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ON THE EXTENSIBILITY OF DIOPHANTINE TRIPLES
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Abstract. In this paper, we prove that if {k − 1, k + 1, 4k, d}, where
k ∈ Z[i]\{0,±1}, d ∈ Z[i], is a Diophantine quadruple in Z[i], i.e. if (k −
1)d+1, (k−1)d+1, 4kd+1 are perfect squares in Z[i], then d = 16k3−4k.

1. Introduction

The set of non-zero elements {a1, a2, . . . , am} in a commutative ring R
with 1 is called Diophantine m-tuple if aiaj + 1 is a perfect square in R for
all 1 ≤ i < j ≤ m. Let us mention the most famous historical examples of
such sets: the first rational quadruple { 1

16 , 33
16 , 17

4 , 105
16 } found by Diophantus

of Alexandria in third century AD, the first integer quadruple {1, 3, 8, 120}
found by Fermat in the seventeenth century, the first rational sextuple
{ 11

192 , 35
192 , 155

27 , 512
27 , 1235

48 , 180873
16 } found by Gibbs ([13]). There exist families

of such sets, for instance quadruples {F2k, F2k+2, F2k+4, 4F2k+1F2k+2F2k+3}
(where Fk is k-th Fibonacci number) and {k − 1, k + 1, 4k, 16k3 − 4k} (which
both represent a generalization of the Fermat’s quadruple).

We mention some further important results for R = Z. In 1969, Baker
and Davenport in [2] showed that the Diophantine triple {1, 3, 8} extends
uniquely to the quadruple {1, 3, 8, 120}. Obviously, this result implies that
{1, 3, 8} cannot be extended to a Diophantine quintuple. In 1998, Dujella
and Pethő in [10] proved that the Diophantine pair {1, 3} can be extended to
infinitely many quadruples, but it cannot be extended to a quintuple. Arkin,
Hoggatt and Strauss showed that each Diophantine triple can be extended
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to quadruple (see [1]). Moreover, the following conjecture is very plausible:
If {a, b, c} is a Diophantine triple, then there exists unique positive integer d
such that d > max{a, b, c} and {a, b, c, d} is a Diophantine quadruple. This
conjecture has already been proved for a large class of Diophantine triples (see
[8] and [9]). Furthermore, as a consequence it was obtained that there is no
Diophantine sextuple in Z and that there are only finitely many Diophantine
quintuples ([9]). Concerning the family of triples {k − 1, k + 1, 4k} in Z,
Dujella showed in [6] that for k 6= 0,±1 this triple can be extended uniquely
to a quadruple {k−1, k+1, 4k, 16k3−4k}. Further, if {k−1, k+1, 16k3−4k, d},
k ∈ N, k 6= 1, is a Diophantine quadruple then d ∈ {4k, 64k5−48k3 +8k} (see
[5]). Fujita in [12] showed that the Diophantine pair {k − 1, k + 1}, k ∈ N,
k 6= 1, cannot be extended to a Diophantine quintuple.

Problems concerning Diophantine m-tuples are also considered in other
rings, like polynomial rings or rings of integers in quadratic number fields,
and especially in the ring of Gaussian integers (for references refer to Dujella’s
Diophantine m-tuple page, http://www.math.hr/~duje/dtuples.html).

In this paper we deal with the extensibility of the family of triples {k −
1, k + 1, 4k} in Z[i]. We prove the following theorem.

Theorem 1.1. Let k ∈ Z[i]\{0,±1} and let {k − 1, k + 1, 4k, d} be a
Diophantine quadruple in Z[i]. Then d = 16k3 − 4k.

In Section 2 we show that the original problem of extending the triple
{k − 1, k + 1, 4k} is equivalent to the problem of solving the following system
of two Diophantine equations:

(1.1) (k + 1)x2 − (k − 1)y2 = 2, 4kx2 − (k − 1)z2 = 3k + 1.

Solutions of each equation in (1.1) form linear recurrence sequences. If (1.1)
is solvable then these sequences have the same initial term (x0 = 1 which
is related to a trivial solution of (1.1)), for all parameters k ∈ Z[i], |k| > 5.
This is shown in Section 3 using some congruence conditions modulo 2k −
1 and 4k(k − 1). In Section 4 we apply an analog of Bennett’s theorem
on simultaneous rational approximations of square roots which are close to
one by rationals in the case of imaginary quadratic fields ([14]) and obtain
that all solutions of (1.1), for |k| ≥ 350, are (x, y, z) = (±1,±1,±1) and
(x, y, z) = (±(4k2 − 2k − 1),±(4k2 + 2k − 1),±(8k2 − 1)). In Section 5, we
solve our problem for 5 < |k| < 350 by transforming the exponential equations
into inequalities for linear forms in three logarithms of algebraic numbers,
then applying Baker’s theory on linear forms ([3]) and, finally, we reduce the
upper bound for the solution of (1.1) by using a version of Baker-Davenport’s
reduction method ([2]) in Section 6.

All other cases (1 ≤ |k| ≤ 5) are solved separately in the last two sections.
In the case k = i, instead of (1.1) we solve the following system of Pellian
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equations

(1.2) y2 + ix2 = i + 1, z2 − (2 − 2i)x2 = −1 + 2i.

The set of solutions of (1.2) is described using [11] and then the same proce-
dure as in Section 5 is applied. For some parameters 1 < |k| ≤ 5, we obtain,
perhaps surprisingly, some extra solutions.

The proof of Theorem 1.1 will follow directly from Propositions 6.2, 7.1
and 8.1 below, together with the simple observation that {k − 1, k + 1, 4k, d}
is a Diophantine quadruple in Z[i] if and only if {−k − 1,−k + 1,−4k,−d} is
a Diophantine quadruple.

All computations are performed in Mathematica 5.2.

2. Solving a system of Diophantine equations

Let k ∈ Z[i]\{0,±1}. Our aim is to determine all Diophantine quadruples
of the form {k − 1, k + 1, 4k, d} in Z[i]. Thus, we have to solve the system

(2.1) (k − 1)d + 1 = x2, (k + 1)d + 1 = y2, 4kd + 1 = z2,

in d, x, y, z ∈ Z[i]. By eliminating d in (2.1), we obtain the following system
of Diophantine equations

(k + 1)x2 − (k − 1)y2 = 2,(2.2)

4kx2 − (k − 1)z2 = 3k + 1.(2.3)

It can be seen that the system of equations (2.2) and (2.3) is equivalent to
the system (2.1). Indeed, if x, y, z ∈ Z[i] are the solutions of (2.2) and (2.3),
than it follows that

(k + 1)(x2 − 1) = (k − 1)(y2 − 1), 4k(x2 − 1) = (k − 1)(z2 − 1).

So, d is well defined by

(2.4) d =
x2 − 1

k − 1
=

y2 − 1

k + 1
=

z2 − 1

4k
.

Lemma 2.1. If d is given by (2.4), where (x, y, z) ∈ Z[i]3 is a solution of
(2.1), then d ∈ Z[i].

Proof. We have to show that d ∈ Z[i]. According to (2.2), we obtain
that (k + 1)x2 ≡ 2(mod (k − 1)), i.e. 2x2 ≡ 2(mod (k − 1)). Thus, we have
that 2d ∈ Z[i]. Besides that, 2d can be represented as a difference of two
squares of Gaussian integers. Hence, 2d must be of the form 2m + 2ni or of
the form 2d = 2m+1+2ni, where m, n ∈ Z (see ([16, p. 449])). Suppose that
2d = 2m + 1 + 2ni. We can obtain a contradiction by showing that at least
one of the numbers (k−1)d+1, (k+1)d+1 and 4kd+1 is not a perfect square
in Z[i]. Let us note that k is of the form 2l + 1, l ∈ Z[i], because (k − 1)d is
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a Gaussian integer. If we assume that 2d ≡ 1(mod 4) and l ≡ 0(mod 4), i.e.
k ≡ 1(mod 8), then

y2 = (k + 1)d + 1 ≡ 2(mod 4),

and this is a contradiction since y2 mod 4 ∈ {0, 1, 3, 2i}. Similarly, we verify
all the other possibilities (2d mod 4 ∈ {3, 1 + 2i, 3 + 2i} and l mod 4 ∈
{1, 2, 3}). Hence, we conclude that 2d must be of the form 2m + 2ni, i.e that
d is a Gaussian integer.

According to Lemma 2.1, we have that the system of equations (2.2) and
(2.3) is equivalent to (2.1).

