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Optimizing Remaining Useful Life Estimation of 
Lithium-Ion Batteries: A Particle Swarm Optimization-

Based Grey Prediction Model
Ali M Abdulshahed, Ibrahim Badi

Summary — Accurately estimating of the age and condition of lit-
hium-ion batteries (LIBs) is paramount for their safe and economi-
cally viable utilization. However, assessing the degradation of these 
power units proves to be challenging due to their dependence on va-
rious environmental and usage factors. In this study, we propose an 
efficient Particle Swarm Optimization (PSO)-based Grey Theory pre-
diction model to determine the Remaining Useful Life (RUL) of lit-
hium-ion batteries. The proposed model utilizes PSO to optimize the 
coefficients of a grey prediction model, enabling accurate forecasting 
of the remaining useful life of LIBs. Our results demonstrate that the 
presented model outperforms conventional grey prediction models 
in terms of both accuracy and stability. Furthermore, the proposed 
model offers simpler predictions compared to existing models in the 
literature. By introducing this promising technique, our study con-
tributes to the precise forecasting of the RUL of lithium-ion batteries 
and holds potential for applications in similar domains. This research 
serves as a significant step towards ensuring effective management 
and utilization of LIBs, promoting their reliability and safety.

Keywords — Particle Swarm Optimization, Lithium-ion batteries, 
grey model

1 Introduction 

The scarcity of fossil-fuel reserves, combined with the challen-
ges of climate change, provides a significant motivation for 
the development of environmentally friendly transportation 

systems, sustainable energy sources, and intelligent grid networks. 
Successful implementation of these sectors necessitates the use of 
energy storage systems, which has garnered notable attention from 
researchers in recent times. In those fields, lithium-ion batteries are 
widely used. They play a significant role as one of the most important 
components and should be closely observed and managed. To ensu-
re the economic feasibility of electric vehicles and the infrastructure 
of renewable energy systems and intelligent grids, it is imperative to 
have extended battery lifetimes. One of the most pressing and diffi-
cult issues is battery degradation during operation, which has become 
a limiting factor in a battery’s lifetime. Lithium-ion batteries have be-

come a extensively used technology due to their efficiency in storing 
and providing energy [4] LIBs are a class of rechargeable battery that 
has become well-known in recent years, because of their extended 
lifespan, impressive energy density and minimal self-discharge rate. 
Lithium-ion batteries find widespread use across various applicati-
ons, including electric vehicles, consumer electronics, and stationary 
storage systems [2]. The high-energy density of lithium-ion batteries 
(LIBs) is a key advantage, as it allows for the storage of a larger qu-
antity of energy inside a small form factor, compared to alternative 
rechargeable battery technologies. This attribute renders LIBs highly 
suitable for applications with limited space, such as mobile phones 
and laptop computers. In addition, lithium-ion batteries demonstrate 
a prolonged cycle life, indicating their ability to withstand numerous 
charge and discharge cycles without substantial capacity deteriorati-
on. This characteristic guarantees the ability of LIBs to undergoing 
repeated charging and discharging cycles, thus offering extended ope-
rational capabilities and durability. [20]. RUL is a substantial concept 
in the realm of lithium-ion battery technology. The term “ RUL “ co-
uld also be defined as the amount of time a battery can be used before 
it needs to be replaced [20].

Model-based methods involve the utilization of mathematical 
models, a collection of algebraic and empirical equations, and re-
lated parameters, which require experimentation and the analysis 
of large datasets [1]. Model-based approaches can construct the de-
gradation behaviour of a battery, with either physics or regression 
models being employed. This extrapolation can predict battery per-
formance. Recent research has demonstrated that physics models 
are more accurate for long-term predictions compared to empirical 
models, which often result in high errors [22]. 

The physics-based model for Remaining Useful Performance 
(RUP) [15], and RUL is predicted by integrating theories concer-
ning reaction kinetics and electrode porosity. These theories are 
grounded in the physical and electrochemical processes occurring 
within the battery [1]. This type of model, also known as a whi-
te-box model, is a mathematical modelling technique that utilizes 
differential equations to mimic the behaviour of the system under 
consideration. These models are often able to be interpretable ma-
king them a popular choice for academic research. However, the 
physics-based model for RUL prediction has several drawbacks, 
including the need for specialized knowledge, difficulty in deter-
mining or recognizing model parameters, and high computatio-
nal costs. [9]. Furthermore, measuring internal impedance at low 
frequencies is time-consuming and difficult. Another significant 
issue is that noises produced by other combined components of an 
online system affect the accuracy of electrochemical impedance 
spectroscopy (EIS) measurements as a result of the low-amplitu-
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de signal required for EIS measurements. To address these issues, 
many researches advocate prediction based on empirical regressi-
on models [8], [14]. 

Data-driven models are a type of behavioural model that uses 
historical information to estimate the future behaviour within a 
system, specifically used here the Remaining Useful Life (RUL) of 
a battery. [1]. These models are based on the premise that past per-
formance is indicative of future performance. In opposition to mo-
dels based on physical equations, empirical models are founded on 
experimental data that can demonstrate the connections between in-
puts and outputs. Empirical-driven RUL prediction techniques can 
be classified under two groups: statistical modelling methods, such 
as regression paradigm, linear polynomial paradigm, and other pa-
rametric paradigms; non-parametric techniques, such as fuzzy logic 
systems (FLS), machine learning (ML), etc. [13]. Figure 1 Illustrates 
the key RUL forecasting methods for lithium-ion batteries [21].

Fig. 1. Major RUL projection approaches [21].

Recently, the Deep Neural Network (DNN) has become a fa-
vourable technology for modelling a large volume of data [1]. This 
is due to its multilayer network structure, which allows for multiple 
activation or convolution operations within a single neuron, unlike 
the single activation function used in traditional Artificial Neural 
Networks (ANNs). This feature enables DNNs to be fed with data 
and extracts complex features and relationships from the data.

