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THE ZERO-DIVISOR GRAPH WITH RESPECT TO IDEALS

OF A COMMUTATIVE SEMIRING

Shahabaddin Ebrahimi Atani

University of Guilan, Iran

Abstract. In a manner analogous to a commutative ring, the ideal-
based zero-divisor graph of a commutative semiring R can be defined as
the undirected graph ΓI(R) for some ideal I of R. The properties and
possible structures of the graph ΓI (R) are studied.

1. Introduction

Throughout all semirings are assumed to be commutative semirings with
non-zero identity. The zero-divisor graph of a semiring is the (simple) graph
whose vertex set is the set of non-zero zero-divisors, and an edge is drawn be-
tween two distinct vertices if their product is zero. This definition is the same
as that introduced by D. F. Anderson and P. S. Livingston in [1]. In [5], Beck
introduced the concept of a zero-divisor graph of a commutative ring. How-
ever, he let all elements of R be vertices of the graph and his work was mostly
concerned with coloring of rings. In recent years, the study of zero-divisor
graphs has grown in various directions. At the heart is the interplay between
the ring-theoretic properties of a ring and the graph-theoretic properties of
its zero-divisor graph, begun in [1] and continued in [2, 13]. The zero-divisor
graph of a commutative ring has been studied extensively by several authors,
e.g. [1, 2, 11, 13].

Let R be a commutative semiring with non-zero identity. We can define
the zero-divisor graph Γ(R) as above. We know (at least as far as I am aware)
of no systematic study of zero-divisors in the semiring context. The bulk of
this paper is devoted to stating and proving analogues to several well-known
results of the ideal-based zero-divisor graph in the theory of rings. In fact,
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the main object of this paper is to study the interplay of semiring-theoretic
properties of R with graph-theoretic properties of ΓI(R) for some ideal I of
R.

For the sake of completeness, we state some definitions and notations used
throughout. By a commutative semiring, we mean a commutative semigroup
(R, ·) and a commutative monoid (R, +, 0) in which 0 is the additive identity
and r ·0 = 0 ·r = 0 for all r ∈ R, both are connected by ring-like distributivity.
A commutative semiring R is said to be a semidomain if ab = 0 (a, b ∈ R),
then either a = 0 or b = 0. A semifield is a commutative semiring in which
the non-zero elements form a group under multiplication. In this paper, all
semirings considered will be assumed to be commutative semirings with non-
zero identity.

A subset I of a semiring R will be called an ideal if a, b ∈ I and r ∈ R
implies a + b ∈ I and ra ∈ I. A subtractive ideal (= k-ideal) K is an ideal
such that if x, x + y ∈ K then y ∈ K (so {0} is a k-ideal of R). The k-closure
cl(K) of K is defined by cl(K) = {a ∈ R : a + c = d for some c, d ∈ K} is
an ideal of R satisfying K ⊆ cl(K) and cl(cl(K)) = cl(K). So an ideal K
of R is a k-ideal if and only if K = cl(K). A prime ideal of R is a proper
ideal P of R in which x ∈ P or y ∈ P whenever xy ∈ P . If I is an ideal of
R, then the radical of I, denoted by rad(I), is the set of all x ∈ R for which
xn ∈ I for some positive integer n. This is an ideal of R, contains I, and is
the intersection of all the prime ideals of R that contain I [3]. A primary ideal
I of R is a proper ideal of R such that, if xy ∈ I and x /∈ I, then yn ∈ I for
some positive integer n. If I is primary, then rad(I) = P is a prime ideal of
R by [4, Theorem 38]. In this case, we also say that I is a P -primary ideal of
R. A proper ideal I of R is said to be maximal (resp. k-maximal) if J is an
ideal (resp. k-ideal) in R such that I $ J , then J = R. A non-zero element a
of R is said to be semi-unit in R if there exist r, s ∈ R such that 1 + ra = sa.
R is said to be a local semiring if and only if R has a unique maximal k-ideal.