Our further step is to solve the system of equations (2.2) and (2.3) in
Z[i]. The following lemma describes the set of all solutions of the equation
(2.2) in Z[i]. In order to get expressions of the form

√
c, c ∈ Z[i], uniquely

determined, we assume that
√

c always has positive imaginary part or is a
non-negative real number.

Lemma 2.2. Let k ∈ Z[i]\{0,±1,±i}. Then there exist i0 ∈ N and

x
(i)
0 , y

(i)
0 ∈ Z[i], i = 1, . . . , i0, such that

(i) (x
(i)
0 , y

(i)
0 ) is a solution of (2.2) for all i = 1, . . . , i0,

(ii) the estimates

|x(i)
0 |2 ≤ 2|k − 1|

|k| − 1
,(2.5)

|y(i)
0 |2 ≤ 2

|k − 1| +
2|k + 1|
|k| − 1

,(2.6)

hold for all i = 1, . . . , i0,
(iii) for each solution (x, y) of (2.2) there exist i ∈ {1, . . . , i0} and m ∈ Z

such that

x
√

k + 1 + y
√

k − 1 = (x
(i)
0

√
k + 1 + y

(i)
0

√
k − 1)(k +

√

k2 − 1)m.

Proof. If (x, y) is a solution of (2.2), than (xm, ym) obtained by

(2.7) xm

√
k + 1 + ym

√
k − 1 = (x

√
k + 1 + y

√
k − 1)(k +

√

k2 − 1)m

is also a solution of (2.2) for all m ∈ Z.
Let (x∗, y∗) be an element of the sequence (xm, ym)m∈Z (defined by (2.7))

such the absolute value |x∗| is minimal. We put

x′√k + 1 + y′√k − 1 = (x∗√k + 1 + y∗√k − 1)(k +
√

k2 − 1),

x′′√k + 1 + y′′√k − 1 = (x∗√k + 1 + y∗√k − 1)(k +
√

k2 − 1)−1

= (x∗√k + 1 + y∗√k − 1)(k −
√

k2 − 1).
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Due to minimality of |x∗|, we have that

|x∗| ≤ |x′| = |x∗k + y∗(k − 1)|,
|x∗| ≤ |x′′| = |x∗k − y∗(k − 1)|.

At least one of the expressions |x∗k+ y∗(k−1)| and |x∗k− y∗(k−1)| must be
greater or equal to |x∗||k|, since |x∗k+y∗(k−1)|+ |x∗k−y∗(k−1)| ≥ 2|x∗||k|.
Let us assume that |x∗k + y∗(k − 1)| ≥ |x∗||k|. Hence,

|(x∗k)2 − (y∗(k − 1))2| ≥ |x∗|2|k|,
and

|(x∗)2 + 2(k − 1)| ≥ |x∗|2|k|.
Immediately, we obtain the estimate for |x∗|,

|x∗|2 ≤ 2|k − 1|
|k| − 1

.

This implies the estimate for |y∗|,

|(k − 1)(y∗)2| = |(k + 1)(x∗)2 − 2| ≤ |k + 1|2|k − 1|
|k| − 1

+ 2.

It is obvious that there exists only finitely many pairs (x∗, y∗) such that above
estimates are fulfilled. Finally, according to the definition of (x∗, y∗), there
exist m ∈ Z such that

x∗√k + 1 + y∗√k − 1 = (x
√

k + 1 + y
√

k − 1)(k +
√

k2 − 1)m.

Therefrom, we obtain that

x
√

k + 1 + y
√

k − 1 = (x∗√k + 1 + y∗√k − 1)(k +
√

k2 − 1)−m.

The solutions (x
(i)
0 , y

(i)
0 ), i = 1, . . . , i0, defined in Lemma 2.2, will be

called fundamental solutions of the equation (2.2).
Analogously, all solutions of (2.3) are given by the following lemma.

Lemma 2.3. Let k ∈ Z[i]\{0, 1}. Then there exist j0 ∈ N and x
(j)
1 , z

(j)
1 ∈

Z[i], j = 1, . . . , j0, such that

(i) (x
(j)
1 , z

(j)
1 ) is a solution of (2.3) for all j = 1, . . . , j0,

(ii) the estimates

|x(j)
1 |2 ≤ |k − 1||3k + 1|

|2k − 1| − 1
,(2.8)

|z(j)
1 |2 ≤ 4|k||3k + 1|

|2k − 1| − 1
+

|3k + 1|
|k − 1| ,(2.9)

hold for all j = 1, . . . , j0,
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(iii) for each solution (x, z) of (2.3) there exist j ∈ {1, . . . , j0} and n ∈ Z such
that

x
√

4k + z
√

k − 1 = (x
(j)
1

√
4k + z

(j)
1

√
k − 1)(2k − 1 +

√

4k(k − 1))n.

Now, we create the sequences

(2.10) v
(i)
0 = x

(i)
0 , v

(i)
1 = kx

(i)
0 + (k − 1)y

(i)
0 , v

(i)
m+2 = 2kv

(i)
m+1 − v(i)

m ,

(2.11) v′
(i)
0 = x

(i)
0 , v′

(i)
1 = kx

(i)
0 −(k−1)y

(i)
0 , v′

(i)
m+2 = 2kv′

(i)
m+1−v′

(i)
m ,

for all m ∈ N0 and i = 1, . . . , i0. If (x, y) is a solution of (2.2), then there

exist a nonnegative integer m and i ∈ {1, . . . , i0} such that x = v
(i)
m or x =

v′(i)m . Similarly, if (x, z) is a solution of (2.3), then there exist n ≥ 0 and

j ∈ {1, . . . , j0} such that x = w
(j)
n or x = w′(j)

n , where
(2.12)

w
(j)
0 = x

(j)
1 , w

(j)
1 = (2k−1)x

(j)
1 +(k−1)z

(j)
1 , w

(j)
n+2 = 2(2k−1)w

(j)
n+1−w(j)

n ,

(2.13)

w′(j)
0 = x

(j)
1 , w′(j)

1 = (2k−1)x
(j)
1 −(k−1)z

(j)
1 , w′(j)

n+2 = 2(2k−1)w′(j)
n+1−w′(j)

n .

Lemma 2.4. Let k ∈ Z[i] and |k| > 3. Then all fundamental solutions of
equation (2.2) are (x0, y0) = (±1,±1). Furthermore, if (x, y) is a solution of
this equation, then there exists non-negative integer m such that x = vm or
x = −vm, where the sequence (vm) is given by

(2.14) v0 = 1, v1 = 2k − 1, vm+2 = 2kvm+1 − vm, m ∈ N0.

Proof. Suppose that (x0, y0) is a fundamental solution of (2.2). Then
the estimate (2.5) implies that

|x0|2 ≤ 2(1 +
2

|k| − 1
) < 4.

Hence, |x0|2 ∈ {0, 1, 2}. Obviously, (x0, y0) = (±1,±1) are the solutions of
(2.2) for every k. Also, the following cases may appear:

• (x0, y0) = (0,±(1 + i)), k = 1 + i,
• (x0, y0) = (0,±(1 − i)), k = 1 − i,
• (x0, y0) = (±(1 + i), 0), k = −1 − i,
• (x0, y0) = (±(1 − i), 0), k = −1 + i,
• (x0, y0) = (0,±i), k = 3,
• (x0, y0) = (±i, 0), k = −3.

Evidently, these cases do not satisfy the condition |k| > 3. The rest of the
assertion follows immediately from (2.10) and (2.11).

Before proceeding further, let us recapitulate our results: For |k| > 3, the
problem of solving (2.2) and (2.3) is reduced to solve the equations

(2.15) vm = ±wn, vm = ±w′
n, m, n ≥ 0,
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where we omitted the upper index (j).

3. Congruence method

In this section, we will determine all fundamental solutions of the equation
(2.3) under the assumption that one of the equations in (2.15) is solvable. We
will apply the congruence method which was first introduced by Dujella and
Pethő in [6].

Lemma 3.1. If (x1, z1) is a fundamental solutions of (2.3), then

x1 mod (2k − 1) ∈ {0, 1,−1} or z1(k − 1) mod (2k − 1) ∈ {0, 1,−1}.
Proof. We have

(vm mod (2k − 1))m≥0 = (1, 0,−1,−1, 0, 1, 1, 0,−1,−1, . . .),

(wn mod (2k − 1))n≥0 = (x1, z1(k − 1),−x1,−z1(k − 1), x1, z1(k − 1), . . .),

(w′
n mod (2k − 1))n≥0 = (x1,−z1(k − 1),−x1, z1(k − 1), x1,−z1(k − 1), . . .).

