FINITE NONNILPOTENT GROUPS WITH FEW HEIGHTS OF NONNORMAL SUBGROUPS

YAKOV BERKOVICH University of Haifa, Israel

ABSTRACT. The number of prime factors of the order of a group G (multiplicities counted) is said to be the *height* of G and denoted by $\mathbf{n}_{\lambda}(G)$. We classify the nonnilpotent groups G with $\mathbf{n}_{\lambda}(G)=2$ and nonsolvable groups G with $\mathbf{n}_{\lambda}(G)\in\{3,4\}$.

This note supplements [B1, §2 and §3].

A group is said to be *Dedekindian* if all its subgroups are normal. It is natural to consider groups having a few nonnormal subgroups as close to Dedekindian. There is a number of papers about groups with few nonnormal subgroups (see [B1, P, S2, S3, Z]). For example, O. Schmidt [S2, S3] has studied the groups with at most two conjugate classes of nonnormal subgroups.

Let G be a group (only finite groups are considered and we use the same notation as in [B1]), n a natural number. Let $\lambda(n)$ be the number of prime factors of n (multiplicities counted). For example, $\lambda(1) = 0$, $\lambda(48) = 5$. Set $\lambda(G) = \lambda(|G|)$, where |G| is the order of G. The number $\lambda(G)$ we call the height of G. Write

$$\mathcal{N}_{\lambda}(G) = \{\lambda(H) \mid H \text{ is not normal subgroup of G }\}, \ n_{\lambda}(G) = |\mathcal{N}_{\lambda}(G)|.$$

We have

$$\begin{split} \lambda(S_4) &= 4, \quad \mathcal{N}_{\lambda}(S_4) = \{1,2,3\}, \quad n_{\lambda}(S_4) = 3, \\ n_{\lambda}(SL(2,5)) &= 4 = n_{\lambda}(PSL(2,7)) = n_{\lambda}(PGL(2,7)) = n_{\lambda}(PGL(2,5)) \\ &= n_{\lambda}(PSL(2,3^2)) = n_{\lambda}(PSL(2,3^3)), \\ n_{\lambda}(SL(2,7)) &= 5. \end{split}$$

The group G is Dedekindian if and only if $n_{\lambda}(G) = 0$.

2000 Mathematics Subject Classification. 20D25. Key words and phrases. Height, solvable group, Carter subgroup. Let $\Delta(G)$ be the set of orders of nonnormal subgroups of G. For example, $\Delta(S_4) = \{2, 3, 4, 6, 8\}, \ \Delta(SL(2,5)) = \{3, 5, 4, 6, 10, 8, 12, 20, 24\}.$ Obviously, $|\Delta(G)| \geq n_{\lambda}(G)$. If G is a p-group then $|\Delta(G)| = n_{\lambda}(G)$ (I think that there are few nonnilpotent groups G satisfying $|\Delta(G)| = n_{\lambda}(G)$).

The groups G with $n_{\lambda}(G) = 1$ were classified in [B1, Proposition 2.1, Theorems 2.5 and 2.6]; see also [P] and [Z] for another approach. The classification of such p-groups is fairly nontrivial (see above three papers). Next, in [B1, Theorem 3.1] the nonnilpotent groups G with $n(G) = |\{|H|| H$ is not normal in $G\}| = 2$ are classified. In this note we classify the non primary groups G with $n_{\lambda}(G) = 2$ (a group G is said to be $\operatorname{primary}$ if its order is a power of a prime); see Proposition 2 and Theorem 3. We have noticed that, as a rule, $n_{\lambda}(G) < no(G)$, so Theorem 3 is a proper generalization of [B1, Theorem 3.1]. We also classify the nonsolvable groups G with $n_{\lambda}(G) \in \{3,4\}$ (see Theorems 4, 8); in the proof of Theorem 8 we use the classification of finite simple groups.

Classification of p-groups G such that $n_{\lambda}(G) = 2$, is not obtained yet. If $|G| = p^n$, n > 2, then $n_{\lambda}(G) \le n - 2$. If G is a p-group of maximal class and order p^n , then $n_{\lambda}(G) = n - 2$, unless $G \cong \mathbb{Q}_{2^n}$ where $n_{\lambda}(G) = n - 3$. As Passman [P] proved, only few p-groups G satisfy $n_{\lambda}(G) < n - 2$.

Let G be extraspecial of order p^5 . If G has a subgroup $\cong E_{p^3}$, then $n_{\lambda}(G) = 2$, and if G has no subgroup $\cong E_{p^3}$, then $n_{\lambda}(G) = 1$ (in the last case, by Blackburn's Theorem [Bla, Theorem 4.3], we must have p = 2). Indeed, $p \in \Delta(G)$. If H < G is a nonnormal subgroup of order p^2 , then $G' \not \leq H$ so $H \cong E_{p^2}$; in that case, $H \times G' \cong E_{p^3}$. Since G has no abelian subgroup of index $p, p^3 \notin \Delta(G)$.

In what follows, p,q are distinct primes and r is a prime which may be equal or not to p or q. We write $A \cdot B$ to denote the semidirect product of A and B with kernel B.

If G is a minimal nonnilpotent group, then (O. Schmidt [S1], Y. Gol'fand [G] and L. Redei [R])

(MNN) $G = P \cdot Q$, where $P \in \operatorname{Syl}_p(G)$ is cyclic, $G' = Q \in \operatorname{Syl}_q(G)$, $\operatorname{Z}(G) = U_1(P)\Phi(Q) = \Phi(G)$, $G/\Phi(Q)$ is minimal nonabelian. In particular, G is minimal nonabelian if and only if Q is abelian. We have $|Q| = q^{b+c}$, where b is the order q modulo p and $c \leq b/2$ (if b is odd, then c = 0). If q > 2, then $\exp(Q) = q$.

Such G we call an S(p,q)-group or S-group. If, in addition, Q is abelian, then G is minimal nonabelian; in that case, such G is called an A(p,q)-group or A-group.

THEOREM 1 ([B1, Proposition 2.1]). If G is a nonnilpotent group with $n_{\lambda}(G) = 1$, then one of the following holds:

- (a) G is a minimal nonabelian $\{p,q\}$ -group with |G'|=q.
- (b) G is a minimal nonabelian group of order pq^2 with $|G'| = q^2$.

In Proposition 2 we classify the groups G decomposable in nontrivial direct product and such that $n_{\lambda}(G) = 2$,

PROPOSITION 2. Suppose that a group $G = A \times B$, where $n_{\lambda}(G) = 2$, $n_{\lambda}(A) > 0$ and $B > \{1\}$. Then $n_{\lambda}(A) = 1$ and |B| = r. More precisely, one and only one of the following holds:

- (a) $A = M_{p^n}$, r is arbitrary, $\Delta(G) = \{p, pr\}$.
- (b) $A = P \cdot Q$ is minimal nonabelian of order $p^a q$ with |A'| = q. If a > 1, then $r \neq q$; then $\Delta(G) = \{p^a, p^a r\}$. If a = 1, then r is arbitrary; then $\Delta(G) = \{p, q, pq\}$ provided r = q and $\Delta(G) = \{p, pr\}$ provided $r \neq q$.
- (c) $A = P \cdot Q$ is minimal nonabelian of order pq^2 with $|A'| = q^2$, r is arbitrary, $\Delta(G) = \{p, q.pr, qr\}$.

