
1101				\bullet
1104				\bullet
1108				\bullet
3322				\bullet

Nr .	®	$\begin{gathered} N \\ \cdot \\ \stackrel{\rightharpoonup}{U} \\ \sim \end{gathered}$		-
4509	-			\bullet
5287				\bullet
5688		\bullet	\bullet	
5848	\bullet	\bullet	\bullet	
6732	\bullet			
6738			\bullet	
6753		\bullet		
6756		\bullet		
6760		\bullet		
6769		\bullet		
6774			\bullet	
6775		\bullet		
6781		\bullet	\bullet	
6785		-		
6792		\bullet		
6794			-	
6800		\bullet		
6807		\bullet		
6814		\bullet	\bullet	
6817	\bullet			
6821		\bullet	\bullet	
6822		-		
6838			\bullet	
6842		\bullet	\bullet	
6843		-		
6844		\bullet		
6848		\bullet	\bullet	
6851		\bullet		

Nr.	$\stackrel{\downarrow}{\stackrel{\circ}{*}}$	N	H ゴ ¢ ¢	
6852		-		
6873		\bullet		
6897		\bullet		
6916		\bullet		
6917		\bullet		
6919		\bullet	-	
6920		\bullet		
6922		\bullet		
6938		\bullet	\bullet	
6942		\bullet		
6943		\bullet		
6949		\bullet	\bullet	
6952		\bullet	\bullet	
6964		-		
6966		\bullet		
6973		\bullet		
6988		-		
6991			-	
6994		-		
6997		\bullet		
7012		\bullet	-	
7030		-		
7036		-		
7039		\bullet		
7043		\bullet		
7045		\bullet		
7046			\bullet	
7048		\bullet		

Nr.	$\stackrel{\sim}{\circ}$			\%
7049		\bullet		
7050		\bullet		
7053		\bullet		
7057		\bullet		
7071		\bullet		
7079		\bullet		
7080		\bullet		
7082		\bullet	\bullet	
7093		\bullet		
7101		\bullet		
7103		\bullet	\bullet	
7109		\bullet		
7111		\bullet		
7114		\bullet		
7121		\bullet		
7130		\bullet		
7139		\bullet		
7143		\bullet	-	
7148		\bullet		
7149			\bullet	
7150		\bullet		
7151		\bullet		
7152		\bullet	\bullet	
7156			\bullet	
7162		\bullet	\bullet	
7167		\bullet		
7174		\bullet		
7179		\bullet		
7180		\bullet		
7191		\bullet		
7202		\bullet		
7205		\bullet		
7211		\bullet		
7214		\bullet		
7224		\bullet		
7226		\bullet		
7227		\bullet		
7233			\bullet	
7235		\bullet		
7238		\bullet		
7240		\bullet		
7258		\bullet		

Nr.	$\stackrel{\sim}{\circ}$	$\begin{gathered} N \\ \cdot \\ \dot{0} \\ \sim \end{gathered}$	$\begin{aligned} & H \\ & \vec{W} \\ & \sim \\ & \sim \end{aligned}$	动
7268		\bullet		
7272			\bullet	
7274		\bullet		
7284		\bullet		
7296		\bullet		
7306		\bullet		
7308		\bullet		
7316		\bullet		
7318		\bullet		
7334		\bullet		
7344		\bullet		
7366			\bullet	
7382		\bullet		
7402		\bullet		
7423		\bullet		
7429	\bullet			
7438		\bullet	\bullet	
7446		\bullet		
7447		\bullet		
7453		\bullet		
7454		\bullet	\bullet	
7458		\bullet		
7459	\bullet	\bullet	\bullet	
7460		\bullet		
7465		\bullet		
7471		\bullet	\bullet	
7473		\bullet		
7477		\bullet	\bullet	
7478		\bullet		
7489		\bullet		
7490		\bullet		
7498	\bullet			
7499		\bullet		
7519		\bullet		
7526			\bullet	
7538		\bullet		
7540		\bullet		
7542		\bullet		
7549		\bullet		
7562	\bullet			
7581		\bullet		
7583		\bullet		