These congruence relations are obtained by induction from (2.14), (2.12) and
(2.13), respectively. The rest follows immediately from (2.15).

Lemma 3.2. Let k ∈ Z[i] and |k| > 5. If at least one of the equations
in (2.15) is solvable, then all fundamental solutions of the equation (2.3) are
(x1, z1) = (±1,±1) and the related sequences (wn) and (w′

n) are given by

w0 = 1, w1 = 3k − 2, wn+2 = 2(2k − 1)wn+1 − wn,(3.1)

w′
0 = 1, w′

1 = k, w′
n+2 = 2(2k − 1)w′

n+1 − w′
n,(3.2)

for n ∈ N0.

Proof. The proof consists of the analysis of the cases given in Lemma
3.1.

• Case: x1 ≡ 0(mod (2k − 1))
In this case, we have that x1 = u(2k − 1) for some u ∈ Z[i]. Hence,

|x1| ≥ |2k − 1| or x1 = 0. If x1 6= 0, then (2.8) implies that

(3.3) |2k − 1|2 ≤ |x1|2 ≤ |k − 1||3k + 1|
|2k − 1| − 1

.

Therefrom, we obtain that

2(2|k|−1)2(|k|−1) ≤ |2k−1|2(|2k−1|−1) ≤ |k−1||3k+1| ≤ (|k|+1)(3|k|+1).

Obviously, 2(2|k| − 1)2(|k| − 1) − (|k| + 1)(3|k| + 1) > 0, for |k| > 3 and this
is in contrary with (3.3). So, for |k| > 3 there is no non-zero fundamental
solution (x1, z1) such that x1 ≡ 0(mod (2k − 1)) and x1 6= 0.

The equation (2.3) has the solution of the form (0, z1) if and only if
k ∈ {0,−1, 1± i, 5}.

• Case: x1 ≡ ±1(mod (2k − 1))



272 Z. FRANUŠIĆ

Let us assume that x1 = u(2k−1)±1 for some u ∈ Z[i]. If x1 6= ±1, then
|x1| ≥ |2k − 1| − 1. According to (2.8), we obtain

(3.4) (|2k − 1| − 1)2 ≤ |k − 1||3k + 1|
|2k − 1| − 1

.

Further, if |k| > 3, then (|2k − 1| − 1)3 − |k − 1||3k + 1| ≥ 8(|k| − 1)3 − (|k|+
1)(3|k| + 1) > 0, but this contradicts (3.4). Hence, under the assumptions
|k| > 3 and x1 ≡ ±1(mod (2k − 1)), all fundamental solutions of (2.3) are
(x1, z1) = (±1,±1).

• Case: z1(k − 1) ≡ 0(mod (2k − 1))
We have that a solution with z1 = 0 is a solution of (2.3) if and only if

k = 1. If we assume that z1 6= 0, then z1 = u(2k − 1) for some u ∈ Z[i]\{0}
(because k − 1 and 2k − 1 are relatively prime). So, |z1| ≥ |2k − 1|. As in
the previous cases, according to (2.9), we obtain that there is no non-zero
fundamental solution of (2.3) such that z1(k − 1) ≡ 0(mod (2k − 1)) and
|k| > 4.

• Case: z1(k − 1) ≡ ±1(mod (2k − 1))
In this case we obtain z1 ≡ ∓2(mod (2k − 1)). The solution of (2.3) is of

the form (x1,±2) if and only if k = 1. If z1 6= ±2, then z1 = u(2k− 1)± 2 for
some u ∈ Z[i]\{0}. According to (2.9), we get that there is no fundamental
solution of (2.3) such that z1(k − 1) ≡ ±1(mod (2k − 1)) and |k| > 5.

Lemma 3.3. The sequences (vm), (wn) and (w′
n) defined by (2.14), (3.1)

and (3.2), respectively, satisfy the following congruences

(vm mod 4k(k − 1))m≥0 = (1, 2k − 1, 2k − 1, 1, 1, 2k − 1, 2k − 1 . . .),

(wn mod 4k(k − 1))n≥0 = (1, 3k − 2,−2k + 3, 5k − 4,−4k + 5, 7k − 6,

6k + 7, . . .),

(w′
n mod 4k(k − 1))n≥0 = (1, k, 2k − 1, 2 − k, 4k − 3,−3k + 4, 6k − 5,

−5k + 6, . . .).

Proof. This can be verified by induction.

Lemma 3.4. Let k ∈ Z[i], |k| > 5 and let x ∈ Z[i]\{±1} be a solution of
the system of equations (2.2) and (2.3). Then there exist m, n ∈ N, n ≡ 0 or
±2 mod 4k, such that x = ±vm with

vm = wn or vm = w′
n,

where (vm), (wn) and (w′
n) are given by (2.14), (3.1) and (3.2), respectively.

Proof. If vm = ±w2n+1 or vm = ±w′
2n+1, then Lemma 3.1 implies that

z1(k − 1)(mod (2k − 1)) ∈ {0, 1,−1}. But, there is no solution z1 of (2.3)
which satisfies these conditions.
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Let vm = w2n. Then, according to Lemma 3.3, two cases may arise:
−2nk+2n+1 ≡ 1(mod 4k(k−1)) or −2nk+2n+1 ≡ 2k−1(mod 4k(k−1)).
Let us analyze each of them.

• If −2nk+2n+1 ≡ 1(mod 4k(k−1)), then −2n(k−1) ≡ 0(mod 4k(k−
1)), i.e. 2n ≡ 0(mod 4k).

• If −2nk+2n+1 ≡ 2k−1(mod 4k(k−1)), then −2n(k−1)−2(k−1) ≡
0(mod 4k(k − 1)). Hence, 2n ≡ −2(mod 4k).

If we assume that vm = −w2n, then the following possibilities occur:

• If 2nk − 2n − 1 ≡ 1(mod 4k(k − 1)), i.e. if 2nk − 2n− 2 = 4k(k − 1)ζ
for some ζ ∈ Z[i], then (k − 1)(n− 2kζ) = 1. But, this equation is not
solvable in Z[i] for |k| > 5.

• If 2nk−2n−1 ≡ 2k−1(mod 4k(k−1)), then 2nk−2n = 2k+4k(k−1)ζ
for some ζ ∈ Z[i]. Therefrom, we obtain that (k − 1)(n− 2kζ − 1) = 1
and this equation has no solution in Z[i] for |k| > 5.

Similarly, we show that the assumption vm = w′
2n implies that 2n ≡

0(mod 4k) or 2n ≡ 2(mod 4k). Also, the assumption vm = −w′
2n leads to a

contradiction.

Now, observe that v0 = w0 = w′
0 = 1 and v2 = w′

2 = −1 − 2k + 4k2.
So, (x, y, z) = (±1,±1,±1) and (x, y, z) = (±(4k2 − 2k − 1),±(4k2 + 2k −
1),±(8k2 − 1)) are solutions of the system of equations (2.2) and (2.3). So-
lutions with x = ±1 are not interesting for us, because they correspond to
d = 0 which presents a trivial extension of the triple {k−1, k+1, 4k}. On the
other hand, solutions with x = ±(4k2 − 2k − 1) correspond to d = 16k3 − 4k.
Since we intend to prove that this is the unique nontrivial extension of the
triple {k − 1, k + 1, 4k}, we have to show that the system of equations (2.2)
and (2.3) has no other solutions, but those given above. Our next step is to
determine an upper bound for all solutions of (2.2) and (2.3) that are different
from the previous ones.

Lemma 3.5. Let k ∈ Z[i] and |k| > 5. If (x, y, z) is a solution of the
system of equations (2.2) and (2.3) and if x ∈ Z[i]\{±1,±(4k2 − 2k − 1)},
then

|x| ≥ (4|k| − 3)4|k|−3.