PROOF. Recall that p, q, r are primes and $p \neq q$. It is easy to check that groups (a)–(c) satisfy the hypothesis. Let us prove that if G satisfies the hypothesis, then it is one of groups (a)–(c).

Let $A_0 < A$ be nonnormal and $\{1\} < L \le B$. Then $A_0 \times L$ is not G-invariant since $A \cap (A_0 \times L) = A_0$. It follows that |B| = r and $n_{\lambda}(A) = 1$. The structure of A is known (see Theorem 1 and [B1, Theorem 2.4]). In particular, if A is not nilpotent, it is an A(p,q)-group. If A is a p-group, then $A \cong M_{p^n}$ and G satisfy the hypothesis for arbitrary r.

Now let $A = P \cdot Q$ be minimal nonabelian of order p^aq . If r = q, then G has a nonnormal subgroup of order q. Let us prove this. The group G has exactly q+1>2 subgroups of order q. If $Q_1 < G$ is of order q, $A' \neq Q_1 \neq B$, then Q_1 is not normal in G. Indeed, if this is false, then $C_G(Q_1) \geq AB = G$, and so $BQ_1 \leq Z(G)$. In that case, G is abelian, a contradiction. Besides, G has a nonnormal subgroups P of order p^a and $P \times B$ of order p^aq . It follows from $n_{\lambda}(G) = 2$ that then a = 1 so G is as in (b).

If $A = P \cdot Q$ is minimal nonabelian of order pq^2 , then r is arbitrary and $\Delta(G) = \{p, q, pr, qr\}$ so G satisfies the hypothesis.

In view of Proposition 2, one can confine in the sequel to nonnilpotent groups which are not decomposed in nontrivial direct product.

Note that if G is an S(p,2)-group, then $G' \not\cong D_8$. Indeed, assume that this is false; then G' has a characteristic subgroup L of order 4. If $P \in \operatorname{Syl}_p(G)$, then P centralizes L and G'/L so P centralizes G'. It follows that G is nilpotent, a contradiction.

Suppose that all proper subgroups of a nonsolvable group G are solvable. Let N < G be maximal normal subgroup of G and A < G be maximal in G. Then AN is solvable since A and N are solvable. It follows that AN < G so N < A, and we conclude that $N = \Phi(G)$. Now it is clear that G/N is nonabelian simple.

Recall that if N is a normal abelian p-subgroup of G, $N \leq P \in \operatorname{Syl}_p(G)$ and N is complemented in P, then N is complemented in G (Gaschütz; [H, Hauptsatz I.17.4(a)]).

In what follows, we use the above three facts freely.

Now we are ready to prove our main result.

THEOREM 3. Let G be a nonnilpotent group which has no nontrivial direct factor. Let $n_{\lambda}(G) = 2$. Then one of the following holds:

- (a) G is an A(p,q)-group of order pq^3 , $\Delta(G) = \{p,q,q^2\}$.
- (b) G is an A(p,q)-group of order p^2q^2 , $\Delta(G) = \{q, p^2, pq\}$.
- (c) G is an S(p,q)-group of order pq^3 with nonabelian subgroup of order q^3 and exponent q > 2, $\Delta(G) = \{p, q, pq.q^2\}$.
- (d) G = SL(2,3) is an S(3,2)-group of order $3 \cdot 2^3$, $\Delta(G) = \{3,4,6\}$.
- (e) $G = P \cdot Q$ is an S(3,2)-group of order $3^2 \cdot 2^3$, $G/\mho_1(P) \cong SL(2,3)$, $\Delta(G) = \{4,9,12,18\}$.
- (f) $G = (P \times Q) \cdot R$ is a Frobenius group of order pqr^s which kernel R of order r^s is a minimal normal subgroup, $s \leq 3$, $p \neq r \neq q$, where |P| = p, |Q| = q. If s = 3, then PR and QR are minimal nonabelian and $\Delta(G) = \{p, q, r, r^2, pq\}$. If s = 1, then $\Delta(G) = \{p, q, pq\}$. If s = 2, then $\mathcal{N}_{\lambda}(G) = \{1, 2\}$ (there are few possibilities for $\Delta(G)$).
- (g) $G = P \cdot Q$ is a Frobenius group of order p^2q^s with minimal normal subgroup of order q^s , s = 1, 2, 3. If s = 3, then the subgroup $\mathcal{O}_1(P)Q$ of order pq^3 is minimal nonabelian. If s = 1, then $\Delta(G) = \{p, p^2\}$. If s = 2, then $\mathcal{N}_{\lambda}(G) = \{1, 2\}$. If s = 3, then $\Delta(G) = \{p, p^2, q, q^2\}$.
- (h) $G = P \cdot Q$, where $P \cong Q_8$, |Q| = q, G contains exactly one cyclic subgroup of index 2, $\Delta(G) = \{4, 8\}$.
- (i) $G = P \cdot (Q \times R)$ of order $p^a q r$, $P \in \operatorname{Syl}_p(G)$ is cyclic of order p^a , |Q| = q, |R| = r, $p \neq r \neq q$, $\mho_1(P) = \operatorname{Z}(G)$, $G/\operatorname{Z}(G)$ is a Frobenius group of order pqr, $\Delta(G) = \{p^a, p^a q, p^a r\}$.
- (j) $G = P \cdot Q$ is a Frobenius group of order pq^2 with minimal normal subgroup of order q, $\mathcal{N}_{\lambda}(G) = \{1, 2\}$.
- (k) $G = P \cdot Q$ is of order $p^a q$, P is cyclic of order p^a , a > 1, G/Z(G) is a Frobenius group of order $p^2 q$, $\Delta(G) = \{p^{a-1}, p^a\}$.
- (l) $G = P \cdot Q$ is of order $p^a q^2$, a > 1, $\mho_1(P) = Z(G)$, $G/\mho_1(P)$ is a Frobenius group of order pq^2 , all subgroups of order q are G-invariant, $\Delta(G) = \{p^a, p^a q\}$.

PROOF. Write $\mathcal{N}_{\lambda}(G) = \{m.n\}, m < n.$

- (i) Let $G = P \cdot Q$ be an S(p, q)-group as in (MNN).
- (i1) Suppose that P is not maximal in G. Then Q is nonabelian so special. If $\{1\} < Z \le \mathrm{Z}(Q)$, then PZ is not normal in G, so $|\mathrm{Z}(Q)| = q$, and we have $|P| = p^m$ and n = m+1. Next, $|Q/\mathrm{Z}(Q)| = q^b$, where b>1 is the order of $q \pmod{p}$. Therefore, if $\mathrm{Z}(Q) < Q_1 < Q$, then Q_1 and $\mho_1(P)Q_1$ are not normal in G. Since $n_\lambda(G) = 2$, then $b \le 3$. Since G has a nonnormal subgroup of

order q^2 , we get $m \leq 2$. Since G has a nonnormal subgroup of order q^b , we get $b \leq n$.