In [10] are introduced a deep neural network model combined 
with an exclusion layer to avoid data over-fitting, 11,345 data po-
ints were drawn from a single battery dataset for building a model. 
Nevertheless, the effectiveness metric the Root Mean Square Error 
(RMSE) was higher than expected at 3.427 due to limitations in 
hyperparameter tuning and insufficiently informative data for pre-
dictions. Despite these limitations, the underlying approach holds 
potential. Its ability to integrate an exclusion layer for preventing 
overfitting is a valuable innovation and could be further explored 
with a more comprehensive hyperparameter search and potentially 
richer or augmented datasets. Future research could investigate the 
impact of different network architectures or feature engineering 
techniques on model performance.

In a separate study [11] are introduced an enhanced Long Short-

Term Memory (LSTM) method that was calibrated using Dataset 
collected from 28 batteries (NASA, Batteries No 5–7, Battery No 
18, Batteries No 45–48, Batteries No 53–56, Batteries No 29–34, 
Battery No 36, Batteries No 38–44, Battery No 49, Battery No 51). 
The efficacy of the neural network was assessed with different 
battery discharge variables, and they found that RMSE decreases 
when the neural network is trained with more histories data. Altho-
ugh the proposed neural network was complex in nature, it could 
be reduced using more efficient optimization method and model 
selection. However, it may not be feasible to use these methods for 
forecasting Remaining Useful Life (RUL) in on-site engineering 
applications. In this context, while the enhanced LSTM method 
shows promise for battery RUL prediction, its complexity might 
make it less suitable for direct implementation in on-site enginee-
ring applications. Simpler models or cloud-based solutions might 
be more practical alternatives in such settings.

The work in [24] provides an in-depth look at the conducting 
of the optimized Grey model GM(1, 1) for estimating the RUL of 
lithium-ion batteries. The authors provide a comprehensive over-
view of the model and its implementation to battery life prognosis. 
They also discuss how the model can be used to optimize battery 
function and extend its life. The authors provide detailed analysis 
of their results, which demonstrate that the model is effective in 
predicting remaining useful life. Overall, this article provides a va-
luable resource for researchers interested in using this model for 
battery life prediction. To recap, the article’s pros lie in its in-depth 
exploration of the GM(1,1) model, its practical implementation gu-
idance, and its focus on optimizing battery life. This combination 
makes it a valuable resource for researchers and practitioners alike, 
contributing to the advancement of lithium-ion battery technology.

A solution is needed for situations where there is a limited amo-
unt of memory and computing power, which can use raw sensor 
data to calculate the state of health without requiring extensive pre-
processing. The Grey model GM(1, N) (Tien, 2012) can be used 
as a modeling approach for prognosticating the Remaining Useful 
Life (RUL) of a lithium-ion battery. However, due to the non-linea-
rity of the problem, traditional calibration methods such as the least 
square method may not provide an optimal solution. To address 
this issue, this work proposes a meta-heuristic method based on 
the behavior of natural swarms, namely the particle swarm optimi-
zation algorithm [7], to calibrate the GMC(1, N) coefficients [19]. 
This approach involves including a convolution integral in order to 
correct the modeling values by GMC(1, N) model. The proposed 
model is then used to prognosticate RUL of a lithium-ion battery.

In the area of battery health diagnostics, the Particle Swarm 
Optimization (PSO)-based Grey Prediction Model could presents 
a compelling alternative to data-hungry deep learning approaches. 
Its core strength lies in marrying the simplicity and interpretability 
of Grey models with the accuracy-enhancing power of PSO. This 
could lead to a model particularly well-suited for resource-constra-
ined scenarios, where limited data or computational power restricts 
the deployment of complex deep learning architectures.

II. Methodology

A. Grey modelling
The Grey System approach, first founded in [5], [6], is a met-

hod dedicated to resolving problems with small sample sizes and 
incomplete information. This method can be utilized to analyse and 
evaluate vague systems when a certain component of knowledge is 
available. It generates, excavates, and extracts beneficial informa-
tion from accessible data to accurately map out system behaviours 
as well as their implicit laws of development. The GM (1, N) model 
is one of the most extensively utilized in the recent literature in 
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order to express difficult behaviour through the use of a Black-
Grey-White approach [19]. This methodology offers a broad and 
dynamic investigation on the relationship between parameters of a 
system. The term Accumulated Generating Operation (AGO) is a 
key aspect of Grey system theory, which can increase linearity and 
reduce randomness in samples. The primary chart of grey foreca-
sting models presented in Figure 2 . In [18] and [19] are presented 
an enhanced Grey model based on the above-mentioned GM(1, 
N) model, whereby modelling values are improved by including a 
convolution integral GMC (1, N).

Fig. 2. Fundamental illustration of grey prediction frameworks [23].

The Grey theory models have conventionally been calibrated 
using the conventional least square’s approaches. However, since 
the problem is nonlinear in nature, a strictly least square’s solution 
may not suffice to adequately address this issue. To avoid the very 
long trial-and-error process, PSO can be utilized to enhance the 
Grey models’ performance. The following section will review PSO 
and then describe the GMC (1, N) learning algorithm’s main steps 
when used in conjunction with PSO. 

Training GMC (1, N) by PSO
In [7] are proposed Particle Swarm Optimization (PSO) as a 

different evolutionary technique to existing algorithms. PSO draws 
upon the behaviour of real swarms, such as fish schools and bird 
flocks, and utilizes simple structures with a clear physical meaning 
for its optimization methodology. The algorithm forms a popula-
tion of individuals-known as particles-where each behaves like an 
individual solution to the model, represented in an N-dimensional 
space. Each particle adjusts its location within this space using its 
own experience and the experience of its neighbours with regard 
to their current positions, velocities, and best previous positions. 
Unlike traditional algorithms that require the objective function 
to be differentiable, PSO is not constrained by such assumptions 
about the problem being solved. This makes it uniquely suitable for 
optimizing Grey model parameters without relying on the standard 
algorithms.