Proof. According to Lemma 3.4, there exists n > 2, n ≡ 0(mod 4k)
or n ≡ ±2(mod 4k), such that x = ±wn or x = ±w′

n. The sequence (|wn|)
is increasing. Let us show this by induction. Obviously, |w0| ≤ |w1|. Now,
assume that |wn| ≤ |wn+1|. From (3.1), we have that

|wn+2| ≥ |2(2k − 1)wn+1| − |wn| ≥ (|2(2k − 1)| − 1)|wn+1| ≥ |wn+1|.
Analogously, we obtain that (|w′

n|) is an increasing sequence.
Now, let us show that |wn| ≥ (4|k| − 3)n−1 for all n ∈ N. It can be easily

verified that it is true for n = 1. Let us assume that the above inequality is
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true for some n ∈ N. According to (3.1), we obtain that

|wn+1| ≥ (4|k| − 2)|wn| − |wn−1| = (4|k| − 3)|wn| + |wn| − |wn−1|.

So, using the fact that (|wn|) is an increasing sequence, we get

|wn+1| ≥ (4|k| − 3)(4|k| − 3)n−1 ≥ (4|k| − 3)n.

Further, we have that |n| ≥ 4|k| − 2, because n ≡ 0(mod 4k) or n ≡
−2(mod 4k) and n 6= 0, 2. Hence, |wn| ≥ (4|k| − 3)4|k|−3.

The same can be proved for the sequence (w′
n).

4. An application of a theorem on simultaneous approximations

In this section, we prove that if the parameter |k| is large enough, then
x = ±1 and x = ±(4k2 − 2k − 1) give all solutions of the system of equations
(2.2) and (2.3). In order to get this, we apply the following generalization
of Bennett’s theorem [4] on simultaneous rational approximations of square
roots which are close to one.

Theorem 4.1 ([14]). Let θi =
√

1 + ai

T
, i = 1, 2, with a1 and a2 pairwise

distinct quadratic integers in the imaginary quadratic field K and let T be an
algebraic integer of K. Further, let M = max{|a1|, |a2|}, |T | > M and

l =
27

64

|T |
|T | − M

,

L =
27

16|a1|2|a2|2|a1 − a2|2
(|T | − M)2 > 1,

p =

√

2|T |+ 3M

2|T | − 2M
,

P = 16
|a1|2|a2|2|a1 − a2|2

min{|a1|3, |a2|3, |a1 − a2|3}
(2|T |+ 3M).

Then

max

(∣

∣

∣

∣

θ1 −
p1

q

∣

∣

∣

∣

,

∣

∣

∣

∣

θ2 −
p2

q

∣

∣

∣

∣

)

> c|q|−λ,

for all algebraic integers p1, p2, q ∈ K, where

λ = 1 +
log P

log L
,

c−1 = 4pP (max{1, 2l})λ−1.

First, let us show the following technical lemma.
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Lemma 4.2. Let k ∈ Z[i], |k| > 5 and let (x, y, z) ∈ Z[i]3 be a solution of
the system of equations (2.2), (2.3). Furthermore, let

θ
(1)
1 = ±

√

k + 1

k − 1
, θ

(2)
1 = −θ

(1)
1 ,

θ
(1)
2 = ±

√

k

k − 1
, θ

(2)
2 = −θ

(1)
2 ,

where the signs are chosen such that
∣

∣

∣θ
(1)
1 − y

x

∣

∣

∣ ≤
∣

∣

∣θ
(2)
1 − y

x

∣

∣

∣ ,
∣

∣

∣θ
(1)
2 − z

2x

∣

∣

∣ ≤
∣

∣

∣θ
(2)
2 − z

2x

∣

∣

∣ .

Then, we obtain
∣

∣

∣
θ
(1)
1 − y

x

∣

∣

∣
≤ 2

√

|k2 − 1|
· 1

|x|2 ,

∣

∣

∣θ
(1)
2 − z

2x

∣

∣

∣ ≤ 1

4

|3k + 1|
√

|k2 − k|
· 1

|x|2 .

Proof. We have
∣

∣

∣θ
(1)
1 − y

x

∣

∣

∣ =

∣

∣

∣

∣

(θ
(1)
1 )2 − y2

x2

∣

∣

∣

∣

·
∣

∣

∣θ
(1)
1 +

y

x

∣

∣

∣

−1

=
2

|k − 1||x|2
∣

∣

∣θ
(2)
1 − y

x

∣

∣

∣

−1

.

Because of the assumptions on θ
(1)
1 and θ

(2)
1 , we get

∣

∣

∣
θ
(2)
1 − y

x

∣

∣

∣
≥ 1

2

(∣

∣

∣
θ
(1)
1 − y

x

∣

∣

∣
+
∣

∣

∣
θ
(2)
1 − y

x

∣

∣

∣

)

≥ 1

2

∣

∣

∣
θ
(1)
1 − θ

(2)
1

∣

∣

∣
=

∣

∣

∣

∣

∣

√

k + 1

k − 1

∣

∣

∣

∣

∣

.

Hence,
∣

∣

∣θ
(1)
1 − y

x

∣

∣

∣ ≤ 2

|k − 1||x|2

∣

∣

∣

∣

∣

√

k − 1

k + 1

∣

∣

∣

∣

∣

.

Similarly, the second inequality is obtained.

Now, we will apply Theorem 4.1 on θ
(1)
1 and θ

(1)
2 . In our case, we have

a1 = 2, a2 = 1, T = k − 1, M = 2 and

l =
27

64

|k − 1|
|k − 1| − 2

, L =
27

64
(|k − 1| − 2)2,

p =

√

|k − 1| + 3

|k − 1| − 2
, P = 128(|k − 1| + 3).

The condition L > 1 of Theorem 4.1 is satisfied, because L > 0.43(|k| − 3)2

and |k| > 5. So, we conclude that

(4.1) max

{∣

∣

∣

∣

θ
(1)
1 − 2y

2x

∣

∣

∣

∣

,
∣

∣

∣θ
(1)
2 − z

2x

∣

∣

∣

}

> c|2x|−λ,



276 Z. FRANUŠIĆ

where

λ = 1 +
log P

log L
, c−1 = 4pP (max{1, 2l})λ−1.

If we assume that |k| > 14, then max{1, 2l} = 1 and c−1 = 4pP . Further,
according to Lemma 4.2, we have

max
{∣

∣

∣
θ
(1)
1 − y

x

∣

∣

∣
,
∣

∣

∣
θ
(1)
2 − z

2x

∣

∣

∣

}

≤ 1

4

|3k + 1|
√

|k2 − k|
· 1

|x|2 ,

and (4.1) implies

1

4

√

|k − 1| − 2

|k − 1| + 3
· 1

128(|k − 1| + 3)
|2x|−λ <

|3k + 1|
√

|k2 − k|
· 1

|2x|2 .

Hence,

(4.2) |2x|2−λ ≤ 29 |3k + 1|
√

|k2 − k|

√

(|k − 1| + 3)3

|k − 1| − 2
.

Proposition 4.3. Let k ∈ Z[i] and |k| ≥ 350. Then all solutions of the
system of equations (2.2) and (2.3) are given by (x, y, z) = (±1,±1,±1) and
(x, y, z) = (±(4k2 − 2k − 1),±(4k2 + 2k − 1),±(8k2 − 1)) .

Proof. We use the estimate for x, |x| ≥ (4|k| − 3)4|k|−3 (from Lemma
3.5), and after taking a logarithm in (4.2), we obtain
(4.3)

(2−λ)(log 2+ (4|k|− 3) log(4|k|− 3)) ≤ log

(

29 |3k + 1|
√

|k2 − k|

√

(|k − 1| + 3)3

|k − 1| − 2

)

,

where log denotes the natural logarithm. This gives us an inequality for k,
since

λ = 1 +
7 log 2 + log(|k − 1| + 3)

log 27
64 + 2 log(|k − 1| − 2)

.

Finally, let us assume that |k| ≥ 350. Then 2 − λ > 0.01. The right side of
(4.3) satisfies the following inequality

log

(

29 |3k + 1|
√

|k2 − k|

√

(|k − 1| + 3)3

|k − 1| − 2

)

≤ log(3|k|) + 7.

On the other hand, we obtain that the left side of (4.3) satisfies

(2 − λ)(log 2 + (4|k| − 3) log(4|k| − 3)) > 0.01(log 2 + (4|k| − 3) log(4|k| − 3))

> log(3|k|) + 7,

and that is a contradiction.
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5. Linear forms in three logarithms

In this section, we study the case where k ∈ Z[i] and 5 < |k| < 350. We
will apply a method similar to those used in [2].