If m=1, then n=2 so b=2 and $|G|=pq^3$, where Q is nonabelian of order q^3 , $Q \in \{Q_8, S(p^3)\}$, where $S(p^3)$ is a group of order p^3 and exponent p>2. If $Q\cong Q_8$, then p=3, $\Delta(G)=\{3,4,6\}$ and $G\cong SL(2,3)$ is as in (d). If q>2, then $\Delta(G)=\{p,q,pq,q^2\}$ and G is as in (c).

Now let m=2. If b=3, then Q has a non-G-invariant subgroups of orders q,q^2 and q^3 so $n_{\lambda}(G)>2$, a contradiction. Thus, b=2 and so $|G|=p^2q^3$. If q>2, then Q has, in addition, a nonnormal subgroup of order q so $\mathcal{N}_{\lambda}(G)=\{1,2,3\}$, a contradiction. Thus, q=2, $Q\cong Q_8$, p=3 so $|G|=3^22^3$, $\Delta(G)=\{4,9,12,18\}$ and G is as in (e).

(i2) Suppose that P is maximal in G. Then Q is minimal normal in G and G is minimal nonabelian. Set $|Q|=q^b$; then b>1 (otherwise, $n_{\lambda}(G)=1$). Since G has a nonnormal subgroup of order q, we get m=1. Since $n_{\lambda}(G)=2$, we get $b\leq 3$. Therefore, if |P|=p, then b=3, $|G|=pq^3$, $\Delta(G)=\{p,q,q^2\}$, and G is as in (a).

Now let |P| > p; then $|P| = p^n$. If $Q_1 < Q$ is of order q, then $\Omega_1(P)Q_1$ is not normal in G so $n = \lambda(\Omega_1(P)Q_1) = 2$ and $\mathcal{N}_{\lambda}(G) = \{1, 2\}$. Then $b \leq 3$. If b = 3 and $Q_2 < Q$ is of order q^2 , then $\Omega_1(P)Q_2$ is not normal in G so $3 \in \mathcal{N}_{\lambda}(G)$, a contradiction. Thus, b = 2, $|G| = p^2q^2$, $\Delta(G) = \{q, p^2, pq\}$ so G is as in (b).

Next we assume that G is not an S-group.

(ii) Let us prove that G is solvable. Assume that G is a counterexample of minimal order. If H < G, then $n_{\lambda}(H) \le n_{\lambda}(G) \le 2$ so all proper subgroups of G are solvable, by induction. If $N \triangleleft G$, then $n_{\lambda}(G/N) \le n_{\lambda}(G) \le 2$ so all proper epimorphic images of G are solvable. It follows that G is nonabelian simple and $\lambda(H) \le 2$ for all H < G. Let p be a minimal prime divisor of G and $P \in \operatorname{Syl}_p(G)$; then |P| > p (Burnside). If $|P| > p^2$, then G contains subgroups of orders p, p^2 and p^3 so $n_{\lambda}(G) > 2$, a contradiction. Thus, $|P| = p^2$ and $\mathcal{N}_{\lambda}(G) = \{1, 2\}$. By Burnside, $P < \operatorname{N}_G(P)$ and so $\lambda(\operatorname{N}_G(P)) > 2$, a contradiction.

Since G is solvable, there is in G a Carter subgroup K. Recall that K is nilpotent and $N_G(K) = K$ (so Z(G) < K), and all Carter subgroups are conjugate in G, and, whenever $K \le H \le G$, then $N_G(H) = H$ [H, Satz VI.12.3]. By hypothesis, K < G. We conclude that K is either maximal or second maximal in G.

(iii) Assume that K is not primary. Then $K=P\times Q$, where $P\in \operatorname{Syl}_p(K)$ is not G-invariant and $Q>\{1\}$. Since $\operatorname{n}_\lambda(G)=2$, K is maximal in G and $m=\lambda(P),\ n=\lambda(K)$. Since all proper subgroups of P are G-invariant, it follows that P is cyclic. If |Q| is not prime and $\{1\}< Q_0 < Q$, then PQ_0 is not G-invariant so $\operatorname{n}_\lambda(G)>2$, a contradiction. Thus, |Q|=q so K is cyclic, $|K|=p^mq,\ n=m+1$ and $\mathcal{N}_\lambda(G)=\{m,m+1\}$.

(iii1) Let m>1; then $Q \triangleleft G$ since $\lambda(Q)=1 < m$. In that case, consideration of G-invariant subgroup $C_G(Q) \ge K$ shows that $Q \le Z(G)$. Similarly, $\mho_1(P) \le Z(G)$ so |K:Z(G)|=p. We have $K \cap K^x=Z(G)$ for all $x \in G-K$, and so $\bar{G}=G/Z(G)=\bar{K}\cdot\bar{N}$ is a Frobenius group with kernel \bar{N} of order r^b $(r \ne p)$ and index p. Since K is maximal in G, \bar{N} is minimal normal subgroup of \bar{G} so \bar{G} is A(p,r)-group. If b>1, then \bar{N} has a non-G-invariant subgroup \bar{F} of order r^{b-1} ; then $\lambda(F)=\lambda(Z(G))+b-1=m+b-1\le n=m+1$, and we conclude that b=2. If $r\ne q$ and b=2, then G has a nonnormal subgroup of order r, and we get $n_{\lambda}(G)>2$ since $\lambda(r)=1< m$, a contradiction. Thus, if b=2, then r=q.

Suppose that r=q. Let $Q_0\in \operatorname{Syl}_q(G)$; then $|Q_0|=q^{b+1}$ and $Q_0/Q\cong \operatorname{E}_{q^b}$; next, $Q_0 \triangleleft G$ since $N \triangleleft G$ and Q_0 is a direct factor of N. The subgroup Q_0 is noncyclic (otherwise, by (MNN), G has no S-subgroup so nilpotent). Since m>1 and $\mathcal{N}_\lambda(G)=\{m,m+1\}$, all subgroups of order q are normal in G. Assume that $\exp(Q_0)=q$. If $|Q_0|=q^2$, then Q is a direct factor of G (Maschke's Theorem), contrary to the hypothesis. Thus, $|Q_0|>q^2$ so G has a nonnormal subgroup of order q^2 , and we conclude that m=2; then $\mathcal{N}_\lambda(G)=\{2,3\}$. By the previous paragraph, b=2 so $|Q_0|=q^3$. All subgroups of order q are G-invariant so $\exp(Q_0)=q^2$. If q>2, then $\Omega_1(Q_0)(\cong \operatorname{E}_{q^2})$ is normal in G so \bar{N} is not minimal normal subgroup of \bar{G} , a contradiction. Thus, q=2 so that $Q_0\cong Q_8$; then p=3. In that case, $|P|=3^2$, $|G|=3^22^3$, $G/\mathcal{O}_1(P)\cong \operatorname{SL}(2,3)$ and $\Delta(G)=\{4,9,12,18\}$ so G is as in (e).

Now let $r \neq q$. Then, by the first paragraph of this part, b=1 and $G=K\cdot R=(P\times Q)\cdot R=(P\cdot R)\times Q$, contrary to the hypothesis.

(iii2) Now let m=1 so |K|=pq; then $\mathcal{N}_{\lambda}(G)=\{1,2\}$. Since K is maximal in G, we get $N_G(P)=K$ so $P\in \mathrm{Syl}_p(G)$.