In this part, the primary steps of GMC(1, N) are depicted and its 
optimization procedure using PSO discussed. As GMC(1, N) aims 
to show the long-term behaviour of data and minimize the effect 
of random occurrences by conducting the AGO on the raw data, 
the first operation for building GMC(1, N) is to applying the initial 
Accumulated Generating Operation to the raw data. To calibrate 
the GMC(1, N) model, a suitable optimization technique such as 
PSO algorithm is employed for its potential to enhance complex 
numerical functions. Subsequently, an Inverse Accumulated Gene-
rating Operation (IAGO) is employed for the prediction of Remai-
ning Useful Life (RUL). Figure 2 displays a schematic diagram of 
PSO-based Grey model detailing its modelling process. The mo-
delling process is outlined in the following section:

Step #1: Examine the raw RUL data series as:

where j = 2,3,... N, s is the delay period of the system, the raw 
RUL data series has a length of p, while the number of values to be 
estimated is indicated by n.

Step #2: The 1st-order AGO sequences were obtained by proce-
ssing the raw data of each variable (i.e., time series) using 1-AGO 
as follows:

Ref. [19] provides an in-depth overview of GMC(1,N), howe-
ver this work will only include the core equations.

where K=1,2,…,p + n, the development coefficient is aj, (j=2, 
3,... N) , the driving coefficient is  , and  is the control parameter of 
a Grey model, respectively. Consequently, the output values can 
be given as:

 

where  

To compute the parameters ai, aj and , the PSO algorithm could 
be applied to optimize the mathematical expression in Equation 
(2). The model is then calibrated until a desirable level of perfor-
mance is achieved. The final optimal parameters are used in the 
GMC(1, 1) model in order to predict the RUL value. The following 
is a summary of the GMC(1, N) calibration process:

A particle in the PSO algorithm is parameters in the model that 
shifts its location from one iteration to the next based on velocity 
equation. Generally, if the space of search is D-dimensional, then 
the present velocity and position of the jth particle can be denoted 
by Aj=[aj1, aj2, ..., ajD ]T and Vj = [vj1, vj2,…, vjD ]^T respectively.

 where j = 1, 2, ... M and M is the particles number of the swarm. 

Particle j is able to recall the best location it has achieved so far, 
referred to as the best position locally [Pbestj = [pbest1, pbest2,..., 
pbestjD]T . Moreover, it can also move to the best position that the 
whole swarm has obtained, known as the best position globally 
[Gbestj = [gbest1, gbest2,..., gbestjD]T. To start with, particle j’s ini-
tial velocity and position are determined randomly. Subsequently, 
particle j changes its velocity for iteration k+1 based on the best 
positions (i.e. locally and globally) in addition to its velocity from 
iteration k with this Equation (3):

(3)

Where, ω is the inertia factor, which is conducted to regulate the 
effect of the previous velocities on the present velocity. The term 
c1 is the self-confidence, and the term c2 is the swarm-confidence 
factors. R is a random number that can change from 0 to 1. The 
position of particle j in iteration k+1 can be computed using the 
improved velocity as follows:

       (4)
The value of a particle is determined by an objective function that 
computes the difference between the particle and its optimum so-
lution, as follows:

     Step #2: The 1st-order AGO sequences were obtained by processing the raw data of each variable (i.e., 
time series) using 1-AGO as follows: 

𝑋𝑋𝑋𝑋1
(1) = �𝑥𝑥𝑥𝑥1

(1)(1 + 𝑟𝑟𝑟𝑟), 𝑥𝑥𝑥𝑥1
(1)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(1)(𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(1) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�, 

where 𝑋𝑋𝑋𝑋(1) = ∑ 𝑥𝑥𝑥𝑥(0)(𝑖𝑖𝑖𝑖),𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖𝑖1   𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛.  

         Ref. [19] provides an in-depth overview of GMC(1,N), however this work will only include the core 
equations. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
(1)(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋1
(1)(𝐾𝐾𝐾𝐾 + 𝑟𝑟𝑟𝑟) = 𝑎𝑎𝑎𝑎2𝑋𝑋𝑋𝑋2

(1)(𝐾𝐾𝐾𝐾) + 𝑎𝑎𝑎𝑎3𝑋𝑋𝑋𝑋3
(1)(𝐾𝐾𝐾𝐾) + ⋯+ 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁

(1)(𝐾𝐾𝐾𝐾) + 𝑢𝑢𝑢𝑢, (1) 

where 𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛,  the development coefficient is  𝑎𝑎𝑎𝑎1, the driving coefficient is  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗, (𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁), 
and 𝑢𝑢𝑢𝑢 is the control parameter of a Grey model, respectively. Consequently, the output values can be 
given as: 

𝑋𝑋𝑋𝑋�1
(1)(𝐾𝐾𝐾𝐾 + 𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑥𝑥1

(0)(1 + 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) +
1
2 × 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) × 𝑓𝑓𝑓𝑓(1) + ��𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−𝐾𝐾𝐾𝐾) × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)� +

1
2 × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)

𝐾𝐾𝐾𝐾−1

𝐾𝐾𝐾𝐾𝑖2

 (2) 

 where 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏) = ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
(1)(𝜏𝜏𝜏𝜏) + 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖2 .  

To compute the parameters 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢, the PSO algorithm could be applied to optimize the 
mathematical expression in Equation (2). The model is then calibrated until a desirable level of 
performance is achieved. The final optimal parameters are used in the GMC(1, 1) model in order to predict 
the RUL value. The following is a summary of the GMC(1, N) calibration process: 

A particle in the PSO algorithm is parameters in the model that shifts its location from one iteration to the 
next based on velocity equation. Generally, if the space of search is D-dimensional, then the present 
velocity and position of the jth particle can be denoted by 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗2, … ,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
 and 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =

�𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗1,𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗2, … , 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

 respectively. 

 where 𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 is the particles number of the swarm.  