Let x = vm = wn for some m, n ∈ N. By solving the recurrences (2.14)
and (3.1) for (vm) and (wn), we obtain

x =

√
k − 1 +

√
k + 1

2
√

k + 1
(k +

√

k2 − 1)m

−
√

k − 1 −
√

k + 1

2
√

k + 1
(k −

√

k2 − 1)m,

x =

√
k − 1 + 2

√
k

4
√

k
(2k − 1 + 2

√

k2 − k)n

−
√

k − 1 − 2
√

k

4
√

k
(2k − 1 − 2

√

k2 − k)n.

From now on, let us assume that Re(k) > 0. Besides that, we will discuss the
case where Re(k) = 0 and Im(k) > 0. The other two cases (Re(k) < 0 and
Re(k) = 0, Im(k) < 0) can be avoided by taking a quadruple {−k + 1,−k −
1,−4k,−d} instead of {k − 1, k + 1, 4k, d}, because {k − 1, k + 1, 4k, d} is a
Diophantine quadruple in Z[i] if and only if {−k + 1,−k − 1,−4k,−d} is a
Diophantine quadruple.

Let

P =

√
k − 1 +

√
k + 1√

k + 1
(k +

√

k2 − 1)m,(5.1)

Q =

√
k − 1 + 2

√
k

2
√

k
(2k − 1 + 2

√

k2 − k)n.(5.2)

The equation vm = wn implies that

(5.3) P +
2

k + 1
P−1 = Q +

3k + 1

4k
Q−1.

Further, according to (5.3) and the trivial estimates |P | > 5 and |Q| > 9, we
have

||P | − |Q|| ≤ |P − Q| ≤
∣

∣

∣

∣

3k + 1

4k

∣

∣

∣

∣

|Q|−1 +

∣

∣

∣

∣

2

k + 1

∣

∣

∣

∣

|P |−1 < 0.2.

Hence, |P | ≤ |Q| + 0.2 ≤ 1.03|Q|, i.e. |Q|−1 ≤ 1.03|P |−1 and

∣

∣

∣

∣

P − Q

P

∣

∣

∣

∣

≤
∣

∣

∣

∣

3k + 1

4k

∣

∣

∣

∣

|Q|−1|P |−1 +

∣

∣

∣

∣

2

k + 1

∣

∣

∣

∣

|P |−2 < 1.33|P |−2 < 0.06.
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Finally, we obtain that
∣

∣

∣

∣

log
|P |
|Q|

∣

∣

∣

∣

=

∣

∣

∣

∣

log

(

1 − |P | − |Q|
|P |

)∣

∣

∣

∣

< 1.33|P |−2 + (1.33|P |−2)2

< 1.5|P |−2 = 1.5

∣

∣

∣

∣

√
k − 1 +

√
k + 1√

k + 1

∣

∣

∣

∣

−2

|k +
√

k2 − 1|−2m

< 1.5

(

1

5

)2m

< 16−m.

The above expression can be written as a linear form in three logarithms:
∣

∣

∣m log |k +
√

k2 − 1| − n log |2k − 1 + 2
√

k2 − k|

+ log

∣

∣

∣

∣

∣

2
√

k(
√

k − 1 +
√

k + 1√
k + 1(

√
k − 1 + 2

√
k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< 16−m(5.4)

and it is valid for all k ∈ Z[i] such that Re(k) > 0 and |k| > 5.
We use the following theorem of Baker and Wüstholz ([3, p. 20]) to obtain

an upper bound for m.

Theorem 5.1. Let Λ be a nonzero linear form in logarithms of l algebraic
numbers α1, . . . , αl with rational integer coefficients b1, . . . , bl. Then

log Λ ≥ −18(l + 1)! ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) log B,

where B = max(|b1|, . . . , |bl|) and where d is the degree of the number field
generated by α1, . . . , αl over the rationals.

Here

h′(α) = max(h(α),
1

d
| log α|, 1

d
),

where h(α) denotes the standard logarithmic Weil height of α ([3, p. 22]).
Let

(5.5) Λ = |m log α1 − n log α2 + log α3|,
where

α1 = |k +
√

k2 − 1|,
α2 = |2k − 1 + 2

√

k2 − k|,

α3 =

∣

∣

∣

∣

∣

2
√

k(
√

k − 1 +
√

k + 1√
k + 1(

√
k − 1 + 2

√
k)

∣

∣

∣

∣

∣

.

First, let us verify that the condition Λ 6= 0 in Theorem 5.1 is satisfied or
equivalently |P | 6= |Q|. This condition is not trivially satisfied and it will be
proved in the following lemma.

Lemma 5.2. If vm = wn, then |P | 6= |Q| for all k ∈ Z[i]\{0,±1}.
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Proof. Assume that |P | = |Q|. If P = Q, then (5.3) imply that 3k2 −
4k +1 = 0. The only solution of this equation in Z[i] is k = 1, so we conclude
that P 6= Q.

Let us denote

α =

√

k − 1

k + 1
, β =

√

k − 1

k
.

According to (5.1) and (5.2), we have

P = a + bα, Q = c + dβ,

where a, b, c, d ∈ Q(i). Since vm = a and wn = c, the assumption vm = wn

implies a = c. Further, we have

|P |2 = p + uα + uα + q|α|2,(5.6)

|Q|2 = r + vβ + vβ + s|β|2,(5.7)

where p, q, r, s ∈ Q and u, v ∈ Q(i).
At the moment, let us point out several facts that are crucial for our

proof:

i) The complex numbers α, β are algebraic numbers of degree 2 over Q(i), for
k ∈ Z[i] \ {0,±1}.

ii) The basis for Q(i)(α, α) (considered as a vector space over Q(i)) is
Bα = {1, α, α, |α|2} and, analogously, the basis for Q(i)(β, β) is

Bβ = {1, β, β, |β|2}.
iii) The set Bα,β = {1, α, α, |α|2, β, β, |β|2} is linearly independent over Q(i).

Obviously, |P |2 is an element of the algebraic extension field Q(i)(α, α)

and is uniquely represented in (5.6). Analogously, |Q|2 ∈ Q(i)(β, β) is
uniquely represented in (5.7). Since Bα,β is a linearly independent set, the
assumption |P |2 = |Q|2 implies that u = q = v = s = 0. Therefrom, it follows
b = d = 0. Hence, we have P = a and Q = c, i.e. P = Q, a contradiction.

In what follows, we will prove the statements i), ii) and iii).
Proof of i): Let us assume conversely that α ∈ Q(i). Then (k+1)/(k−1)

is a perfect square in Q(i). So, there exist ρ, A, B ∈ Z[i] such that

k + 1 = ρA2, k − 1 = ρB2.

Therefrom it follows that 2 = ρ(A2 − B2). Using the facts that Z[i] is a ring
with unique factorization with units ±1, ±i and that a+bi ∈ Z[i] is a prime if
and only if one of a, b is zero and the other is a prime congruent to 3 (mod 4) or
both a, b are nonzero and a2+b2 is prime, we get that only finitely many cases
may occur: (ρ, A2 − B2) ∈ {(±2,±1), (±2i,∓i), (±1,±2), (±i,∓2i), (±(1 +
i),±(1− i)), (±(1− i),±(1+ i))}. This implies that k ∈ {±1, 0}. In the same
way, the assumption that β ∈ Q(i), i.e. that (k − 1)/k is a perfect square in
Q(i) implies that k ∈ {0, 1}.

Proof of ii): If γ ∈ Q(i)(α, α), then γ =
∑

qijα
iαj , where qij ∈ Q(i).

But, α2, α2 ∈ Q(i) and αα = |α|2 imply that γ = q0 + q1α + q2α + q3|α|2
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for some q0, q1, q2, q3 ∈ Q(i). Hence, the set Bα spans Q(i)(α, α). Next we
have to show that Bα is linearly independent. Suppose that the set {1, α, α}
is linearly dependent. Hence, there exist A, B ∈ Q(i) such that

α = A + Bα.

By squaring the previous equation, we obtain

α2 − A2 − B2α2 = 2ABα

and, therefrom, we get that α ∈ Q(i), a contradiction. So, {1, α, α} is linearly
independent.

Further, if we assume that the set {1, α, α, |α|2} is linearly dependent,
then

(5.8) |α|2 = A + Bα + Cα

for some A, B, C ∈ Q(i). Multiplication by α gives us

(5.9) C|α|2 = −Bα2 − Aα + α2α.