Let R be a commutative semiring with non-zero identity. We use the
notation A∗ to refer to the non-zero elements of A. For two distinct vertices
a and b in a graph Γ, the distance between a and b, denoted d(a, b), is the
length of the shortest path connecting a and b, if such a path exists; otherwise,
d(a, b) = ∞. The diameter of a graph Γ is

diam(Γ) = sup{d(a, b) : a and b are distinct vertices of Γ}.

We will use use the notation diam(Γ(R)) to denote the diameter of the graph
of Z∗(R). A graph is said to be connected if there exists a path between any
two distinct vertices, and a graph is complete if it is connected with diameter
at most one.
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2. Definition and basic properties of ΓI(R)

Let I be an ideal of a commutative semiring R with non-zero identity.
We define an undirected graph ΓI(R) with vertices {x ∈ R − I : xy ∈
I for some y ∈ R − I}, where distinct vertices x and y are adjacent if and
only if xy ∈ I. This definition is the same as that introduced by S. P. Red-
mond in [13].

Compare the next result with [13, Proposition 2.2 and Theorem 2.4].

Lemma 2.1. Let I be an ideal of a semiring R. Then:

(i) If I = (0), then ΓI(R) = Γ(R).
(ii) If I 6= (0), then I is a prime ideal of R if and only if ΓI(R) = ∅.
(iii) ΓI(R) is connected with diam(ΓI(R)) ≤ 3.

Proof. The proof is straightforward.

An ideal I of a semiring R is called a partitioning ideal (= Q-ideal) if
there exists a subset Q of R such that R = ∪{q + I : q ∈ Q} and if q1, q2 ∈ Q,
then (q1 + I) ∩ (q2 + I) 6= ∅ if and only if q1 = q2. Let I be a Q-ideal of a
semiring R and let R/I = {q + I : q ∈ Q}. Then R/I forms a semiring under
the binary operations ⊕ and ⊙ defined as follows: (q1 + I)⊕ (q2 + I) = q3 + I,
where q3 ∈ Q is the unique element such that q1 + q2 + I ⊆ q3 + I, and
(q1 + I) ⊙ (q2 + I) = q4 + I, where q4 ∈ Q is the unique element such that
q1q2 +I ⊆ q4 +I. This semiring R/I is called the quotient semiring of R by I.
By definition of Q-ideal, there exists a unique q0 ∈ Q such that 0+I ⊆ q0 +I.
Then q0 + I is the zero element of R/I. Clearly, if R is commutative, then so
is R/I (see [9, 10]).

Theorem 2.2. Let I be a proper Q-ideal of a semiring R. Then ΓI(R) = ∅
if and only if Γ(R/I) = ∅.

Proof. By Lemma 2.1 (ii) and [7, Theorem 2.6], ΓI(R) = ∅ if and only
if R/I is a semidomain, and so the proof is complete.

Lemma 2.3. Let I be a proper Q-ideal of a semiring R. Then:

(i) If q0 ∈ Q and q0 + I is the zero in R/I, then q0 ∈ I.
(ii) If q ∈ I ∩ Q and q0 + I is the zero in R/I, then q = q0.

Proof. (i) By [4, Lemma 36], we must have q0 + I = I; hence q0 ∈ I
since every Q-ideal is a k-ideal of R by [10, Lemma 2].

(ii) Since q + q0 ∈ (q0 + I) ∩ (q + I), we must have q0 + I = q + I, as
required.

The next theorem investigates the relationship between ΓI(R) and Γ(R/I)
(compare the next result with [13, Proposition 2.5]).

Theorem 2.4. Let I be a proper Q-ideal of a semiring R and let x =
q1 + a, y = q2 + b ∈ R − I, where q1, q2 ∈ Q and a, b ∈ I. Then:
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(i) If q1 + I is adjacent to q2 + I in Γ(R/I), then x is adjacent to y in
ΓI(R).

(ii) If x is adjacent to y in ΓI(R) and q1 6= q2, then q1 + I is adjacent to
q2 + I in Γ(R/I).

(iii) If x is adjacent to y in ΓI(R) and q1 = q2, then x2, y2 ∈ I.