Assume that Q is not normal in G; then $N_G(Q) = K$ so K is a $\{p,q\}$ -Hall subgroup of G. By Burnside's Normal p-Complement Theorem applied twice, $G = K \cdot H$, where H is a minimal normal subgroup of G which is a $\{p,q\}'$ -Hall subgroup of G. It follows that $|H| = r^s$, where $r \in \pi(G) - \{p,q\}$. We have $s \leq n+1=3$. We see that G is a Frobenius group with kernel H. Assume that s=3. Then the subgroups PH and QH are minimal nonabelian. Indeed, assume that, for example, PH is not minimal nonabelian. Then, by Maschke's Theorem, it contains a non-G-invariant subgroup of order pr^2 so $3 \in \mathcal{N}_{\lambda}(G)$, a contradiction. In that case, $\Delta(G) = \{p,q,r,pq,r^2\}$ so $n_{\lambda}(G) = 2$. If s=1, then $\Delta(G) = \{p,q,pq\}$. If s=2, then this and previous two groups are as in (f) (for $\Delta(G)$ we have few possibilities, among of them $\{p,q,pq,r\}, \{p,q,pq,pr,r\}, \{p,q,pq,qr,r\}, \{p,q,pq,pr,qr,r\}$).

Now suppose that $Q \triangleleft G$. Then, as above, Q = Z(G), $G/Q = \bar{G} = \bar{K} \cdot \bar{N}$ is a Frobenius group with kernel \bar{N} , where $|\bar{K}| = p$ and $|\bar{N}| = r^b$, $r \neq p$, \bar{N} is a minimal normal subgroup of \bar{G} . Since G has no nontrivial direct factor, we get r = q so $G = P \cdot N$ and $N \in \mathrm{Syl}_q(G)$. In that case, N is noncyclic (otherwise, by (MNN), G has no S-subgroup so nilpotent). Since Q is not a direct factor

of G, we get b > 1 (Fitting's Lemma). Since \overline{G} has a nonnormal subgroup \overline{Q}_1 of order q^{b-1} , then $b = \lambda(Q_1) = 2$ (recall that 2 is the maximal member of the set $\mathcal{N}_{\lambda}(G)$); then $|N| = q^3$. Since N/Q is minimal normal subgroup of G/Q, we get $|\Omega_1(N)| \neq q^2$. If $|\Omega_1(N)| = q$, then q = 2, $N \cong Q_8$ and $G \cong SL(2,3)$ is as in (d). If $|\Omega_1(N)| = q^3$, then N is nonabelian (otherwise, Q is a direct factor of G, by Fitting's Lemma) so $N \cong S(q^3)$, and G is as in (c).

- (iv) Let K be a p-subgroup with non-G-invariant maximal subgroup, say K_1 ; then $K \in \operatorname{Syl}_p(G)$ is maximal in G, $\mathcal{N}_{\lambda}(G) = \{m, m+1\}$, $|K| = p^{m+1}$, $m \geq 1$. In that case, if L < K is of index > p, then $L \triangleleft G$ and so K is not generated by subgroups of index p^2 . Then one of the following holds:
 - 1) K is cyclic;
 - 2) K is abelian of type (p^m, p) ;
 - 3) $K \cong Q_8$.

Note that the group $M_{p^{m+1}}$ is also not generated by subgroups of index p^2 , however, if $K \cong M_{p^{m+1}}$, m > 1, then K has a nonnormal subgroup of order p which is impossible since $\lambda(p) = 1 < m$.

(iv1) Let K be abelian of order p^{m+1} ; then G has a normal p-complement H (Burnside), and H is a minimal normal subgroup of G since K is maximal in G. Set $|H| = q^b$. If K is abelian of type (p,p), then G is not a Frobenius group so $C_G(P_1) = G$ for some $P_1 < P$ of order p. In that case, P_1 is a direct factor of G, a contradiction.

Suppose that b = 1. If K is cyclic, then $\Delta(G) = \{p^m, p^{m+1}\}$, G/Z(G) is a Frobenius group of order p^2q . Now let K be abelian of type (p^m, p) . In that case, as we have proved, m > 1. Then all subgroups of order p are G-invariant so lie in Z(G). Therefore, if $K = U \times V$, where |V| = p, then V is a direct factor of G (Gaschütz), a contradiction. Thus, K is cyclic so G is as in (k).

Next we assume that b>1. Since G has nonnormal subgroups of order $q^i,\ i=1,\ldots,b-1,$ we get $b\leq 3$ and $m=1,\ |K|=p^2.$ By the above, K is cyclic. In that case, G is a Frobenius group of order $p^2q^b,\ 1< b\leq 3.$ If b=2, then $\Delta(G)=\{p,q,p^2\}$ and G is as in (g). Let b=3. Then $\mho_1(K)H$ must be minimal nonabelian (otherwise, G contains a subgroup of order pq^2 , by Maschke's Theorem), which is q-closed so non-G-invariant, and we get $p,p^2,pq^2\in \mathcal{N}_{\lambda}(G)$ so $n_{\lambda}(G)>2$, a contradiction. Thus, G is as in (g).

- (iv2) Let $K \cong Q_8$; then $\mathcal{N}_{\lambda}(G) = \{2,3\}$. We claim that then $G = K \cdot Q$ is 2-nilpotent, where $|Q| = q^b$. Indeed, at least two maximal subgroups of K are nonnormal in G, the subgroup L < K of order 2 is G-invariant. By Burnside, $QL/L \triangleleft G/L$. Since |QL| = 2|Q|, Q is characteristic in QL so $Q \triangleleft G$. Since K is maximal in G, Q is minimal normal subgroup of G. If |Q| > q, there is a nonnormal subgroup of order Q in Q so Q is contradiction. Thus, Q is that case, Q is cyclic of index 2 in Q so Q is as in (h).
- (v) Suppose that all maximal subgroups of K are normal in G. Then K is a cyclic p-subgroup, and we conclude that $K \in \operatorname{Syl}_p(G)$ since $\operatorname{N}_G(K) = K$,

and hence $G = K \cdot H$, where H is a normal p'-Hall subgroup of G (Burnside). Then |H| is not a prime (otherwise, $n_{\lambda}(G) = 1$). Since $C_G(\mho_1(K)) \geq KH = G$, we get $\mho_1(K) = Z(G)$. Write $\bar{G} = G/\mho_1(G)$; then $\bar{G} = \bar{K} \cdot \bar{H}$ is a Frobenius group so \bar{H} is nilpotent, by theorem of Witt [BZ, Theorem 10.7]. Since $\bar{H} \cong H$, the subgroup H is also nilpotent.

(v1) Suppose that $|\pi(H)| > 1$; then $\pi(H) = \{q,r\}$ (otherwise, K < L < M < G and L, M are not normal in G so $n_{\lambda}(G) > 2$ (here we use Hall's theorem on solvable groups). In that case, $\{p,q\}$ - and $\{p,r\}$ -Hall subgroups of G, say U and V, respectively, are not normal in G. It follows that $\lambda(U) = \lambda(V)$. Obviously, U and V are maximal in G (otherwise, $n_{\lambda}(G) > 2$). Let $Q \in \operatorname{Syl}_q(U)$ and $R \in \operatorname{Syl}_r(V)$; then $H = Q \times R$ and Q, R are minimal normal subgroups of G (for example, KQ is maximal in $(KQ) \cdot R = G$ so R is a minimal normal subgroup of G). We have $|K| = p^m$ and $\lambda(KQ) = n$.