Suppose C = 0. Then |α|2 = A + Bα and by squaring we get that 2ABα ∈
Q(i), a contradiction. Since C 6= 0, according to (5.8) and (5.9), it follows
that

A + Bα + Cα = −B

C
α2 − A

C
α +

1

C
α2α,

and because {1, α, α} is linearly independent, we have

A = −B

C
α2, B =

A

C
, C =

1

C
α2.

Therefore, C2 = α2, but this is a contradiction, because α2 is not a perfect
square in Q(i).

Proof of iii): It suffices to prove that β, β and |β|2 are not elements of
Q(i)(α, α). Suppose that β can be represented as

β = A + Bα + Cα + D|α|2,
for some A, B, C, D ∈ Q(i). By squaring, we get

β2 = A2 + B2α2 + C2α2 + D2|α|4

+2ABα + 2ACα + 2AD|α|2 + 2BC|α|2 + 2BDα2α + 2CDα2α.

Since β2, α2, α2 ∈ Q(i) and set {1, α, α, |α|2} is linearly independent over Q(i),
we obtain that

AB + CDα2 = 0,(5.10)

AC + BDα2 = 0,(5.11)

AD + BC = 0.(5.12)

Now, (5.10) and (5.12) imply that A2 = C2α2, then (5.11) and (5.12) imply
that A2 = B2α2 and (5.10) and (5.11) imply that A2 = D2|α|4. Hence,
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β2 = 4A2, a contradiction. Similarly, we can obtain that β and |β|2 are not
in Q(i)(α, α).

The next step is to determine B from Theorem 5.1, which is in our case
B = max(m, n). The result is given in the following lemma.

Lemma 5.3. Let k ∈ Z[i] such that |k| > 5 and Re(k) > 0. If vm = wn,
then n ≤ m.

Proof. We have already shown that |Q| ≤ |P | + 0.2 and, therefrom,
|Q| < 1.04|P |, i.e.

∣

∣

∣

∣

1 +

√
k − 1

2
√

k

∣

∣

∣

∣

αn
2 < 1.04

∣

∣

∣

∣

1 +

√
k − 1√
k + 1

∣

∣

∣

∣

αm
1 .

After taking logarithms we get

(5.13) n < log





1.04
∣

∣

∣1 +
√

k−1√
k+1

∣

∣

∣

∣

∣

∣1 +
√

k−1

2
√

k

∣

∣

∣





1

log α2
+ m

log α1

log α2
.

Observe that we have
∣

∣

∣

∣

1 +

√
k − 1

2
√

k

∣

∣

∣

∣

> 1, 1.04

∣

∣

∣

∣

1 +

√
k − 1√
k + 1

∣

∣

∣

∣

≤ 2.4, log α2 > 2,

and these inequalities imply that

log





1.04
∣

∣

∣
1 +

√
k−1√
k+1

∣

∣

∣

∣

∣

∣1 +
√

k−1

2
√

k

∣

∣

∣





1

log α2
<

1

2
.

Since,

α1

|k| =

∣

∣

∣

∣

∣

1 +

√

1 − 1

k2

∣

∣

∣

∣

∣

< 2.02,
α2

|k| ≥
(

2

∣

∣

∣

∣

∣

1 +

√

1 − 1

k

∣

∣

∣

∣

∣

− 1

|k|

)

> 3.5,

we have
log α1

log α2
< 1.

Applying the above inequalities to (5.13), we obtain

n <
1

2
+ m,

and therefore n ≤ m.

Note that B(m, n) = m > 1, since v1 6= w1.
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Our next aim is to determine standard logarithmic Weil height of αi, i =
1, 2, 3. For that purpose we need minimal polynomials of these algebraic num-
bers. The minimal polynomials of the algebraic numbers β1 = k +

√
k2 − 1,

β2 = 2k − 1 + 2
√

k2 − k and β3 =
2
√

k(
√

k − 1 +
√

k + 1)√
k + 1(

√
k − 1 + 2

√
k)

were given in [6],

q1(x) = x2 − 2kx + 1,

q2(x) = x2 − 2(2k − 1)x + 1,

q3(x) = (9k4 + 24k3 + 22k2 + 8k + 1)x4 − 16k(3k3 + 7k2 + 5k + 1)x3

+48k2(k2 + 4k + 3)x2 − 128k2(k + 1)x + 64k2.

According to the proof of Theorem 9.11 in [15], we can determine the minimal
polynomials of the algebraic numbers βiβi = α2

i , i = 1, 2, 3 (and clearly of αi,
too).

The minimal polynomials of α1, α2 are, respectively,

p1(x) = x8 − 4(µ2 + ν2)x6 + (8µ2 − 8ν2 − 2)x4 − 4(µ2 + ν2)x2 + 1,

p2(x) = x8 − 4(4(µ2 + ν2 − µ) + 1)x6 + (32(µ2 − ν2 − µ − 2) + 6)x4

−4(4(µ2 + ν2 − µ) + 1)2x2 + 1,

where k = µ + iν. The minimal polynomial of α3 is of degree 32,

p3(x) =

16
∑

i=0

aix
2i

and it was derived by the help of the program package Mathematica. We
list only few of its coefficients ai (because its coefficients are huge rational
functions in µ, ν).

a0 = − 248(µ2 + ν2)8

((1 + µ)2 + ν2)8((1 + 3µ)2 + 3ν2)8
,

a1 =
250(µ2 + ν2)8

((1 + µ)2 + ν2)7((1 + 3µ)2 + 3ν2)8
,

a2 = − 3 · 245(µ2 + ν2)8

((1 + µ)2 + ν2)7((1 + 3µ)2 + 3ν2)8
(21 + 46µ + 13(µ2 + ν2)),

a3 =
244(µ2 + ν2)7

((1 + µ)2 + ν2)6((1 + 3µ)2 + 3ν2)8
(3 − 26µ + 247µ2 + 300µ3

+36µ4 + 191ν2 + 300µν2 + 72µ2ν2 + 36ν4),
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a4 = − 238(µ2 + ν2)6

((1 + µ)2 + ν2)6((1 + 3µ)2 + 3ν2)8
(−1 + 52µ + 14µ2 − 3196µ3

+20299µ4 + 48864µ5 + 40476µ6 + 9648µ7 + 324µ8 + 170ν2

−2780µν2 + 32854µ2ν2 + 86112µ3ν2 + 91452µ4ν2 + 28944µ5ν2

+1296µ6ν2 + 13867ν4 + 37248µν4 + 61476µ2ν4 + 28944µ3ν4

+1944µ4ν4 + 10500ν6 + 9648µν6 + 1296µ2ν6 + 324ν8),

...

a14 = − 1536(µ2 + ν2)2

((1 + µ)2 + ν2)((1 + 3µ)2 + 3ν2)2
(21 + 46µ + 13µ2 + 13ν2),

a15 =
256(µ2 + ν2)

((1 + µ)2 + ν2)
,

a16 = −1.

Further, for the purpose of determining the heights h(αi), we have to find
all roots of the minimal polynomials pi(x) or, if it is not possible, we have to
bound them. With some algebraic manipulation, we can get all roots of p1(x)
and p2(x). The roots of p1(x) are

x1, x2 = ±|k +
√

k2 − 1| = ±α1,

x3, x4 = ±|k −
√

k2 − 1|,

x5, x6 = ±
√

|k|2 − |k2 − 1| −
√

(|k|2 − |k2 − 1|)2 − 1,

x7, x8 = ±
√

|k|2 − |k2 − 1| +
√

(|k|2 − |k2 − 1|)2 − 1.

It can be shown that |x3| = |x4| ≤ 1 and that |xi| = 1 for i = 5, 6, 7, 8.
So,

h(α1) ≤
1

8
log(|x1| · |x2|) =

1

4
log |k +

√

k2 − 1| ≤ 1

4
log(2|k| + 1) ≤ 1.64 .

The roots of p2(x) are

x1, x2 = ±α2,

x3, x4 = ±|2k − 1 − 2
√

k2 − k|,

x5, x6 = ±
√

|2k − 1|2 − 4|k2 − k| +
√

(|2k − 1|2 − 4|k2 − k|)2 − 1,

x7, x8 = ±
√

|2k − 1|2 − 4|k2 − k| −
√

(|2k − 1|2 − 4|k2 − k|)2 − 1.