Proof. (i) First note that q1, q2 /∈ I. Let q0 be the unique element in
Q such that q0 + I is the zero in R/I and let (q1 + I) ⊙ (q2 + I) = q0 + I,
where q1q2 + I ⊆ q0 + I. So it follows from Lemma 2.3 that q1q2 + c =
q0 + d ∈ I for some c, d ∈ I; hence q1q2 ∈ I since I is a k-ideal. Therefore,
xy = q1q2 + aq2 + bq1 + ab ∈ I; so x is adjacent to y in ΓI(R).

(ii) By assumption, q1q2 ∈ I. Let q3 be the unique element of Q such that
(q1 + I)⊙ (q2 + I) = q3 + I and q1q2 + I ⊆ q3 + I. It follows from Lemma 2.3
(i) that q1q2 + q0 = q3 + e for some e ∈ I; hence q3 ∈ I. Now the assertion
follows from Lemma 2.3 (ii).

(iii) By hypothesis, q2
1 = q2

2 ∈ I; hence x2, y2 ∈ I.

Compare the next result with [13, Corollary 2.6].

Corollary 2.5. Let I be a proper Q-ideal of a semiring R and let x =
q1 + a, y = q2 + b ∈ R − I, where q1, q2 ∈ Q and a, b ∈ I. If x is adjacent
to y in ΓI(R) and q1 6= q2, then all distinct elements of q1 + I and q2 + I
are adjacent in ΓI(R). If x2 ∈ I, then all the distinct elements of q1 + I are
adjacent in ΓI(R).

Proof. This follows from Theorem 2.4.

Let G be a graph. We say that {Gi}i∈J is a collection of disjoint subgraphs
of G if all the vertices and edges of each Gi are contained in G and no two of
these Gi contain a common vertex (compare the next result with [13, Corollary
2.7]).

Theorem 2.6. Let I be a proper Q-ideal of a semiring R. Then ΓI(R)
contains |I| disjoint subgraphs isomorphic to Γ(R/I).

Proof. Let q0 be the unique element in Q such that q0 + I is the zero
in R/I and let Z(R/I) − {q0 + I} =

⋃

qi∈Q{qi + I}, and if i 6= j, then

(qi + I) ∩ (qj + I) = ∅. For each k ∈ I, define a graph Gk with vertices
{qi + k : qi ∈ Q}, where qi + k is adjacent to qj + k in Gk whenever qi + I is
adjacent to qj + I in Γ(R/I). Then Corollary 2.5 gives Gk is a subgraph of
ΓI(R). Also, each Gk

∼= Γ(R/I), and Gk and Gj contain no common vertices
if k 6= j.

A vertex x of a connected graph G is a cut-point of G if there are vertices
y, z of G such that x is in every path from y to z (and x 6= y, x 6= z).
Equivalently, for a connected graph G, x is a cut-point of G if G−{x} is not
connected (compare the next result with [13, Theorem 3.2]).
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Theorem 2.7. Let I be a non-zero proper Q-ideal of a semiring R. Then
ΓI(R) has no cut-points.

Proof. Suppose that x is a cut-point of ΓI(R). Then there are y, z ∈
R− I such that x lies on every path from y to z. By Lemma 2.1, the shortest
path from y to z is of length 2 or 3. Let x = q1 + a, y = q2 + b and z = q3 + c
where q1, q2, q3 ∈ Q and a, b, c ∈ I. We divide the proof into two cases.

Case 1. Suppose y − x − z is a path of shortest length from y to z. If
q1 = q2, then Corollary 2.5 gives x is adjacent z implies y is adjacent to z.
Similarly, if q1 = q3, then y is adjacent to z. So suppose that q1 6= q2 and
q1 6= q3. Suppose that 0 6= e ∈ I; we show that x + e 6= y. Let us assume the
opposite. Since x + e = q1 + a + e = q2 + b ∈ (q1 + I) ∩ (q2 + I), we must
have q1 = q2, which is a contradiction. Thus x + e 6= y. Similarly, x + e 6= z.
Then xy, xz ∈ I imply y(x + e), z(x + e) ∈ I. Hence y − (x + e)− z is a path
in ΓI(R). Therefore, in all cases we get a contradiction.