Nr.	$\stackrel{y}{\circ}$	$\begin{gathered} \sim \\ \text { N } \\ \text { U } \\ \sim \\ \hline \end{gathered}$		\%
7585		\bullet		
7586		\bullet		
7587		\bullet	\bullet	
7589		\bullet		
7593		\bullet		
7596			\bullet	
7602			\bullet	
7622		\bullet	\bullet	
7626		\bullet	\bullet	
7636		\bullet		
7638		\bullet		
7651			\bullet	
7652	\bullet			
7656		-	\bullet	
7691	\bullet	\bullet		
7697	\bullet			
7698		\bullet		
7767		\bullet		
7769		\bullet		
7775		\bullet	\bullet	
7779		\bullet		
7788		\bullet		
7792		\bullet		
7838		\bullet		
7839		\bullet	\bullet	
7851		\bullet		
7855		\bullet		
7860		\bullet		
7866		\bullet		
7869		\bullet	\bullet	
7872		\bullet		
7926		\bullet		
7930		\bullet		
7938		\bullet		
7950		\bullet		
7963		\bullet		
7980		\bullet		
7982		\bullet		
7988		\bullet		
7996		\bullet		
7999		\bullet	\bullet	
8001			\bullet	

Nr．	¢	N	サ コ1 む ひ	
8016			\bullet	
8017		\bullet		
8024		\bullet		
8030		\bullet		
8032		\bullet		
8036			\bullet	
8039		\bullet		
8040		\bullet		
8041			\bullet	
8044			\bullet	
8048		\bullet		
8063		\bullet		
8073		\bullet		
8074		\bullet		
8077		\bullet	\bullet	
8082		\bullet	\bullet	
8084		\bullet		
8085		－	\bullet	
8086		\bullet	\bullet	
8087		\bullet		
8092		\bullet		
8096		\bullet	\bullet	
8104			\bullet	
8107		\bullet	\bullet	
8109		\bullet		
8116		\bullet	\bullet	
8121		\bullet		
8131		\bullet		
8134		\bullet		
8152		\bullet		
8154		\bullet		
8172		\bullet		
8179			\bullet	
8181		\bullet		
8198		\bullet		
8227		\bullet		
8239		\bullet	\bullet	
8241		\bullet	\bullet	
8244		\bullet		
8306		\bullet		
8335		\bullet		
8337		\bullet		

Nr．	$\stackrel{\otimes}{8}$	$\begin{gathered} N \\ \cdot \\ \ddot{U} \\ \text { © } \end{gathered}$		$\xrightarrow{\text { E }}$
8348		－		
8355		\bullet		
8362		\bullet		
8370		－		
8402		\bullet		
8423		\bullet		
8425	\bullet	\bullet		
8488		\bullet		
8491		－		
8498		\bullet		
8509		\bullet		
8518		\bullet		
8521		\bullet		
8524		\bullet		
8530		\bullet		
8546		\bullet		
8561		\bullet		
8562		\bullet		
8569		\bullet		
8584		\bullet		
8589		\bullet		
8651		\bullet		
8671		\bullet		
8673		\bullet		
8679		\bullet	－	
8680		\bullet		
8686		\bullet		
8687		\bullet	－	
8691		\bullet		
8695		\bullet		
8708		\bullet		
8712		\bullet		
8717		\bullet		
8728		\bullet		
8735		\bullet		
8740		\bullet		
8748		\bullet		
8750		\bullet	\bullet	
8754		\bullet		
8755		\bullet		
8766		\bullet		
8767		\bullet		

Nr ．	$\stackrel{\downarrow}{\square}$	$\begin{gathered} \sim \\ \cdot \\ \stackrel{~}{U} \\ \text { N } \end{gathered}$		¢
8778		－		
8781		\bullet		
8782			－	
8787		\bullet		
8801		\bullet		
8805		\bullet		
8835		\bullet		
8837	\bullet	\bullet		
8842		\bullet	\bullet	
8845		\bullet	\bullet	
8846		\bullet	\bullet	
8848		\bullet		
8849		\bullet		
8850		\bullet		
8855		\bullet		
8860		\bullet		
8875		\bullet		
8876		\bullet		
8878		\bullet		
8879		\bullet		
8884			－	
8891		\bullet		
8906		\bullet		
8921		－		
8923			－	
8925		\bullet		
8930		\bullet		
8952		\bullet		
8987		\bullet		
8989		\bullet		
8991	\bullet			
8995		\bullet		
8997		\bullet		
9010	\bullet			
9019		\bullet		
9021		\bullet		
9025		\bullet		
9028		\bullet		
9029		\bullet		
9046		\bullet		
9051		\bullet	\bullet	
9053		\bullet		