As in the previous case, we obtain that

h(α2) ≤
1

8
log(|2k − 1 + 2

√

k2 − k|2) ≤ 1

4
log(4|k| + 3) ≤ 1.82.
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The estimate for h(α3) will be less accurate than those for h(α1) and
h(α2), because most roots of p3(x) cannot be found analytically. By calcula-
tion, we obtain following 8 roots:

x1, x2 = ±α3,

x3, x4 = ±
∣

∣

∣

∣

∣

2
√

k(
√

k − 1 +
√

k + 1)√
k + 1(

√
k − 1 − 2

√
k)

∣

∣

∣

∣

∣

,

x5, x6 = ±

∣

∣

∣

∣

∣

∣

2k(
√

k + 1 −
√

k − 1) +
√

2k(k − 1)(
√

k2 − 1 − k)
√

k + 1(3k + 1)

∣

∣

∣

∣

∣

∣

,

x7, x8 = ±

∣

∣

∣

∣

∣

∣

2k(
√

k + 1 −
√

k − 1) −
√

2k(k − 1)(
√

k2 − 1 − k)
√

k + 1(3k + 1)

∣

∣

∣

∣

∣

∣

.

We estimate the remaining roots on the following way:

|xi| ≤ 32 · max{|aj|, 0 ≤ j ≤ 16}, i = 9, 10, . . . , 32,

where ai are the coefficients of p3(x). We give as an example the estimate for
|a4|,

|a4| =
238(µ2 + ν2)6

((1 + µ)2 + ν2)6(1 + 3µ)2 + 3ν2)8
|p(µ, ν)|

≤ 238(µ2 + ν2)6

(µ2 + ν2)6(9(µ2 + ν2))8

∑

|bij |(µ2 + ν2)4 ≤ 5.5 · 106,

where

p(µ, ν) =
∑

0≤i+j≤8

bijµ
iνj = −1 + 52µ + 14µ2 + · · · + 1296µ2ν6 + 324ν8.

All coefficients are bounded by:

max{|aj |, 0 ≤ j ≤ 16} ≤ |a8| < 1.65 · 108.

It can be seen that |xi| < 1 for i = 5, 6, 7, 8. So, we have that

h(α3) ≤
1

32
log(a′

nα2
3|x3||x4|(32 · 1.65 · 108)24),

where a′
n = ((1 + µ)2 + ν2)8((1 + 3µ)2 + (3ν)2)8 represents the leading coeffi-

cient of the minimal polynomial of α3 with integer coefficients. By using the
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estimates

α2
3x3x4 = 16 ·

∣

∣

∣

∣

k

k + 1

∣

∣

∣

∣

2

·
∣

∣

∣

∣

∣

2k + 2
√

k2 − 1

3k + 1

∣

∣

∣

∣

∣

2

≤ 16

(

1 +
1

|k| − 1

)2

4

(

2|k| + 1

3|k| − 1

)2

< 62,

a′
n ≤ (1 + 2|k| + |k|2)8(1 + 6|k| + 9|k|2)8 < 6.5 · 1052,

we get

h(α3) <
1

32
log(6.5 · 1052 · 62 · (32 · 1.65 · 108)24) < 20.72.

Now, we have to estimate d, where d is the degree of the number field
generated by α1, α2, α3. We obtain

d ≤ [Q(α1, α2, α3) : Q(α1, α2)][Q(α1, α2) : Q(α1)][Q(α1) : Q] ≤ 32 · 8 · 8.

Finally, we apply Theorem 5.1 to the form (5.5). Combining (5.4) and the
above estimates, we find that

−m log 16 ≥ log Λ

≥ −18 · 4! · 34(32 · 2048)5 · 1.64 · 1.82 · 18.69 · log(6 · 2048) logm

> −2.5 · 1031 log m.

Therefore, we obtain

(5.14) m ≤ 2.5 · 1031 log m.

The inequality (5.14) is not valid for m ≥ 2 · 1033. Therefore, we have

(5.15) |mθ − n + β| < α · 16−m, 1 < m < 2 · 1033,

for θ = log α1/ log α2, β = log α3/ log α2, α = 1/ logα2.
In the case of k = iν, 5 < ν < 350, the same conclusion, i.e. (5.15), can

be obtained. The only difference is that we take

Q =

√
k − 1 − 2

√
k

2
√

k
(2k − 1 − 2

√

k2 − k)n

in (5.2). We omit further details.
Finally, we have to carry out the procedure described in Sections 4 and

5 for the case x = vm = w′
n. By solving the recurrence (3.2) for (w′

m), we
obtain

x =
2
√

k −
√

k − 1

4
√

k
(2k−1+2

√

k2 − k)n+
2
√

k +
√

k − 1

4
√

k
(2k−1−2

√

k2 − k)n.

If Re(k) > 0, then instead of (5.2) we take

Q =
2
√

k −
√

k − 1

2
√

k
(2k − 1 + 2

√

k2 − k)n,



286 Z. FRANUŠIĆ

and related algebraic numbers are α1, α2, α′
3, where

α′
3 =

∣

∣

∣

∣

∣

2
√

k(
√

k − 1 +
√

k + 1)√
k + 1(

√
k − 1 − 2

√
k)

∣

∣

∣

∣

∣

.

If Re(k) = 0 and Im(k) > 0, then we put

Q =
2
√

k +
√

k − 1

2
√

k
(2k − 1 − 2

√

k2 − k)n,

and we deal with α1, α′
2, α3, where

α′
2 =

∣

∣

∣2k − 1 − 2
√

k2 − k
∣

∣

∣ .

All estimates remain valid, so we omit further details.

6. The reduction method

Our next step is reducing the upper bound of the solution of (5.15). We
will use the reduction method similar to one described in [7, Lemma 4a)] (and
originally introduced in [2]).

Lemma 6.1 ([7]). Let θ, β, α, a be positive real numbers and let M be a
positive integer. Let p/q be a convergent of the continued fraction expansion
of θ such that q > 6M . Furthermore, let ε = ‖βq‖ − M · ‖θq‖, where ‖ · ‖
denotes the distance from the nearest integer. If ε > 0, then the inequality

(6.1) |mθ − n + β| < αa−m,

has no integer solutions m and n such that

log(αq/ε)/ log a ≤ m ≤ M.

We apply Lemma 6.1 to (5.15) for each k ∈ Z[i], 5 < |k| < 350 such that
Re(k) > 0 or Re(k) = 0, Im(k) > 0. The reduction gives us a new bound
M0 = 33, in all cases. Another application of the reduction in all cases gives
us that m ≤ 6. By checking all the possibilities 0 < n ≤ m ≤ 6, we conclude
that the equation vm = wn has only trivial solution v0 = w0 = 1 and the
equation vm = w′

n has only solutions v2 = w′
2 = 4k2 − 2k − 1, v0 = w′

0 = 1.
Therefore, we proved

Proposition 6.2. Let k ∈ Z[i] and |k| > 5, Re(k) > 0 or Re(k) = 0 and
Im(k) > 0. The only solutions of the system (2.2) and (2.3) are (x, y, z) =
(±1,±1,±1) and (x, y, z) = (±(4k2 − 2k − 1),±(4k2 + 2k − 1),±(8k2 − 1)),
with mixed signs.
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7. The case 1 < |k| ≤ 5

This case is interesting, because there are some extra fundamental solu-
tions of (2.2) and (2.3) for certain values of the parameter k. As before, we
will assume that Re(k) > 0 or Re(k) = 0 and Im(k) > 0. These fundamental
solutions of (2.2) also appear (besides (x0, y0) = (±1,±1)):

• (x0, y0) = (0,±(1 + i)) for k = 1 + i,
• (x0, y0) = (0,±(1 − i)) for k = 1 − i,
• (x0, y0) = (0,±i) for k = 3.

For (2.3), we obtain these fundamental solutions (besides (x1, z1) = (±1,±1)):

• (x1, z1) = (0,±(1 + 2i)) for k = 1 + i,
• (x1, z1) = (0,±(1 − 2i)) for k = 1 − i,
• (x1, z1) = (±(1 + i),±(2 + 3i)) for k = 3,
• (x1, z1) = (0,±2i) for k = 5,
• (x1, z1) = (±i,±3i) for k = 5,
• (x1, z1) = (±2,±4) for k = 5.

For each above k the fundamental solutions (x0, y0) = (±1,±1) and
(x1, z1) = (±1,±1) lead to the equations vm = wn and vm = w′

n, where
the sequences (vm), (wn) and (w′

n) are given by (2.14), (2.12) and (2.13),
respectively. We apply methods given in Sections 5 and 6, and obtain that
the only solution of vm = wn is m = n = 0 and solutions of vm = w′

n are
m = n = 0 and m = n = 2.