Case 2. Suppose (without loss of generality) y − x − w − z is a path of
shortest length from y to z and let w = q4 + f , where q4 ∈ Q and f ∈ I. If
q1 = q4, then y is adjacent to x implies y is adjacent to w, therefore y−w− z
is a path. If q1 6= q4, then let 0 6= e ∈ I. As above, y and w are adjacent to x
means that y and w are also adjacent to x + e. Hence y − (x + e) − w − z is
a path. Thus in all cases we get a contradiction.

The connectivity of a graph G, denoted by k(G), is defined to be the
minimum number of vertices it is necessary to remove from G in order to
produce a disconnected graph. Let I be a Q-ideal of a semiring R. We call
the subset qi + I (for some qi ∈ Q) a column of ΓI(R). If q2

i ∈ I, then we
call qi + I a connected column of ΓI(R) (compare the next result with [13,
Theorem 3.3]).

Theorem 2.8. Let I be a proper Q-ideal of a semiring R. Then:

(i) If Γ(R/I) is the graph on one vertex, then k(ΓI(R)) = |I| − 1.
(ii) If Γ(R/I) has at most two vertices, then 2 ≤ k(ΓI(R)) ≤ |I|·k(Γ(R/I)).

Proof. (i) By assumption, ΓI(R) consists of a single connected column;
so it is a complete graph on |I| vertices by Theorem 2.6.

(ii) Since the graph ΓI(R) is connected, we must have 1 ≤ k(ΓI(R)).
Assume that k(Γ(R/I)) = m and let q1 + I, q2 + I, ..., qm + I (for some qi ∈
Q) be vertices of Γ(R/I) which, once removed, give a disconnected graph.
Define G to be the graph obtained from ΓI(R) by removing the columns
corresponding to q1 + I, ..., qm + I (this means the removal of m · |I| vertices);
we show that G is disconnected. By hypothesis, there exist vertices q + I and
q′ + I (q, q′ ∈ Q) of Γ(R/I) such that q + I is not connected to q′ + I after
q1 + I, ..., qm + I are removed from Γ(R/I). Then q and q′ are vertices of G.
Suppose q− a1− ...− an − q′ is a path in G. There are elements s1, ..., sn ∈ Q
and c1, ..., cn ∈ I such that ai = si + ci for each 1 ≤ i ≤ n. It is easy to
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see that for i 6= j, aiaj ∈ I if and only if sisj ∈ I since I is a k-ideal. Also,
qai ∈ I if and only if qsi ∈ I. Similarly, for q′. Then q − s1 − ... − sn − q′

is a path in G. By Corollary 2.5, we may assume that sj + I 6= sj+1 + I for
1 ≤ j ≤ n. Therefore, q + I − s1 + I − ...− sn + I − q′ + I is a path in Γ(R/I)
after q1 + I, ..., qm + I have been removed. This is a contradiction. Hence G
must be disconnected.

3. Girth

Let R be a semiring. The grith of a graph Γ, denoted gr(Γ), is the length
of the shortest cycle in Γ, provided Γ contains a cycle, otherwise, gr(Γ) = ∞.
We will use the notation gr(Γ(R)) to denote the grith of the graph of Z∗(R)
(compare the Lemma 3.1, Proposition 3.2 and Theorem 3.3 with [13, Lemma
5.1, Lemma 5.2 and Theorem 5.5]).

Lemma 3.1. Let I be a proper Q-ideal of a semiring R. Then gr(ΓI(R)) ≤
gr(Γ(R/I)). In particular, if Γ(R/I) contains a cycle, then so does ΓI(R).

Proof. We may assume that gr(Γ(R/I)) = n < ∞. Let

q1 + I − q2 + I − · · · − qn + I − q1 + I

be a cycle in Γ(R/I) through n distinct vertices, where qi ∈ Q for 1 ≤ i ≤ n.
Then Theorem 2.4 gives q1 − q2 − ...− qn − q1 is a cycle in ΓI(R) of length n,
as needed.