     Particle j is able to recall the best location it has achieved so far, referred to as the best position locally  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … ,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
. Moreover, it can also move to the best position that the whole 

swarm has obtained, known as the best position globally G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1, g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … , g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

. To start 
with, particle j's initial velocity and position are determined randomly. Subsequently, particle j changes its 
velocity for iteration k+1 based on the best positions (i.e. locally and globally) in addition to its velocity 
from iteration k with this Equation (3): 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝜔𝜔𝜔𝜔𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)+ 𝑐𝑐𝑐𝑐1𝑅𝑅𝑅𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�+ 𝑐𝑐𝑐𝑐2𝑅𝑅𝑅𝑅 𝑅G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�  (3) 

Where, ω is the inertia factor, which is conducted to regulate the effect of the previous velocities on the 
present velocity. The term c1 is the self-confidence, and the term c2 is the swarm-confidence factors. R is 
a random number that can change from 0 to 1. The position of particle j in iteration k+1 can be computed 
using the improved velocity as follows: 

 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) + 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1)        (4) 

The value of a particle is determined by an objective function that computes the difference between the 
particle and its optimum solution, as follows: 

     Step #2: The 1st-order AGO sequences were obtained by processing the raw data of each variable (i.e., 
time series) using 1-AGO as follows: 

𝑋𝑋𝑋𝑋1
(1) = �𝑥𝑥𝑥𝑥1

(1)(1 + 𝑟𝑟𝑟𝑟), 𝑥𝑥𝑥𝑥1
(1)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(1)(𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(1) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�, 

where 𝑋𝑋𝑋𝑋(1) = ∑ 𝑥𝑥𝑥𝑥(0)(𝑖𝑖𝑖𝑖),𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖𝑖1   𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛.  

         Ref. [19] provides an in-depth overview of GMC(1,N), however this work will only include the core 
equations. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
(1)(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋1
(1)(𝐾𝐾𝐾𝐾 + 𝑟𝑟𝑟𝑟) = 𝑎𝑎𝑎𝑎2𝑋𝑋𝑋𝑋2

(1)(𝐾𝐾𝐾𝐾) + 𝑎𝑎𝑎𝑎3𝑋𝑋𝑋𝑋3
(1)(𝐾𝐾𝐾𝐾) + ⋯+ 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁

(1)(𝐾𝐾𝐾𝐾) + 𝑢𝑢𝑢𝑢, (1) 

where 𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛,  the development coefficient is  𝑎𝑎𝑎𝑎1, the driving coefficient is  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗, (𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁), 
and 𝑢𝑢𝑢𝑢 is the control parameter of a Grey model, respectively. Consequently, the output values can be 
given as: 

𝑋𝑋𝑋𝑋�1
(1)(𝐾𝐾𝐾𝐾 + 𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑥𝑥1

(0)(1 + 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) +
1
2 × 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) × 𝑓𝑓𝑓𝑓(1) + ��𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−𝐾𝐾𝐾𝐾) × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)� +

1
2 × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)

𝐾𝐾𝐾𝐾−1

𝐾𝐾𝐾𝐾𝑖2

 (2) 

 where 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏) = ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
(1)(𝜏𝜏𝜏𝜏) + 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖2 .  

To compute the parameters 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢, the PSO algorithm could be applied to optimize the 
mathematical expression in Equation (2). The model is then calibrated until a desirable level of 
performance is achieved. The final optimal parameters are used in the GMC(1, 1) model in order to predict 
the RUL value. The following is a summary of the GMC(1, N) calibration process: 

A particle in the PSO algorithm is parameters in the model that shifts its location from one iteration to the 
next based on velocity equation. Generally, if the space of search is D-dimensional, then the present 
velocity and position of the jth particle can be denoted by 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗2, … ,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
 and 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =

�𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗1,𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗2, … , 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

 respectively. 

 where 𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 is the particles number of the swarm.  

     Particle j is able to recall the best location it has achieved so far, referred to as the best position locally  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … ,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
. Moreover, it can also move to the best position that the whole 

swarm has obtained, known as the best position globally G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1, g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … , g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

. To start 
with, particle j's initial velocity and position are determined randomly. Subsequently, particle j changes its 
velocity for iteration k+1 based on the best positions (i.e. locally and globally) in addition to its velocity 
from iteration k with this Equation (3): 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝜔𝜔𝜔𝜔𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)+ 𝑐𝑐𝑐𝑐1𝑅𝑅𝑅𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�+ 𝑐𝑐𝑐𝑐2𝑅𝑅𝑅𝑅 𝑅G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�  (3) 

Where, ω is the inertia factor, which is conducted to regulate the effect of the previous velocities on the 
present velocity. The term c1 is the self-confidence, and the term c2 is the swarm-confidence factors. R is 
a random number that can change from 0 to 1. The position of particle j in iteration k+1 can be computed 
using the improved velocity as follows: 

 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) + 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1)        (4) 

The value of a particle is determined by an objective function that computes the difference between the 
particle and its optimum solution, as follows: 

     Step #2: The 1st-order AGO sequences were obtained by processing the raw data of each variable (i.e., 
time series) using 1-AGO as follows: 

𝑋𝑋𝑋𝑋1
(1) = �𝑥𝑥𝑥𝑥1

(1)(1 + 𝑟𝑟𝑟𝑟), 𝑥𝑥𝑥𝑥1
(1)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(1)(𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(1) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�, 

where 𝑋𝑋𝑋𝑋(1) = ∑ 𝑥𝑥𝑥𝑥(0)(𝑖𝑖𝑖𝑖),𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖𝑖1   𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛.  