Now, each remaining case will be treated separately.
Case: k = 1 + i
In Section 2, we showed that all solutions of (2.2) are given by recurrence

sequences (2.10) and (2.11). Precisely, according to (2.10) the fundamental
solution (x0, y0) = (0, 1 + i) generates this recurrence sequence

u0 = 0, u1 = −1 + i, um+2 = 2(1 + i)u − m + 1 − um, m ∈ N0,

and according to (2.11) we obtain the sequence (−um). The fundamental
solution (x0, y0) = (1, 1) generates the sequence

v0 = 1, v1 = 1 + 2i, vm+2 = 2(1 + i)vm+1 − vm, m ∈ N0.

So, if (x, y) is a solution of (2.2), then x = ±um and x = ±vm. Further, (2.12)
and (2.13) imply that the fundamental solution (x1, z1) = (0, 1 + 2i) leads to
the sequence

q0 = 0, q1 = −2 + i, qn+2 = 2(1 + 2i)qn+1 − qn, n ∈ N0,

and the fundamental solution (x1, z1) = (1, 1) leads to

w0 = 1, w1 = 1 + 3i, wn+2 = 2(1 + 2i)wn+1 − wn,

w′
0 = 1, w′

1 = 1 + i, w′
n+2 = 2(1 + 2i)w′

n+1 − w′
n, n ∈ N0.
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Hence, if (x, z) is a solution of (2.3), then x is given by (±qn), (±wn) and
(±w′

n) and one of the following cases occur:

a) vm = ±qn,
b) um = ±wn or um = ±w′

n,
c) um = ±qn.

a) Suppose that vm = ±qn for m, n ∈ N0. We apply the congruence
method from Section 3 on sequences (vm mod δ) and (qn mod δ), where
δ ∈ {−1 + 2i,−4− 4i}, and get that v3m+1 = ±qn, m, n ∈ N0, because

(vm mod (−1 + 2i)) = (−1 + i, 0, 2i, 2i, 0,−1 + i,−1 + i, 0, . . .),

(qn mod (−1 + 2i)) = (0, 0, 0, . . .).

The following sequences

(v3m+1 mod (−4 − 4i)) = (−3 − 2i,−7,−7,−3− 2i,−3− 2i,−7, . . .),

(qn mod (−4 − 4i)) = (0,−2 + i,−4 − 2i,−2− i,−4,−6 + i,−4 + 2i,

−6 − i, 0, . . .),

imply that vm 6= ±qn, for all m, n ∈ N0.
b) Similarly, as in the case a), by applying the congruence method we

obtain that there is no solution in this case.
c) By applying the congruence method as in the case a), we obtain that

u6m = ±q4n, m, n ∈ N0.

By repeating the procedures described in Sections 5 and 6, we conclude that
the above equation has only the trivial solution u0 = q0 = 0. The meaning
of this unexpected solution is that the Diophantine triple {i, 1 + i, 2 + i} is
extended by the element d = i, but such extension is not considered as a
proper extension since i is already an element of the starting triple.

Case: k = 1 − i
By conjugating, this case becomes the same as the previous one.
Case: k = 3
The fundamental solutions of (2.2) are (x0, y0) = (0, i) and (x0, y0) =

(1, 1). They generate two recurrence sequences

u0 = 0, u1 = 2i, um+2 = 6um+1 − um,

v0 = 1, v1 = 5, vm+2 = 6vm+1 − vm.

The fundamental solutions of (2.3), (x1, z1) = (1, 1) and (x1, z1) = (1 + i, 2 +
3i), generate following sequences

w0 = 1, w1 = 4, un+2 = 10wn+1 − wn,

w′
0 = 1, w1 = 3, un+2 = 10wn+1 − wn,

q0 = 1 + i, q1 = 9 + 11i, qn+2 = 6qn+1 − qn,

q′0 = 1 + i, q′1 = 1 − i, q′n+2 = 6qn+1 − qn.
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Note that q′n = qn−1. So, following cases have to be analyzed:

a) vm = ±qn or vm = ±qn,
b) um = ±wn or um = ±w′

n,
c) um = ±qn or um = ±qn.

By congruence method we obtain that the cases a), b) and c) have no solution.
Case: k = 5
As in the previous case, the solutions can be obtained only from vm = wn

or vm = w′
n.

Therefore, we proved

Proposition 7.1. Let k ∈ Z[i] and 1 < |k| ≤ 5, Re(k) > 0 or Re(k) =
0 and Im(k) > 0. Solutions of the system (2.2) and (2.3) are (x, y, z) =
(±1,±1,±1), (x, y, z) = (±(4k2 − 2k − 1),±(4k2 + 2k − 1),±(8k2 − 1)), with
mixed signs. If k 6= 1 ± i, then these solutions are the only solutions of the
system (2.2) and (2.3). If k = 1 + i or if k = 1 − i, then there exist the extra
solutions (x, y, z) = (0,±(1 + i),±(1 + 2i)) and (x, y, z) = (0,±(1− i),±(1 −
2i)), respectively.

8. The case k = i

The main difference between this case and the previous ones is that
Lemma 2.2 cannot be applied. Hence, we rewrite the original problem (2.1)
as

y2 + ix2 = i + 1,(8.1)

z2 − (2 − 2i)x2 = −1 + 2i.(8.2)

The advantage of the above equations is that the solutions can be given im-
mediately by using [11]. So, all solutions of (8.1) are given by

y(j)
m + x(j)

m

√
−i = ρj(i + (1 − i)

√
−i)m, m ∈ N0, j = 1, 2, 3, 4,

where ρ1 = 1 +
√
−i, ρ2 = −1 +

√
−i, ρ3 = −ρ1, ρ4 = −ρ2, and all solutions

of (8.2) are

z(k)
n + x̃(k)

n

√
2 − 2i = σj(−1 + 2i + (1 − i)

√
2 − 2i)n, n ∈ N0, k = 1, 2, 3, 4,

where σ1 = 1 +
√

2 − 2i, σ2 = 1 −
√

2 − 2i, σ3 = −σ1, σ4 = −σ2.
Hence, our problem of solving the system of equation is reduced to

x(j)
m = x̃(k)

n , m, n ∈ N0,

where j, k ∈ {1, 2, 3, 4}. Note that some of these equations have solution for
m = n = 0, which implies that our system of Pellian equations has a trivial
solution (x, y, z) = (±1,±1,±1). These solutions correspond to d = 0.

Further, it can be shown that x
(1)
m+1 = x

(2)
m = −x

(3)
m+1 = −x

(4)
m = xm and

that x̃
(3)
n = −x̃

(1)
n and x̃

(4)
n = −x̃

(2)
n . So, it remains to study the four cases

(8.3) xm = ±x̃(j)
n , m, n ∈ N, j ∈ {1, 2}.
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Solutions xm and x̃
(k)
n (k = 1, 2) satisfy following recursions

x
(j)
m+1 = 2ix(j)

m − x
(j)
m−1, m ≥ 1,

x̃
(k)
n+1 = 2(−1 + 2i)x̃(k)

n − x̃
(k)
n−1, n ≥ 1.

By solving these recursions we obtain the formulas

xm = (
1

2
+

1 + i

2
√

2
)(i(1 +

√

2))m + (
1

2
−

1 + i

2
√

2
)(i(1 −

√

2))m

,

x̃
(1)
n

=
2 −

√

1 + i

4
(−1 + 2i + 2i

√

1 + i)n +
2 +

√

1 + i

4
(−1 + 2i − 2i

√

1 + i)n

,

x̃
(2)
n

= −
2 +

√

1 + i

4
(−1 + 2i + 2i

√

1 + i)n

−
2 −

√

1 + i

4
(−1 + 2i − 2i

√

1 + i)n

.

Each equation in (8.3) should be treated separately. By applying the methods
given in Section 6 and 7, we obtain that the only solution is x = x2 =

x̃
(1)
2 = −5 − 2i. This implies that the system (8.1) and (8.2) has solutions

(x, y, z) = (±(−5 − 2i),±(−5 + 2i),±9) (which corresponds to d = −20i, i.e.
to 16k3 − 4k for k = i). Therefore, we proved

Proposition 8.1. Let k = i. The all solutions of the system (2.1)
are (x, y, z, d) = (±1,±1,±1, 0) and (x, y, z, d) = (±(−5 − 2i),±(−5 +
2i),±9,−20i), with mixed signs.
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