Proposition 3.2. Let I be a proper Q-ideal of a semiring R. Then:

(i) If |I| ≥ 3 and ΓI(R) contains a connected column, then gr(ΓI(R)) = 3.
(ii) Assume that I 6= (0) and Γ(R/I) has only one vertex. Then

gr(ΓI(R)) = 3 if |I| ≥ 3, and gr(ΓI(R)) = ∞ if |I| = 2.
(iii) If I has two elements, Γ(R/I) has at least two vertices, and ΓI(R) has

at least one connected column, then gr(ΓI(R)) = 3.

Proof. (i) Let q1 + I be a connected column of ΓI(R), where q ∈ Q.
Then q2 ∈ I. Let x = q1 + a and y = q2 + b be non-zero elements of I,
where q1, q2 ∈ Q and a, b ∈ I; so q1, q2 ∈ I since I is a k-ideal. Then
q − (q + q1)− (q + q2)− q is a cycle of length 3 in ΓI(R) (note that gr(G) ≥ 3
for any graph G).

(ii) If Γ(R/I) has only one vertex, then (i) gives that ΓI(R) consists of
a single connected column. Thus it is a complete graph, and therefore has a
cycle of length 3 unless ΓI(R) has only two vertices.

(iii) Let q + I be a connected column of ΓI(R), where q ∈ Q. Then
q2 ∈ I. Let q′ + I be a vertex adjacent to q + I. Suppose that 0 6= x ∈ I.
Then x = q1 + b for some q1 ∈ I ∩ Q and b ∈ I since I is a k-ideal. Then
q′ − q − (q + q1) − q′ is a cycle of length 3 in ΓI(R).
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Theorem 3.3. Let I be a non-zero proper Q-ideal of a semiring R that
is not a prime ideal. Then gr(ΓI(R)) = ∞ if Γ(R/I) has only one vertex
and |I| = 2, gr(ΓI(R)) = 4 if gr(Γ(R/I)) > 3 and ΓI(R) has no connected
columns, and gr(ΓI(R)) = 3 otherwise.

Proof. By Proposition 3.2, it is enough to show that if I 6= (0), ΓI(R)
has no connected columns, and gr(Γ(R/I)) > 3, then gr(ΓI(R)) = 4. By
assumption, Γ(R/I) must have at least two vertices. It follows from Lemma
3.1 that gr(ΓI(R)) ≤ 4. Let x = q1 + a, y = q2 + b, and z = q3 + c (where
q1, q2, q3 ∈ Q, a, b, c ∈ I) be such that x−y−z−x is a cycle in ΓI(R) of length 3
and we provide a contradiction. As gr(Γ(R/I)) > 3, q1+I−q2+I−q3+I−q1+I
cannot be a cycle in Γ(R/I). Therefore, we must have either q1 = q2 = q3 or
q1 = q3. Let q0 be the unique element in Q such that q0 + I is the zero in
R/I. If q1 = q2, then (q1 + I) ⊙ (q2 + I) = q0 + I, where q2

1 + I ⊆ q0 + I. So
q2
1 ∈ I; hence q1 + I is a connected column of ΓI(R), which is a contradiction.

We get a similar contradiction if q2 = q3 or q1 = q3. Hence, gr(ΓI(R)) = 4.

Let R be a semiring. R is called cancellative if whenever ac = bc for some
elements a, b and c of R with a 6= 0, then b = c. Also, we define the Jacobson
radical of R, denoted by Jac(R), to be the intersection of all the maximal
k-ideals of R. Then by [14, Corollary 2.2], the Jacobson radical of R always
exists and by [7, Lemma 2.12], it is a k-ideal.

Lemma 3.4. Let R be a semiring and let r ∈ R. Then:

(i) If r is a nilpotent element of R, then it is not a semi-unit.
(ii) If r ∈ Jac(R), then for every a ∈ R, the element 1 + ra is a semi-unit

of R.

Proof. (i) We may assume that r 6= 0. Suppose not. Then 1 + rs = tr
for some s, t ∈ R. Let n ≥ 2 be an integer such that rn = 0, but rn−1 6= 0.
Then (1 + rs)n = 1 + ur = 0 for some u ∈ R; hence rn−1 + urn = rn−1 = 0,
which is a contradiction. Thus r is not a semi-unit.