         Ref. [19] provides an in-depth overview of GMC(1,N), however this work will only include the core 
equations. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
(1)(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋1
(1)(𝐾𝐾𝐾𝐾 + 𝑟𝑟𝑟𝑟) = 𝑎𝑎𝑎𝑎2𝑋𝑋𝑋𝑋2

(1)(𝐾𝐾𝐾𝐾) + 𝑎𝑎𝑎𝑎3𝑋𝑋𝑋𝑋3
(1)(𝐾𝐾𝐾𝐾) + ⋯+ 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁

(1)(𝐾𝐾𝐾𝐾) + 𝑢𝑢𝑢𝑢, (1) 

where 𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛,  the development coefficient is  𝑎𝑎𝑎𝑎1, the driving coefficient is  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗, (𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁), 
and 𝑢𝑢𝑢𝑢 is the control parameter of a Grey model, respectively. Consequently, the output values can be 
given as: 

𝑋𝑋𝑋𝑋�1
(1)(𝐾𝐾𝐾𝐾 + 𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑥𝑥1

(0)(1 + 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) +
1
2 × 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) × 𝑓𝑓𝑓𝑓(1) + ��𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−𝐾𝐾𝐾𝐾) × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)� +

1
2 × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)

𝐾𝐾𝐾𝐾−1

𝐾𝐾𝐾𝐾𝑖2

 (2) 

 where 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏) = ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
(1)(𝜏𝜏𝜏𝜏) + 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖2 .  

To compute the parameters 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢, the PSO algorithm could be applied to optimize the 
mathematical expression in Equation (2). The model is then calibrated until a desirable level of 
performance is achieved. The final optimal parameters are used in the GMC(1, 1) model in order to predict 
the RUL value. The following is a summary of the GMC(1, N) calibration process: 

A particle in the PSO algorithm is parameters in the model that shifts its location from one iteration to the 
next based on velocity equation. Generally, if the space of search is D-dimensional, then the present 
velocity and position of the jth particle can be denoted by 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗2, … ,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
 and 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =

�𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗1,𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗2, … , 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

 respectively. 

 where 𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 is the particles number of the swarm.  

     Particle j is able to recall the best location it has achieved so far, referred to as the best position locally  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … ,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
. Moreover, it can also move to the best position that the whole 

swarm has obtained, known as the best position globally G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1, g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … , g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

. To start 
with, particle j's initial velocity and position are determined randomly. Subsequently, particle j changes its 
velocity for iteration k+1 based on the best positions (i.e. locally and globally) in addition to its velocity 
from iteration k with this Equation (3): 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝜔𝜔𝜔𝜔𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)+ 𝑐𝑐𝑐𝑐1𝑅𝑅𝑅𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�+ 𝑐𝑐𝑐𝑐2𝑅𝑅𝑅𝑅 𝑅G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�  (3) 

Where, ω is the inertia factor, which is conducted to regulate the effect of the previous velocities on the 
present velocity. The term c1 is the self-confidence, and the term c2 is the swarm-confidence factors. R is 
a random number that can change from 0 to 1. The position of particle j in iteration k+1 can be computed 
using the improved velocity as follows: 

 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) + 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1)        (4) 

The value of a particle is determined by an objective function that computes the difference between the 
particle and its optimum solution, as follows: 

     Step #2: The 1st-order AGO sequences were obtained by processing the raw data of each variable (i.e., 
time series) using 1-AGO as follows: 

𝑋𝑋𝑋𝑋1
(1) = �𝑥𝑥𝑥𝑥1

(1)(1 + 𝑟𝑟𝑟𝑟), 𝑥𝑥𝑥𝑥1
(1)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(1)(𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(1) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�, 

where 𝑋𝑋𝑋𝑋(1) = ∑ 𝑥𝑥𝑥𝑥(0)(𝑖𝑖𝑖𝑖),𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖𝑖1   𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛.  

         Ref. [19] provides an in-depth overview of GMC(1,N), however this work will only include the core 
equations. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
(1)(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋1
(1)(𝐾𝐾𝐾𝐾 + 𝑟𝑟𝑟𝑟) = 𝑎𝑎𝑎𝑎2𝑋𝑋𝑋𝑋2

(1)(𝐾𝐾𝐾𝐾) + 𝑎𝑎𝑎𝑎3𝑋𝑋𝑋𝑋3
(1)(𝐾𝐾𝐾𝐾) + ⋯+ 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁

(1)(𝐾𝐾𝐾𝐾) + 𝑢𝑢𝑢𝑢, (1) 

where 𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛,  the development coefficient is  𝑎𝑎𝑎𝑎1, the driving coefficient is  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗, (𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁), 
and 𝑢𝑢𝑢𝑢 is the control parameter of a Grey model, respectively. Consequently, the output values can be 
given as: 

𝑋𝑋𝑋𝑋�1
(1)(𝐾𝐾𝐾𝐾 + 𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑥𝑥1

(0)(1 + 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) +
1
2 × 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) × 𝑓𝑓𝑓𝑓(1) + ��𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−𝐾𝐾𝐾𝐾) × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)� +

1
2 × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)

𝐾𝐾𝐾𝐾−1

𝐾𝐾𝐾𝐾𝑖2

 (2) 

 where 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏) = ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
(1)(𝜏𝜏𝜏𝜏) + 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖2 .  

To compute the parameters 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢, the PSO algorithm could be applied to optimize the 
mathematical expression in Equation (2). The model is then calibrated until a desirable level of 
performance is achieved. The final optimal parameters are used in the GMC(1, 1) model in order to predict 
the RUL value. The following is a summary of the GMC(1, N) calibration process: 

A particle in the PSO algorithm is parameters in the model that shifts its location from one iteration to the 
next based on velocity equation. Generally, if the space of search is D-dimensional, then the present 
velocity and position of the jth particle can be denoted by 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗2, … ,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
 and 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =

�𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗1,𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗2, … , 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

 respectively. 

 where 𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 is the particles number of the swarm.  