Let |Q| > q. Then G has a nonnormal subgroup of order q so $\lambda(K) = m = 1$ (otherwise, $1, \lambda(K), \lambda(KQ) \in \mathcal{N}_{\lambda}(G)$ so $n_{\lambda}(G) > 2$). In that case, G has a nonnormal subgroup of order qr so $p, qr, |KQ| \in \Delta(G)$ and $n_{\lambda}(G) > 2$, a contradiction. Thus, |Q| = q so $|H| = qr, |G| = p^m qr, \bar{G} = G/\mathfrak{V}_1(K)$ is a Frobenius group of order pqr with kernel \bar{H} of order qr, and we get $\Delta(G) = \{p^m, p^m q, p^m r\}$, and G is as in (i).

In what follows we assume that $H \in \text{Syl}_q(G)$.

- (v2) Suppose that K < M < G, where M is maximal in G; then K is maximal in M (otherwise, $n_{\lambda}(G) > 2$). We have $M = K \cdot Q$ (Burnside) and $\mho_1(K) = Z(G)$. Set $|Q| = q^b$, $|G: M| = q^s = |H: Q|$, $|K| = p^m$. Next, Q is a minimal normal subgroup of M and so of G (in fact, $N_G(Q) > M$ whence $Q \triangleleft G$).
- (v2.1) Suppose that m > 1. Then b = 1 (otherwise, there is in G the following non-G-invariant subgroups: K of order $p^m > p$, KQ of order $p^m q^b > p^m$ and a subgroup of Q of order q so $n_{\lambda}(G) > 2$).

Let, in addition, s>1; then m=2. Indeed, since H/Q contains a non-G-invariant subgroup Q_1/Q of order q, we get $\lambda(Q_1)=2<\lambda(KQ)$ so $2=\lambda(Q_1)=\lambda(K)=m$. Since $p^2,p^2q\in\Delta(G)$ and $n_\lambda(G)=2$, we must have $\mathcal{N}_\lambda(G)=\{2,3\}$. It follows that $s\leq 3$ (otherwise, H/Q contains a non-G-invariant subgroup Q_2/Q of order q^3 so $\lambda(Q_2)=4>3$) and all subgroups of order q must be G-invariant since $1\not\in\mathcal{N}_\lambda(G)$.

Assume that s=3. Then $|H|=q^4$ and H has a non-G-invariant subgroup H_1 of order q^3 . Then $\mho_1(K)\times H_1$ of order pq^3 is not G-invariant, a contradiction since $\lambda(\mho_1(K)H_1)=4>3$. Thus, s<3.

Assume that s=2. Then $|H|=q^3$. It follows that $\exp(H)=q^2$ (otherwise, $H=\Omega_1(H)$ is elementary abelian and all subgroups of order q in H are G-invariant, which is not the case since $H/Q\cong \mathbb{E}_{q^2}$ is minimal normal subgroup of G/Q). Then K is contained in (non-G-invariant) subgroup of order p^2q^2 , a contradiction since $4 \notin \mathcal{N}_{\lambda}(G)$.

It remains to consider case s=1 (by assumption, m>1); then $|H|=q^2$, $|G|=p^mq^2$, $\mathcal{N}_{\lambda}(G)=\{m,m+1\}$. All subgroups of G of order q are G-invariant, $G/\mathcal{O}_1(K)$ is a Frobenius group of order pq^2 , $\Delta(G)=\{p^m,p^mq\}$. Since H is cyclic or abelian of type (p,p), we get two nonisomorphic groups. Our G are as in (1).

(v2.2) Let m=1. Then G is a Frobenius group and $b \leq 2$ (indeed, if b>2, then G has a nonnormal subgroups of orders p,q^2 and pq^b so $n_{\lambda}(G)>2$, a contradiction).

Suppose that b=1. Then $p, pq \in \Delta(G)$ so $\mathcal{N}_{\lambda}(G)=\{1,2\}$ hence $s\leq 2$ (if s>2, then G has a non-G-invariant subgroup of order q^3 so $n_{\lambda}(G)>2$). If s=1, then G (of order pq^2) is as in (j). Let s=2. Then G has no subgroup of order pq^2 (otherwise, $n_{\lambda}(G)>2$). It follows that H is either $\cong \mathbb{Q}_8$ (then $G\cong \mathrm{SL}(2,3)$) or $\exp(H)=p$. In the first case, K is not a Carter subgroup since it centralized by Q, a contradiction. In the second case, $q\equiv 1\pmod{p}$ since KQ is nonnilpotent so H/Q is not a minimal normal subgroup of G/Q (take in G/Q a minimal nonnilpotent subgroup!), a contradiction.

Suppose that b=2. Then K and KQ are not G-invariant so $\mathcal{N}_{\lambda}(G)=\{1,3\}$ and $s\leq 2$ (otherwise, G has a nonnormal subgroup of order q^4 so $4\in \mathcal{N}_{\lambda}(G)$, a contradiction. If s=1, then the G-invariant subgroup [H,Q]< Q so $Q\leq Z(H)$ since Q is a minimal normal subgroup of G, and we conclude that H is abelian. If $\exp(H)=q^2$, then $\{1\}<\Phi(H)< Q$, a contradiction since Q is a minimal normal subgroup of G. Thus, $H\cong E_{q^3}$. Since G/Q is nonabelian of order pq, we get $q\equiv 1\pmod{p}$. Then Q is not minimal normal subgroup of KQ (indeed, by (MNN), KQ contains a proper S-subgroup) so Q is not minimal normal subgroup of G since G is abelian, a final contradiction.

It follows from the proof of Theorem 3 that if $n_{\lambda}(G) = 2$, then $|\Delta(G)| \leq 6$, and this estimate is attained. Therefore, Theorem 3 is a very strong generalization of [B1, Theorem 3.1].

It is easy to deduce from Theorems 1 and 3 classification of nonnilpotent groups without three nonnormal subgroups of pairwise distinct orders and which are not nontrivial direct products. We get the following groups of Theorems 1 and 3: 1(a), 1(b), 3(g) of order p^2q , 3(h), 3(j), 3(k), 3(l) (compare with [B1, Theorem 3.1]). Note that O. Schmidt has classified the groups with one [S1] and two [S2] non-invariant classes of conjugate subgroups (the proof of the last result is not full; see [B1, $\S 2$, $\S 3$]).

In what follows we use freely the following facts. If $\lambda(G) \leq 3$, then G is solvable. If G is nonsolvable, there is H < G with $\lambda(H) \geq 3$. Let us prove the second assertion using induction on |G|. Then all proper subgroups of G are solvable so $G/\Phi(G)$ is nonabelian simple. By induction, $\Phi(G) = \{1\}$. Let p be the minimal prime divisor of |G| and $P \in \operatorname{Syl}_p(G)$; then P is noncyclic (Burnside). By assumption, $\lambda(P) = 2$ so P is abelian. Again, by Burnside,

 $N_G(P) > P$. If $H/P \le N_G(P)$ is of prime order, then $\lambda(H) = 3$ so G is not a counterexample.