(ii) Suppose that r ∈ Jac(R). Suppose that, for some a ∈ R, it is the
case that b = 1 + ra is not a semi-unit of R. Then 1 + t1b = t2b holds
for no t1, t2 ∈ R. So, 1 /∈ cl(Rb) yields that cl(Rb) is a proper k-ideal of
R. By [13, Corollary 2.2], there exists a maximal k-ideal P of R such that
1 + ra ∈ cl(Rb) ⊆ P . But r ∈ P by definition of Jac(R), and so 1 ∈ P , a
contradiction.

Lemma 3.5. Let R be a semiring. Then:

(i) Let I be an ideal in R that is maximal among all annihilators of non-
zero elements of R. Then I is prime.

(ii) Let P1, ..., Pn be prime k-ideals and let J be an ideal of R contained in
⋃n

i=1
Pi. Then J ⊆ Pi for some i.
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Proof. (i) Let I = (0 : x) for some x ∈ R. Given ab ∈ I, we must prove
that a ∈ I or b ∈ I. Assume a /∈ I. Then ax 6= 0 and I ⊆ (0 : ax). By
hypothesis, it can not be properly larger. Thus I = (0 : ax); hence b ∈ I. The
proof of the part (ii) is straightforward and can be found in [8].

Let I be an ideal of a semiring R. A prime ideal P of R is called an
associated prime ideal of I if P is the annihilator (0 : x) of some x ∈ I (so P
is a k-ideal by [6, Lemma 2.1]). If R is a semiring, then R is Noetherian (resp.
Artinian) if any non-empty set of k-ideals of R has a maximal member (resp.
minimal member) with respect to set inclusion. This definition is equivalent to
the ascending chain condition (resp. descending chain condition) on k-ideals
of R.

Lemma 3.6. Let R be a Noetherian semiring (in particular, R could be a
finite semiring) and I a non-zero ideal of R. Then:

(i) Every maximal element of the family of k-ideals A = {(0 : x) : 0 6= x ∈
I} is an associated prime of I.

(ii) The set of zero-divisors for I is the union of all the associated primes
of I.

Proof. (i) follows from Lemma 3.5 (i). To see (ii), assume that ax = 0
for some x 6= 0. Then a ∈ (0 : x) ∈ A, and by (i) there is an associated prime
of I containing (0 : x), as needed.

Proposition 3.7. Let R be an Artinian cancellative semiring. Then:

(i) Every element of R is either a semi-unit or a nilpotent element.
(ii) R is a local semiring.

Proof. (i) Let x be a non-zero element of R which is not nilpotent;
we show that x is a semi-unit. Consider the sequence of k-ideals cl(Rx) ⊇
cl(Rx2) ⊇ .... By the descending chain condition, there must be elements
r, s ∈ R such that xn(1 + rx) = xn(sx) for some integer n. Since R is a
cancellative semiring and xn 6= 0, we may cancel xn, and hence 1 + rx = sx,
as required.

(ii) It is enough to show that the set of non-semi-units P of R is a k-
maximal ideal. By (i), P is the set of nilpotent elements of R: so it is an
ideal of R. It remains to show that P is a unique maximal k-ideal. Suppose
that a, a + b ∈ P ; we show that b ∈ P . Let m be smallest integer with
am = 0 and let n be such that (a + b)n = 0. We may assume that m ≤ n.
(a + b)n = 0 gives am−1bn = 0. Suppose that b is not nilpotent. Then by (i),
b is a semi-unit; hence 1 + rb = sb. It follows from the equality am−1bn = 0
that am−1bn−1 = 0. Similary, we get am−1b = 0; hence am−1 = 0, which is
a contradiction. Thus b is nilpotent; hence b ∈ P . Since 1 is a semi-unit of
R, we must have P 6= R. As R is not trivial, it has at least one maximal
k-ideal, let J be one such ideal. Therefore, J ⊆ P $ R. Thus J = P since J
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is k-maximal. We have thus shown that R has at least one maximal k-ideal,
and for any maximal k-ideal of R must be equal to P .

Proposition 3.8. Let R be an Artinian cancellative semiring with a
unique maximal k-ideal P . Then P = (0 : x) for some 0 6= x ∈ P .