     Particle j is able to recall the best location it has achieved so far, referred to as the best position locally  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … ,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
. Moreover, it can also move to the best position that the whole 

swarm has obtained, known as the best position globally G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1, g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … , g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

. To start 
with, particle j's initial velocity and position are determined randomly. Subsequently, particle j changes its 
velocity for iteration k+1 based on the best positions (i.e. locally and globally) in addition to its velocity 
from iteration k with this Equation (3): 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝜔𝜔𝜔𝜔𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)+ 𝑐𝑐𝑐𝑐1𝑅𝑅𝑅𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�+ 𝑐𝑐𝑐𝑐2𝑅𝑅𝑅𝑅 𝑅G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�  (3) 

Where, ω is the inertia factor, which is conducted to regulate the effect of the previous velocities on the 
present velocity. The term c1 is the self-confidence, and the term c2 is the swarm-confidence factors. R is 
a random number that can change from 0 to 1. The position of particle j in iteration k+1 can be computed 
using the improved velocity as follows: 

 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) + 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1)        (4) 

The value of a particle is determined by an objective function that computes the difference between the 
particle and its optimum solution, as follows: 

     Step #2: The 1st-order AGO sequences were obtained by processing the raw data of each variable (i.e., 
time series) using 1-AGO as follows: 

𝑋𝑋𝑋𝑋1
(1) = �𝑥𝑥𝑥𝑥1

(1)(1 + 𝑟𝑟𝑟𝑟), 𝑥𝑥𝑥𝑥1
(1)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(1)(𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(1) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�, 

where 𝑋𝑋𝑋𝑋(1) = ∑ 𝑥𝑥𝑥𝑥(0)(𝑖𝑖𝑖𝑖),𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖𝑖1   𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛.  

         Ref. [19] provides an in-depth overview of GMC(1,N), however this work will only include the core 
equations. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
(1)(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋1
(1)(𝐾𝐾𝐾𝐾 + 𝑟𝑟𝑟𝑟) = 𝑎𝑎𝑎𝑎2𝑋𝑋𝑋𝑋2

(1)(𝐾𝐾𝐾𝐾) + 𝑎𝑎𝑎𝑎3𝑋𝑋𝑋𝑋3
(1)(𝐾𝐾𝐾𝐾) + ⋯+ 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁

(1)(𝐾𝐾𝐾𝐾) + 𝑢𝑢𝑢𝑢, (1) 

where 𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛,  the development coefficient is  𝑎𝑎𝑎𝑎1, the driving coefficient is  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗, (𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁), 
and 𝑢𝑢𝑢𝑢 is the control parameter of a Grey model, respectively. Consequently, the output values can be 
given as: 

𝑋𝑋𝑋𝑋�1
(1)(𝐾𝐾𝐾𝐾 + 𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑥𝑥1

(0)(1 + 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) +
1
2 × 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) × 𝑓𝑓𝑓𝑓(1) + ��𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−𝐾𝐾𝐾𝐾) × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)� +

1
2 × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)

𝐾𝐾𝐾𝐾−1

𝐾𝐾𝐾𝐾𝑖2

 (2) 

 where 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏) = ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
(1)(𝜏𝜏𝜏𝜏) + 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖2 .  

To compute the parameters 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢, the PSO algorithm could be applied to optimize the 
mathematical expression in Equation (2). The model is then calibrated until a desirable level of 
performance is achieved. The final optimal parameters are used in the GMC(1, 1) model in order to predict 
the RUL value. The following is a summary of the GMC(1, N) calibration process: 

A particle in the PSO algorithm is parameters in the model that shifts its location from one iteration to the 
next based on velocity equation. Generally, if the space of search is D-dimensional, then the present 
velocity and position of the jth particle can be denoted by 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗2, … ,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
 and 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =

�𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗1,𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗2, … , 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

 respectively. 

 where 𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 is the particles number of the swarm.  

     Particle j is able to recall the best location it has achieved so far, referred to as the best position locally  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … ,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
. Moreover, it can also move to the best position that the whole 

swarm has obtained, known as the best position globally G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1, g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … , g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

. To start 
with, particle j's initial velocity and position are determined randomly. Subsequently, particle j changes its 
velocity for iteration k+1 based on the best positions (i.e. locally and globally) in addition to its velocity 
from iteration k with this Equation (3): 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝜔𝜔𝜔𝜔𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)+ 𝑐𝑐𝑐𝑐1𝑅𝑅𝑅𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�+ 𝑐𝑐𝑐𝑐2𝑅𝑅𝑅𝑅 𝑅G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�  (3) 

Where, ω is the inertia factor, which is conducted to regulate the effect of the previous velocities on the 
present velocity. The term c1 is the self-confidence, and the term c2 is the swarm-confidence factors. R is 
a random number that can change from 0 to 1. The position of particle j in iteration k+1 can be computed 
using the improved velocity as follows: 

 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) + 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1)        (4) 

The value of a particle is determined by an objective function that computes the difference between the 
particle and its optimum solution, as follows: 

     Step #2: The 1st-order AGO sequences were obtained by processing the raw data of each variable (i.e., 
time series) using 1-AGO as follows: 

𝑋𝑋𝑋𝑋1
(1) = �𝑥𝑥𝑥𝑥1

(1)(1 + 𝑟𝑟𝑟𝑟), 𝑥𝑥𝑥𝑥1
(1)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(1)(𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(1) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�, 

where 𝑋𝑋𝑋𝑋(1) = ∑ 𝑥𝑥𝑥𝑥(0)(𝑖𝑖𝑖𝑖),𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖𝑖1   𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛.  