We also use freely the description of subgroups of the simple group $PSL(2, p^n)$ [D].

THEOREM 4. If G is a nonsolvable group and $n_{\lambda}(G) = 3$, then one of the following holds:

- (a) $G \cong PSL(2,5)$.
- (b) $G \cong PSL(2, p), \ \lambda(p \pm 1) \le 3, \ p^2 \not\equiv 1 \pmod{5}, \ |G| \not\equiv 0 \pmod{8}.$
- PROOF. (i) Suppose that G is a nonabelian simple. Note that a non-solvable group contains a subgroup S with $\lambda(S)=3$. It follows that G has no proper subgroup H with $\lambda(H)>3$. Thus, all proper subgroups H of G are solvable and $\lambda(H)\leq 3$. In what follows we do not use the Odd Order Theorem. Let p be the minimal prime divisor of |G| and $P\in \operatorname{Syl}_p(G)$; then P is noncyclic (Burnside). By what has just has been said, $p^2\leq |P|\leq p^3$.
- (i1) Let $|P| = p^3$. Let H < G be an S(q, p)-subgroup (H exists, by Frobenius Normal p-Complement Theorem). Then $\lambda(H) = 3$ so p = 2 and $H \cong A_4$, the alternating group of degree 4. Let $P_1 \in Syl_p(H)$. One may assume that that $P_1 < P$. Then $N_G(P_1) \ge \langle P, H \rangle$ so $\lambda(N_G(P_1)) > 3$, contrary to the previous paragraph.
- (i2) Let $|P| = p^2$; then p = 2. In that case, $G \cong PSL(2, p)$, by [W]. Since all subgroups of G are known [D], it follows that G is as in (b).

Next we assume that G is not simple. Let M < G be a maximal normal subgroup. Then G/M is simple.

- (ii) Suppose that M is solvable; then $\bar{G} = G/M$ is nonabelian simple so, by Theorem 3, $n_{\lambda}(\bar{G}) = 3$. Let $\bar{H} < \bar{G}$ and $\bar{F} < \bar{G}$, where $\lambda(\bar{H}) = 1$ and $\lambda(\bar{F}) = 3$. Since all nonidentity subgroups of \bar{F} are not \bar{G} -invariant, it follows that $\mathcal{N}_{\lambda}(G) = \{\lambda(M) + 1, \lambda(M) + 2, \lambda(M) + 3\}$. Then all proper subgroups of H are normal in G so H is a cyclic q-subgroup for prime $q = |\bar{H}|$. In particular, M is a cyclic q-subgroup. As q one can choose every prime from $\pi(\bar{G})$. Since $|\pi(\bar{G})| > 2$ (Burnside), we get a contradiction.
- (iii) Suppose that M is nonsolvable. Then $n_{\lambda}(M) > 2$ (Theorem 3) so $n_{\lambda}(M) = 3$ since $n_{\lambda}(M) \le n_{\lambda}(G) = 3$. It follows that all subgroups of the simple group G/M are normal so |G:M| = q, a prime. By induction, M is a group from conclusion. It follows that $\mathcal{N}_{\lambda}(M) = \{1,2,3\} = \mathcal{N}_{\lambda}(G)$. Let $P \in \operatorname{Syl}_2(M)$. Then, by Frattini's Lemma, $G = M \operatorname{N}_G(P)$. Since $\operatorname{N}_M(P) > P$, we get $\lambda(\operatorname{N}_G(P)) > 3$, and this is a final contradiction since all subgroups of $\operatorname{N}_G(P)$, containing P, are not normal in G.

I do not know if the number of groups of Theorem 4(b) is infinite.

Let $n_{s\lambda}(G) = |\{\lambda(H) \mid H < G \text{ is nonnormal and solvable }\}|$. Arguing as in the proof of Theorem 4, one can prove that if $n_{s\lambda}(G) = 3$, then a nonsolvable

group G is as in Theorem 4 but in (b) the condition $p^2 \not\equiv 1 \pmod 5$ must be omitted.

Remark 5. Here we consider a nonnilpotent group G all of whose nonnormal subgroups are cyclic. Suppose that G has a noncyclic Sylow subgroup. By hypothesis, all noncyclic Sylow subgroups are G-invariant. If $P \in \operatorname{Syl}_n(G)$ is noncyclic, then $P \triangleleft G$ and G/P is Dedekindian. It follows that G is solvable (this is also true if P does not exist, by Burnside). Since G is nonnilpotent, Pis the unique noncyclic Sylow subgroup of G. Since all Sylow subgroups of the Dedekindian group G/P are cyclic, G/P is itself cyclic, and we get $G' \leq P$. Let K be a Carter subgroup of G. Then K is cyclic and maximal in G since, if K < M < G, then M is noncyclic so normal in G, which is impossible. It follows that G = KP so $P_0 = K \cap P \triangleleft G$. Since $K \leq C_G(P_0) \triangleleft G$, we conclude that $P_0 \leq Z(G) < K$. Write $\bar{G} = G/Z(G)$. Then $\bar{G} = \bar{K} \cdot \bar{P}$ is a Frobenius group with cyclic complement \bar{K} and kernel \bar{P} which is a minimal normal subgroup of \bar{G} . Since \bar{P} is elementary abelian, it has no proper subgroup of order p^2 so $|\bar{P}| \leq p^2$. Suppose that $|\bar{P}| = p^2$ and $P_0 > \{1\}$. If $P_1/P_0 < P/P_0$ is of order p, then P_1 is cyclic since it is not normal in G. It follows that P has p+1 distinct cyclic subgroups of index p; note that Z(G) is cyclic. Since P is noncyclic, we get $P \cong \mathbb{Q}_8$ hence $|P_0| = 2$, $|\bar{K}| = 3$. If Z_0 is a subgroup. of index 2 in Z(G), then $G/Z_0 \cong SL(2,3)$. As it is easy to see, such G satisfies the hypothesis. Now let $P_0 = \{1\}$. Then $P \cong E_{p^2}$, $G = K \cdot P$. We have $K_G = \mathbb{Z}(G)$. Write $\bar{G} = G/\mathbb{Z}(G)$. Since K is cyclic and maximal in G, the group G satisfies the hypothesis if and only if for every \bar{H}/\bar{P} of prime order, \bar{H} is minimal nonabelian. If $|\bar{P}| = p$, then G satisfies the hypothesis.

REMARK 6. Suppose that all subgroups of prime order p>2 are G-invariant. Then G' is p-nilpotent. Indeed, all normal cyclic subgroups of G centralize G'. It follows from (MNN) that G' has no S(q,p)-subgroups so p-nilpotent, by Frobenius' Normal p-Complement Theorem. In particular, if all subgroups of odd prime orders are G-invariant, then G'/P is nilpotent for $P \in \operatorname{Syl}_2(G)$.