Proof. By Proposition 3.7, we must have P ⊆ Z(P ). By Lemma 3.6,
Z(P ) is the set-theoretic union of all the associated primes P1, ..., Pn−1 and
Pn of P (note that they are k-ideals). Now Lemma 3.5 gives P ⊆ Pi for some
i; hence P = Pi, as needed.

Theorem 3.9. Let R be an Artinian cancellative semiring (in particular,
R could be a finite cancellative semiring) with a unique maximal k-ideal P . If
Γ(R) contains a cycle, then gr(Γ(R)) = 3.

Proof. Suppose Γ(R) contains a cycle. Then P = (0; x) for some x ∈ P
by Proposition 3.8. If there are y, z ∈ P ∗−{x} with yz = 0, then y−x−z−y is
a is a triangle. Otherwise, Γ(R) contains no cycle, a contradiction. Therefore,
gr(Γ(R)) = 3.

4. Primary ideals

In this section, we will investigate the ideal-based zero-divisor graph with
respect to primary ideals of a semiring.

Proposition 4.1. Let I be an ideal of a semiring R. Then I is a P -
primary ideal of R if and only if ΓI(R) = P − I.

Proof. Suppose that I is a P -primary ideal of R; we show that ΓI(R) =
P − I. Let r ∈ ΓI(R). Then r /∈ I and ra ∈ I for some a /∈ I. Thus I primary
gives r ∈ P − I; hence ΓI(R) ⊆ P − I. For the reverse inclusion, assume that
b ∈ P − I. Since b /∈ I, there must be an integer n ≥ 2 such that bn−1 = s /∈ I
and bs ∈ I. Then b ∈ ΓI(R), and so we have equality.

Conversely, assume that ΓI(R) = P−I and let cx ∈ I with x /∈ I; we show
that c ∈ P . Let us suppose the opposite. Then c /∈ I; hence c ∈ ΓI(R) = P−I,
which is a contradiction. Thus I is a P -primary ideal of R.

Theorem 4.2. Let I be an ideal of a semiring R. Then I is a primary
ideal of R if and only if ΓI(R) ∪ I is an (prime) ideal of R.

Proof. This follows from Proposition 4.1.

Theorem 4.3. Let I and J be P -primary ideals of a semiring R. Then
ΓI(R) = ΓJ(R) if and only if I = J .

Proof. Since I ⊆ P and J ⊆ P , the result follows from Proposition 4.1.

Lemma 4.4. If I is a P -primary k-ideal of a semiring R, then P is a
k-ideal of R.
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Proof. Let a, a+ b ∈ P ; we show that b ∈ P . There is an integer n such
that an ∈ I and (a + b)n = an + c + bn ∈ I for some c ∈ P , so c + bn ∈ I
since I is a k-ideal. If c ∈ I, then the result is clear. So suppose that c /∈ I.
Let m ≥ 2 be a positive integer such that c, c2, ..., cm−1 /∈ I, but cm ∈ I. By
assumption, cm+cm−1bn ∈ I. Thus it follows that cm−1bn ∈ I with cm−1 /∈ I;
hence bnk ∈ I for some k. Thus b ∈ P , as required.

Theorem 4.5. Assume that I is a P -primary Q-ideal of a semiring R
and let q0 be the unique element in Q such that q0 + I is the zero in R/I.
Then Γ(R/I) ∪ {q0 + I} is a prime k-ideal of R/I.