         Ref. [19] provides an in-depth overview of GMC(1,N), however this work will only include the core 
equations. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
(1)(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋1
(1)(𝐾𝐾𝐾𝐾 + 𝑟𝑟𝑟𝑟) = 𝑎𝑎𝑎𝑎2𝑋𝑋𝑋𝑋2

(1)(𝐾𝐾𝐾𝐾) + 𝑎𝑎𝑎𝑎3𝑋𝑋𝑋𝑋3
(1)(𝐾𝐾𝐾𝐾) + ⋯+ 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁

(1)(𝐾𝐾𝐾𝐾) + 𝑢𝑢𝑢𝑢, (1) 

where 𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛,  the development coefficient is  𝑎𝑎𝑎𝑎1, the driving coefficient is  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗, (𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁), 
and 𝑢𝑢𝑢𝑢 is the control parameter of a Grey model, respectively. Consequently, the output values can be 
given as: 

𝑋𝑋𝑋𝑋�1
(1)(𝐾𝐾𝐾𝐾 + 𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑥𝑥1

(0)(1 + 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) +
1
2 × 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) × 𝑓𝑓𝑓𝑓(1) + ��𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−𝐾𝐾𝐾𝐾) × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)� +

1
2 × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)

𝐾𝐾𝐾𝐾−1

𝐾𝐾𝐾𝐾𝑖2

 (2) 

 where 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏) = ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
(1)(𝜏𝜏𝜏𝜏) + 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖2 .  

To compute the parameters 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢, the PSO algorithm could be applied to optimize the 
mathematical expression in Equation (2). The model is then calibrated until a desirable level of 
performance is achieved. The final optimal parameters are used in the GMC(1, 1) model in order to predict 
the RUL value. The following is a summary of the GMC(1, N) calibration process: 

A particle in the PSO algorithm is parameters in the model that shifts its location from one iteration to the 
next based on velocity equation. Generally, if the space of search is D-dimensional, then the present 
velocity and position of the jth particle can be denoted by 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗2, … ,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
 and 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =

�𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗1,𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗2, … , 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

 respectively. 

 where 𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 is the particles number of the swarm.  

     Particle j is able to recall the best location it has achieved so far, referred to as the best position locally  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … ,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
. Moreover, it can also move to the best position that the whole 

swarm has obtained, known as the best position globally G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1, g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … , g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

. To start 
with, particle j's initial velocity and position are determined randomly. Subsequently, particle j changes its 
velocity for iteration k+1 based on the best positions (i.e. locally and globally) in addition to its velocity 
from iteration k with this Equation (3): 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝜔𝜔𝜔𝜔𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)+ 𝑐𝑐𝑐𝑐1𝑅𝑅𝑅𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�+ 𝑐𝑐𝑐𝑐2𝑅𝑅𝑅𝑅 𝑅G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�  (3) 

Where, ω is the inertia factor, which is conducted to regulate the effect of the previous velocities on the 
present velocity. The term c1 is the self-confidence, and the term c2 is the swarm-confidence factors. R is 
a random number that can change from 0 to 1. The position of particle j in iteration k+1 can be computed 
using the improved velocity as follows: 

 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) + 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1)        (4) 

The value of a particle is determined by an objective function that computes the difference between the 
particle and its optimum solution, as follows: 

 
Figure 2: Fundamental illustration of grey prediction frameworks [23]. 

 

The Grey theory models have conventionally been calibrated using the conventional least square's 
approaches. However, since the problem is nonlinear in nature, a strictly least square's solution may not 
suffice to adequately address this issue. To avoid the very long trial-and-error process, PSO can be utilized 
to enhance the Grey models' performance. The following section will review PSO and then describe the 
GMC (1, N) learning algorithm's main steps when used in conjunction with PSO.  

22..11..11 TTrraaiinniinngg  GGMMCC  ((11,,  NN))  bbyy  PPSSOO  
In [7] are proposed Particle Swarm Optimization (PSO) as a different evolutionary technique to existing 
algorithms. PSO draws upon the behaviour of real swarms, such as fish schools and bird flocks, and utilizes 
simple structures with a clear physical meaning for its optimization methodology. The algorithm forms a 
population of individuals-known as particles-where each behaves like an individual solution to the model, 
represented in an N-dimensional space. Each particle adjusts its location within this space using its own 
experience and the experience of its neighbours with regard to their current positions, velocities, and best 
previous positions. Unlike traditional algorithms that require the objective function to be differentiable, 
PSO is not constrained by such assumptions about the problem being solved. This makes it uniquely 
suitable for optimizing Grey model parameters without relying on the standard algorithms. 

In this part, the primary steps of GMC(1, N) are depicted and its optimization procedure using PSO 
discussed. As GMC(1, N) aims to show the long-term behaviour of data and minimize the effect of random 
occurrences by conducting the AGO on the raw data, the first operation for building GMC(1, N) is to 
applying the initial Accumulated Generating Operation to the raw data. To calibrate the GMC(1, N) model, 
a suitable optimization technique such as PSO algorithm is employed for its potential to enhance complex 
numerical functions. Subsequently, an Inverse Accumulated Generating Operation (IAGO) is employed for 
the prediction of Remaining Useful Life (RUL). Figure 2 displays a schematic diagram of PSO-based Grey 
model detailing its modelling process. The modelling process is outlined in the following section: 

     Step #1: Examine the raw RUL data series as: 

𝑋𝑋𝑋𝑋1
(0) = �𝑥𝑥𝑥𝑥1

(0)(1 + 𝑟𝑟𝑟𝑟),  𝑥𝑥𝑥𝑥1
(0)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(0)(𝑛𝑛𝑛𝑛 + 𝑟𝑟𝑟𝑟)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(0) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(0)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(0)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(0)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(0)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�,  

where 𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁, s is the delay period of the system, the raw RUL data series has a length of p, while 
the number of values to be estimated is indicated by n. 