REMARK 7. In the proof of Theorem 8 we use the following fact: If all subgroups of G of order 4 are normal, then G is solvable. Isaacs in his letter at 4/08/07 noticed that, under this condition, either G is 2-nilpotent or its Sylow 2-subgroup is normal and elementary abelian and has proved this. Below we offer another proof of Isaacs' assertion. Assume that G is not 2-nilpotent. Let $P_1 \in \operatorname{Syl}_2(G)$. By Frobenius' Normal p-Complement Theorem, there is in G an $\operatorname{S}(q,2)$ -subgroup $S=Q\cdot P$; then $\exp(P)\leq 4$, by (MNN). If L< P is cyclic of order 4, then L centralizes G'>P, a contradiction since $\exp(\operatorname{Z}(P))=2$. Thus, $\exp(P)=2$; then $P\cap\operatorname{Z}(S)=\{1\}$. If |P|>4, it has two subgroups

 $^{^1{}m The}\ p{
m -groups}$ all of whose nonnormal subgroups are cyclic, are almost classified in [P, Theorem 2.9].

A, B of order 4 such that $A \cap B$ is of order 2. Then $\{1\} < A \cap B \le P \cap \mathbf{Z}(S)$, a contradiction. Thus, |P| = 4 so P is minimal normal subgroup in S. Assume that $P < U \le P_1$, where |U:P| = 2. Then U contains a subgroup $X \ne P$ of order 4. In that case, $P \cap X$ is of order 2 and contained in $\mathbf{Z}(S) \cap P$, a contradiction. Thus, if G is not 2-nilpotent, its Sylow 2-subgroup is normal in G and $\cong \mathbf{E}_4$.

THEOREM 8. Let G be a nonsolvable group with $n_{\lambda}(G) \leq 4$. Then one of the following holds:

- (a) $G \cong PSL(2, p)$, where $\lambda(p \pm 1) \leq 4$.
- (b) $G \cong PSL(2,8)$.
- (c) $G \cong PSL(2, 3^2) \cong A_6$.
- (d) $G \cong PSL(2, 3^3)$.
- (e) $G = G_1 \times C$, where G_1 is a group of Theorem 4 and |C| prime.
- (f) $G \cong PGL(2, p)$, where either p = 5, 7 or p is as in Theorem 4(b).
- (g) $G \cong SL(2,p)$, where p is such as in Theorem 4.

PROOF. (i) (This part is proved by Kazarin) Suppose that G is nonabelian simple; then $\lambda(H) \leq 4$ for all solvable H < G. Let $\{1\} < R < G$ be primary. Set $N = \mathcal{N}_G(R)$. Assume that N is nonsolvable. Then there is a solvable F/R < N/R with $\lambda(F/R) > 2$ (Theorem 4). Since all subgroups of (the solvable subgroup) F are nonnormal in G, it follows that $\lambda(R) = 1$ and $\lambda(F) = 4$. Then $N/R \cong PSL(2,p)$ is as in Theorem 4 so $\{1,2,3,4,\lambda(N)\} \subseteq \mathcal{N}_{\lambda}(G)$, a contradiction since $\lambda(N) > 4$. Thus, all local subgroups of G are solvable. By Thompson's Theorem [T], G is isomorphic with one of the following groups:

(1) $PSL(2, p^n)$, $Sz(2^{2m+1})$, PSL(3, 3), PSU(3, 3), A_7 , M_{11} , ${}^2F_4(2)'$.

Since Sylow 2-subgroups of G have order at most 16, this excludes groups $\operatorname{Sz}(2^{2m+1})$ and ${}^2F_4(2)'$. Note, that if the order of a Sylow 2-subgroup S of G is 16, then S is maximal in G. Hence M_{11} , $\operatorname{PSL}(3,3)$, $\operatorname{PSU}(3,3)$ and A_7 does not satisfy the hypothesis. Now it remains to discuss groups $\operatorname{PSL}(2,p^n)$ only. Note that $\operatorname{PSL}(2,p^n)$ contains the subgroup $\cong \operatorname{PSL}(2,p)$.

- (i1) Let $G \cong \mathrm{PSL}(2,2^n)$, n > 1. Then G has a solvable subgroup H of order $2^n(2^n-1)$. Since $4 \geq \lambda(H) = n + \lambda(2^n-1)$, we get $n \leq 3$. If n=2, then $G \cong \mathrm{PSL}(2,4) \cong \mathrm{A}_5$; then $\mathrm{n}_{\lambda}(G) = 3$. If n=3, then $G \cong \mathrm{PSL}(2,8)$ and $\mathrm{n}_{\lambda}(G) = 4$.
- (i2) Let $G \cong \mathrm{PSL}(2,p^n), \ n>1, \ p>2$. Then G has a solvable subgroup H of order $\frac{1}{2}(p^n-1)p^n$. We have $n-1+\lambda(p^n-1)=\lambda(H)\leq 4$.

Let p=3. Since $\lambda(3^n-1)\geq 2$, we get $n\leq 3$. If n=2, then $G\cong \mathrm{PSL}(2,3^2)\cong \mathrm{A}_6$. If n=3, then $G\cong \mathrm{PSL}(2,3^3)$. Both these groups satisfy the hypothesis.

Now let p>3, n>1. Since $\lambda(\frac{1}{2}(p^n-1))\geq 2$, we must have n=2. Then $\lambda(\frac{1}{2}(p^2-1))\geq 3$ so $\lambda(\frac{1}{2}p^n(p^n-1))=n+\lambda(\frac{1}{2}(p^2-1))>4$, contrary to the hypothesis.

- (i3) Let $G \cong \mathrm{PSL}(2,p)$. If F < G is nonsolvable, then $F \cong PSL(2,5)$ so $\lambda(F) = 4$. If H < G is solvable, then $\lambda(H) \leq 4$. Since all subgroups of G are known, we get $\lambda(p \pm 1) \leq 4$. The case where G is simple, is complete.
- (ii) Suppose that the Fitting subgroup $F(G) > \{1\}$. Let R be the solvable radical of G; then G/R has no nonidentity solvable normal subgroup. Write $a = \lambda(R)$. If H/R < G/R is solvable, then $\lambda(H/R) \le 4$ (otherwise, $n_{\lambda}(G/R) > 4$) and all nonidentity subgroups of H/R are not G-invariant.

Let H/R < G/R with $\lambda(H/R) = 3$ (such H exists, by Theorem 4). Then $a+1, a+2, a+3 \in \mathcal{N}_{\lambda}(G)$. By Remarks 6 and 7, G has a nonnormal subgroups of orders r>2 and 4. It follows that a=1 and so $\mathcal{N}_{\lambda}(G)=\{1,2,3,4\}$ so |R|=p, a prime. In that case, $\mathbf{n}_{\lambda}(G/R)=3$ so G/R is a group of Theorem 4; in particular, G is nonabelian simple. Then $\mathbf{C}_G(R)=G$ so $R=\mathbf{Z}(G)$. If R< G', then R is a subgroup of the Schur multiplier of the group G/R so $G\cong \mathrm{SL}(2,p)$, where either p=5 or p is as in Theorem 4(b) (Schur [Sc]). If $R\not\leq G'$, then $G=G_1\times R$, where G_1 is as in Theorem 4.

(iii) Now suppose that $\mathrm{F}(G)=\{1\}$ and G is not simple; then G has no nonidentity solvable normal subgroup. By assumption, $\lambda(H)\leq 4$ for all solvable H< G. Let N be a maximal normal subgroup of G. Then, by assumption, N is nonsolvable.