Nr.	$\stackrel{\circ}{\circ}$	$\begin{array}{\|c} N \\ \cdots \\ \dot{0} \\ \sim \\ \hline \end{array}$	$\begin{array}{\|c} \text { み } \\ \text { I } \\ \text { d } \\ \hline \end{array}$		Nr.	¢	\sim \cdots \square Un \sim			Nr.	$\stackrel{\square}{\circ}$	N	\square $\overrightarrow{y y}$ \sim	
9054		\bullet			9182		\bullet			9553		\bullet		
9056		\bullet			9189		\bullet			9558		\bullet		
9063		\bullet			9191		\bullet	-		9564		\bullet		
9069		\bullet			9192		\bullet			9582		\bullet		
9070		\bullet			9204		\bullet			9586		\bullet		
9074		\bullet			9208		\bullet	\bullet		9598			\bullet	
9081		\bullet	\bullet		9209		\bullet			9599		\bullet		
9083		\bullet			9213		\bullet			9613		\bullet		
9084		\bullet			9218		\bullet			9617		\bullet	-	
9096		\bullet			9219		\bullet			9618		\bullet	-	
9097		\bullet	\bullet		9220			\bullet		9674		\bullet	\bullet	
9098		\bullet	\bullet		9223		\bullet			9675		\bullet		
9100	\bullet	\bullet			9224		\bullet			9676		\bullet		
9101		\bullet			9225		\bullet			9683		\bullet		
9104			-		9227		\bullet			9697		\bullet		
9110	\bullet		\bullet		9229		\bullet			9698		\bullet		
9116		\bullet			9231		\bullet			9699		\bullet		
9118		\bullet			9236		\bullet			9701		\bullet		
9125		\bullet			9269		\bullet	\bullet		9704		\bullet		
9126		\bullet			9281		\bullet			9709		\bullet		
9127		\bullet			9364			\bullet		9714		\bullet		
9128		\bullet	-		9375		\bullet			9720		\bullet		
9131		\bullet			9376		\bullet			9722		\bullet		
9138		\bullet			9377		\bullet			9727		\bullet		
9143		\bullet			9394		\bullet			9732		\bullet		
9150		\bullet			9395		\bullet			9733			\bullet	
9151	\bullet				9397		\bullet			9738		\bullet		
9153		\bullet			9398		\bullet			9740			\bullet	
9154			\bullet		9400		\bullet			9745		\bullet		
9155		\bullet			9401		\bullet			9748		\bullet		
9156			\bullet		9424		\bullet			9754		\bullet		
9158			\bullet		9432		\bullet			9757		\bullet		
9160		\bullet			9436		\bullet			9758		\bullet		
9162		\bullet			9441		\bullet			9764		\bullet		
9164		\bullet			9448		\bullet			9771		\bullet		
9166		\bullet			9470		\bullet			9772		\bullet		
9167		\bullet			9471		\bullet			9778			\bullet	
9168		\bullet	\bullet		9473		\bullet			9780		\bullet		
9172		\bullet			9481		\bullet			9784		\bullet		
9173			\bullet		9512		\bullet			9794		\bullet		
9174	\bullet	\bullet	\bullet		9541		\bullet			9801		\bullet		
9176		\bullet			9542		\bullet			9814		\bullet		

Nr .	®	$\begin{gathered} \text { N } \\ \cdot \tilde{U} \\ \tilde{D} \end{gathered}$		
9815		-		
9828		\bullet		
9831		\bullet		
9837		-		
9862		\bullet	-	
9868		\bullet		
9877			-	
9878		\bullet		
9885		\bullet		
9893		\bullet	-	
9896		\bullet		
9900		\bullet		
9903		\bullet		
9906		-		
9912	\bullet			
9919		-		
9926			-	
9930		-	\bullet	
9932		\bullet		
9934		\bullet		
9935		-		
9936		\bullet		
9938		-		
9946		-		
9947		-		
9959		-		
9960		-		
9963		-		
9967		\bullet		
9971		\bullet		
9976		\bullet		
9978		\bullet		
9981		\bullet		
9982		\bullet		
9983		\bullet		
9984			\bullet	
9986		\bullet		
9988		-		
9990		-		
9991		\bullet		
10009		-		
10020		\bullet		