Proof. Suppose that I is a P -primary ideal of R. It follows from Lemma
4.4 and [7, Proposition 2.2 and Theorem 2.5] that P/I is a prime k-ideal of
R/I. It is enough to show that Γ(R/I) ∪ {q0 + I} = P/I. Let q + I ∈
Γ(R/I) ∪ {q0 + I}, where q ∈ Q. If q + I = q0 + I, then we are done. So we
may assume that q+I 6= q0+I. Then there is an element q0+I 6= q1+I ∈ R/I
such that (q + I)⊙ (q1 + I) = q0 + I, where q1 ∈ Q and q1q + I ⊆ q0 + I = I,
so q1q ∈ I with q1 /∈ I by Lemma 2.3 and the fact that I is a k-ideal. Then
q ∈ P ∩ Q since I is a P -primary ideal; hence q + I ∈ P/I by [7, Proposition
2.2]. Therefore, Γ(R/I)∪{q0 +I} ⊆ P/I. For the other containment, suppose
that q + I ∈ P/I, where q ∈ Q ∩ P . We may assume that q0 + I 6= q + I.
Then q /∈ I and there is a positive integer n ≥ 2 such that s = qn−1 /∈ I and
qs ∈ I since I is primary. There are q1 ∈ Q and a ∈ I such that s = q1 + a;
so qs = qq1 + aq. Hence qq1 ∈ I since I is a k-ideal. There is a unique
element q2 of Q with (q + I) ⊙ (q1 + I) = q2 + I and qq1 + I ⊆ q2 + I. Then
qq1 + c = q2 + d for some c, d ∈ I; so q2 ∈ I. Hence q2 = q0 by Lemma 2.3.
Thus q + I ∈ Γ(R/I), and so we have equality.

Remark 4.6. Let R be a Noetherian semiring. Then:

(1) Every proper k-ideal of R is a finite intersection of irreducible k-ideals
(an ideal of R is irreducible if it is not a finite intersection of k-ideals
of R that properly contain it) (see [12, Lemma 2] and [8]).

(2) Every irreducible k-ideal of R is primary (see [12, Lemma 3] and [8]).
(3) Let P be a prime ideal of R, and let Q1, ..., Qn be P -primary k-ideals

of R. Then
⋂n

i=1
Qi is also a P -primary k-ideal (see [4, Theorem 41]

and [7, Lemma 2.12]).
(4) By (1) and (2), every proper k-ideal of R is a finite intersection of

primary k-ideals. Therefore, by (3), every proper k-ideal (so 0) of R
has a minimal primary decomposition.

(5) Let I1, ..., In be ideals of R and let P be a prime ideal containing
⋂n

i=1
Ii. Then Ii ⊆ P for some i. If P =

⋂n

i=1
Ii, then P = Ii for some

i [8].
(6) Let Q be a P -primary ideal of R, and let a ∈ R. Clearly, if a ∈ Q,

then (Q : a) = R. Suppose that a /∈ Q; we show that (Q : a) is
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P -primary. If x ∈ (Q : a), then x ∈ P ; hence Q ⊆ (Q : a) ⊆ P , so

that P ⊆
√

(Q : a) ⊆ P by [4, Corollary 25]. Hence
√

(Q : a) = P .
Now suppose that c, d ∈ R are such that cda ∈ Q, but d /∈ P . Then Q
primary gives c ∈ (Q : a).

(7) Assume that 0 =
⋂n

i=1 Qi with
√

Qi = Pi is a minimal primary de-
composition of 0, and let P ∈ Ass(R). Then P = (0 : a) for some
a ∈ R. Then we must have (0 : a) =

⋂n

i=1
(Qi : a). By (6), we have

(Qi : a) = R if a ∈ Qi, while (Qi : a) is Pi-primary if a /∈ Qi. Let
i1, ..., is be such that a /∈ Qi1 , ..., Qis

. Hence by [4, Corollary 25], we see

that P =
√

(0 : a) =
⋂s

j=1
Pij

; hence P = Pik
for some k. Therefore,

we must have Ass(R) is a finite set.

Theorem 4.7. Let I be a P -primary Q-ideal of a Noetherian semiring
R. Then diam(Γ(R/I)) ≤ 2.

Proof. Let q0 be the unique element in Q such that q0 + I is the zero in
R/I. By Theorem 4.5, Γ(R/I) ∪ {q0 + I} = P/I is a prime ideal of R/I. It
follows from Lemma 3.6 (ii) that P/I is the union of all the associated primes
of R/I; hence P/I ∈ Ass(R/I). It follows from Lemma 3.5 (ii) and Remark
4.6 (7) that P/I = (0 : p̄) for some p̄ ∈ Γ(R/I); hence diam(Γ(R/I)) ≤ 2.
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