Assume that G/N is nonabelian simple. Let $P \in \operatorname{Syl}_2(N)$ and $K = \operatorname{N}_G(P)$. We have $|P| \geq 4$ and all nonidentity subgroups of P and K/P are not G-invariant. It follows that K/P has no solvable subgroup F/K such that $\lambda(F/K) > 2$. Then, by Theorem 4, K/P is solvable so $\lambda(K) \leq 4$. However, NK = G (Frattini's Lemma) so K cover the nonsolvable group G/N, and we conclude that K is nonsolvable, a contradiction.

Thus, |G/N| = p, a prime, so $G' \leq N$. Assume that G' < N; then $\lambda(G/G') \geq 2$. Let $P \in \operatorname{Syl}_2(G')$; then $\lambda(\operatorname{N}_{G'}(P)) \geq 3$ (Burnside) and $\operatorname{N}_{G'}(P)$ is solvable (here we use the Odd Order Theorem) so $\lambda(\operatorname{N}_G(P)) \geq 5$. Since $\operatorname{N}_G(P)$ is solvable (Frattini's Lemma), we get $\operatorname{F}(G) > \{1\}$, a contradiction. Thus, |G:G'| = p so that G' = N. The same argument shows that G'' = G', i.e., G' is the last member of the derived series of G. Let G be a minimal normal subgroup of G. Then G is an expression of G is solvable so G if G is the last member of the derived series of G. Let G be a minimal normal subgroup of G. Then G is a solvable subgroup G is solvable so G in the G is solvable. In that case, G has a solvable subgroup G is that G is nonabelian simple. If G is a for all solvable G is a group of Theorem 4, and then $G \cong \operatorname{PGL}(2,p)$, where either G is as in Theorem 4(b) (recall that in the case under consideration, $\operatorname{Aut}(G) \cong \operatorname{PGL}(2,p)$).

In what follows we assume that there is a solvable H < R with $\lambda(H) = 4$. Since the normalizer of every nonidentity solvable subgroup of R is solvable, R is one of groups of list (1). As in (i), we have only to check the case where $R \cong \mathrm{PSL}(2,p^n)$. If p=2, then $R \cong \mathrm{PSL}(2,8)$. In that case, if $P \in \mathrm{Syl}_2(R)$, then $\mathrm{N}_R(P) = C \cdot P$ is of order $2^3 \cdot 7$ so $\mathrm{N}_G(P) = 2^3 \cdot 7p$ (in fact, p=3 since

 $|\operatorname{Aut}(\operatorname{PSL}((2,8):\operatorname{PSL}(2,8)|=3).$ Since $\operatorname{N}_G(P)$ is solvable and $\lambda(\operatorname{N}_G(P))=5$, we get $\operatorname{F}(G)>\{1\}$, a contradiction. If p=3, then $R\cong\operatorname{PSL}(2,3^n), n\in\{2,3\}.$ Let $Q\in\operatorname{Syl}_3(R)$. Assume that n=2. Then $\lambda(\operatorname{N}_R(Q))=4$ so $\lambda(\operatorname{N}_G(Q))=5$ and, as above, we get a contradiction since $\operatorname{N}_G(Q)$ is solvable. Now let n=3. Then $\lambda(\operatorname{N}_R(Q))=4$ so $\lambda(\operatorname{N}_G(Q))=5$, and we again get a contradiction.

Thus, p > 3. In that case, n = 1 and $\operatorname{Aut}(R) \cong \operatorname{PGL}(2,p)$ so $G \cong \operatorname{PGL}(2,p)$. Assume that H < R is dihedral of order $p \pm 1$ with $\lambda(p \pm 1) = 4$. Then $\lambda(\operatorname{N}_G(H)) = 5$, $\operatorname{N}_G(H)$ is solvable so $\operatorname{F}(G) > \{1\}$, a contradiction. Thus, p is such as in Theorem 4, completing the proof.

I think that if $|\Delta(G)| = n_{\lambda}(G)$, then $|\pi(G)|$ must be small.

Let no(G) be as above. Then, if G is nonsolvable, then no(G) $\geq \lambda(G) + |\pi(G)| \geq 7$ [B2].

Problems

- 1. Classify the p-groups G satisfying $n_{\lambda}(G) = 2$.
- 2. Classify the nonnilpotent groups G satisfying $n_{\lambda}(G) = 3$.
- 3. Classify the nonsolvable groups G satisfying $n_{\lambda}(G) = 5$.
- 4. Let $n_{s\lambda}(G)$ is defined in the paragraph preceding Remark 5. Classify the nonsolvable groups G satisfying $n_{s\lambda}(G) \in \{4, 5\}$.
- 5. Classify the groups G such that $n_{s\lambda}(G) \leq |\pi(G)|$.
- 6. Classify the groups all of whose minimal nonabelian subgroups (S-subgroups) have the same order.
- 7. Classify the groups with $|\Delta(G)| = n_{\lambda}(G)$.
- 8. Classify the p-groups all of whose nonnormal subgroups are metacyclic (abelian).
- 9. Find $n_{\lambda}(A_n)$, $n_{\lambda}(S_n)$.

ACKNOWLEDGEMENTS.

I am indebted to Lev Kazarin and Martin Isaacs for classification of simple groups in Theorem 8 and more exact statement of the main result of Remark 7, respectively.

References

- [B1] Y. Berkovich, Nonnormal and minimal nonabelian subgroups of a finite group, submitted.
- [B2] Y. Berkovich, Some criteria for the solvability of finite groups, Sibirsk. Mat. Ž. 4 (1963), 723–728.
- [BZ] Ya. G. Berkovich and E. M. Zhmud, Characters of Finite Groups. Part 1, Translations of Mathematical Monographs 172, American Mathematical Society, Providence, RI, 1998.
- [Bla] N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. (3) 11 (1961), 1-22.
- [D] L. E. Dickson, Linear groups with an exposition of the Galois field theory, Dover Publications, Inc., New York, 1958.
- [H] B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin-New York, 1967.

- [G] Yu. A. Gol'fand, On groups all of whose subgroups are special, Doklady Akad. Nauk SSSR 60 (1948), 1313–1315.
- [P] D. S. Passman, Nonnormal subgroups of p-groups, J. Algebra 15 (1970), 352–370.
- [R] L. Redei, Die endlichen einstufig nichtnilpotenten Gruppen, Publ. Math. Debrecen 4 (1956), 303-324.
- [S1] O. Schmidt, Groups all of whose subgroups are nilpotent, Mat. Sb. 31 (1924), 366-372.
- [S2] O. Schmidt, Groups having only one class of nonnormal subgroups, Mat. Sb. 33 (1926), 161-172.
- [S3] O. Schmidt, Groups with two classes of nonnormal subgroups, Proc. Seminar on group theory (1938), 7-26.
- [Sc] I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20-50.
- [T] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.
- [W] J. H. Walter, The characterization of finite groups with abelian Sylow 2-subgroup, Ann. Math. (2) 89 (1969), 405-514.
- [Z] G. Zappa, Finite groups in which all nonnormal subgroups have the same order, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), 5-16; II, ibid 14 (2003), 13-21.

Y. Berkovich Department of Mathematics University of Haifa Mount Carmel, Haifa 31905 Israel

Received: 13.8.2007. Revised: 15.6.2008.