Nr.	$\stackrel{\otimes}{\otimes}$	\sim \sim - ¢ ¢		\%
10022		\bullet		
10024		\bullet		
10030		\bullet		
10039			-	
10041		\bullet	\bullet	
10042		\bullet	\bullet	
10043		\bullet		
10060		-	-	
10066	-			
10069		\bullet		
10073		\bullet		
10100			\bullet	
10116		\bullet		
10120		\bullet		
10142		\bullet		
10150		\bullet		
10166		\bullet		
10173		\bullet	-	
10179		\bullet		
10190		\bullet		
10197		\bullet		
10198			\bullet	
10200		\bullet		
10206		\bullet		
10207		\bullet		
10234			-	
10244			\bullet	
10246		-		
10254		\bullet		
10263		\bullet		
10266		\bullet		
10268			\bullet	
10269		\bullet	\bullet	
10272		\bullet	\bullet	
10277		\bullet	\bullet	
10283		\bullet		
10285		-		
10287		\bullet		
10294		-		
10295		\bullet	\bullet	
10296		\bullet		
10297	\bullet	\bullet	\bullet	
10313				\bullet

Nr.	®	$\begin{gathered} N \\ \cdot \\ \stackrel{U}{U} \\ \mathcal{R} \end{gathered}$	$\begin{gathered} H \\ \text { H } \\ \text { In } \\ \text { U } \end{gathered}$	
10437		-	-	
10528				\bullet
10572				\bullet
10636				\bullet
10655	\bullet	\bullet		
10730		-		
10734			-	\bullet
10739				\bullet
10785				\bullet
10796				\bullet
10808				\bullet
13317				\bullet
13780				\bullet
14204				\bullet
14819				\bullet
14829				\bullet
27067		\bullet		
27101		\bullet		
27106		\bullet		
27131		\bullet		
27333		\bullet	\bullet	
27534		\bullet	\bullet	
27588		\bullet		
27677		\bullet		
27848			-	
27880		-		
27887		\bullet		
27916		-		
27928		-		
27932			-	
29622	-			
29676		-		
29677		\bullet		
45194		\bullet		
45224		-		
45244		\bullet		
45253		\bullet		
45257		-		
45259		\bullet	\bullet	
45274	\bullet	\bullet	\bullet	
53237				\bullet
53830				\bullet
53959				\bullet

References

[Bru55] R. H. Bruck, Difference sets in a finite group, Trans. Amer. Math. Soc. 78 (1955), 464-481.
[Dem68] P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete 44, Springer-Verlag, Berlin-Heidelberg, 1968.
[DP67] P. Dembowski and F. Piper, Quasiregular collineation groups of finite projective planes, Math. Z. 99 (1967), 53-75.
[DR83] U. Dempwolff and A. Reifart, The classification of the translation planes of order 16. I, Geom. Dedicata 15 (1983), 137-153.
[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4, http://www.gap-system.org.
[GJ03] D. Ghinelli and D. Jungnickel, On finite projective planes in Lenz-Barlotti class at least I.3, Adv. Geom. Special Issue (2003), S28-S48.
[Pot95] A. Pott, Finite geometry and character theory, Lecture Notes in Mathematics 1601, Springer Verlag, Berlin Heidelberg, 1995.
[Röd] M. Röder, http://www.maths.nuigalway.ie/~roeder.
[Röd06a] M. Röder, Quasiregular projective planes of order 16-a computational approach, Ph.D. thesis, Technische Universität Kaiserslautern, 2006, http://kluedo.ub. uni-kl.de/volltexte/2006/2036/.
[Röd06b] M. Röder, RDS - a GAP4 package for relative difference sets, 2006, http://www. gap-system.org/Packages/rds.html.
[Roy] G. Royle, Gordon Royle's planes of order 16, http://www.csse.uwa.edu.au/ ~gordon/remote/planes16/index.html.
[Sch02] B. Schmidt, Characters and cyclotomic fields in finite geometry, Lecture Notes in Mathematics 1797, Springer-Verlag, Berlin, 2002.
M. Röder

Department of Mathematics
National University of Ireland
University Road
Galway
Ireland
E-mail: marc.roeder@nuigalway.ie
Received: 24.1.2008.
Revised: 28.3.2008.