(1)

(2)

Ali M Abdulshahed, Ibrahim Badi, Optimizing Remaining Useful Life Estimation of Lithium-Ion Batteries: A Particle Swarm Optimization-Based Grey Prediction 
Model, Journal of Energy, vol. 72 Number 3 (2023), 8–13 
https://doi.org/10.37798/2023723494   
© 2021 Copyright for this paper by authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)
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The fitness value, f (Aj), is calculated by comparing the target 
output x̂(0) (k) to the predicted output x (0) (k) based on the updating 
of the particles (i.e., solutions).

Step #3: In a new iteration compute the new particle velocity 
and particle position using formula in Equations (3) and (4), res-
pectively, then update the model variables in Equation (2).

Step #4: If the value of error is within the model’s requirements 
or a set number of epochs have been completed, the calibration of 
the model will be finished. If not, it will go back to Step #3.

Step #5: Set the best parameters Bj.

Step #6: 1- IAGO can be utilized to acquire the anticipated va-
lues. The mathematical equation is as follows:

Fig. 3. Illustrative diagram of GMCPSO(1, 1) model.

III. Experimental Work
The diminishment of a battery’s effectiveness is associated with 

multiple processes, and its decline follows a nonlinear manner. 
Consequently, battery aging data must be acquired to develop an 
RUL prediction model and consider its accuracy and robustness. 
The Prognostics Centre of Excellence at NASA Ames provides 
a widely-utilized battery dataset [17]. This dataset includes four 
types of batteries packs (#5, #6, #7, and #18). Figure 3 illustrates 
the decrease in battery capacity that is present in the dataset.

Fig. 4. Battery capacity decay trend that is present in the dataset.

The principle of Constant Current Constant Voltage (CC-CV) 
is a frequently employed technique for battery charging. In this 
process, the current is first kept at a constant level of 1.5 A until 
the voltage reaches a limit of 4.2 V. After this, the voltage remains 
fixed while the current gradually decreases to 20 mA, thus comple-
ting the CC-CV charging process (see Figure 4). For discharging, 
four batteries are typically discharged at a constant current of 2 A 
until their respective voltages reduce to 2.7 V, 2.5 V, 2.2 V, and 2.5 
V respectively.

Fig. 5. illustrates the Constant Current-Constant Voltage process used in 
the NASA dataset [16].

The experiment persisted until the measured actual capacity 
of each battery fell below 70% of its rated 2Ah. This Aging Point 
Threshold (APT) denoted a substantial decline in performance, si-
gnifying the point at which further exploration yielded diminishi-
ng returns. These data points are well-established in the scientific 
community and have been actively incorporated in current studies 
[3], [12].

A. Main Steps in GMC(1,1) Modelling
Input for GM(1,1) Time Series Model:

− Time Series Data: The primary input for the GMC(1,1) 
model is a univariate time series dataset.

− This dataset typically includes a sequence of observati-
ons recorded over equally spaced time intervals.

Data Preprocessing:

− Ensure that the time series data is in a suitable format for 
analysis.

− Handle any missing values or outliers in the data.

Grey System Modeling:

− Original Data Sequence: Transform the original time se-
ries data into a first-order accumulated series.

− Establishment of Grey Differential Equation (GDE): De-
velop a differential equation based on the accumulated series.

− Parameter Estimation: Estimate the model parameters, 
which include the development coefficient and the grey input 
coefficient.

GM(1,1) Model Solution:

− Solve the established grey differential equation to obtain 
the predicted values of the original time series.

Model Evaluation:
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appropriate metrics.

Compare the predicted values with the actual values to validate 
the model’s accuracy.

B. Results 
To optimize the GMC(1, N) coefficients, the historical dataset 

was split into two separate sets: one for computing the model (aro-
und 48%) and the other for testing purposes (around 52%). The 
Python environment was utilized for the creation and simulation 
of the RUL model. The designed model was organized as outlined 
below:

Step #1: the mathematical operation (1-AGO) is used to enhan-
ce the linearity of the raw data and minimize any randomness pre-
sent in the measured samples.

Step #2: the optimization algorithm PSO is used to train the 
GMC(1, N) model, as was mentioned in the previous section.

Step #3: The RUL value is calculated by performing an IAGO 
(Inverse Accumulated Generating Operation).

For the PSO algorithm, 70 particles were used with self-con-
fidence factor C1 set to 1.4 and swarm-confidence factor C2 set to 
1.4. The inertia weight ω was adapted over 150 epochs, decreasing 
from 0.8 to 0.2. At the end of this process, the total error was satis-
factory (RMSE=1.03).

In this section, the development of another separate Grey mo-
del was conducted using the conventional Least Squares (LS) met-
hod. Three steps were involved throughout this process, with Steps 
1, 2, and 3 being similar to those presented in the above mention’s 
section. The Grey variables of Equation 2 were then determined by 
applying the traditional least squares method. 

After training a model, it becomes essential to validate the mo-
del to evaluate its prediction quality and the accuracy of its parame-
ters. This will provide the designer with confidence in the model 
and indicate whether any revisions to the training process are nece-
ssary. Model validation is a procedure that involves several steps. 
The exhibitions of the frameworks utilized in this exploration were 
determined using Mean Absolute Percentage Error (MAPE) as 
follows: 

where,

mesk: Measured RUL; 
prek: Predicted RUL;

mes, pre: Average of the measured value and predicted value, 
respectively; and 
n: The number of measured data.

In this section, the optimization process was applied to the final 
Grey theory models. Following this, a previously unused testing 
dataset was utilized to evaluate the performance of the models, 
which had not been used during the optimization stage. The outco-
mes acquired for the GMCPSO(1,1) model and GMC(1,1) model 
are exhibited in Figure 4 and Figure 5, correspondingly.

Fig. 6. RUL prediction using GMCPSO(1, 1) model.

The red-solid line indicates the capacity degeneration pro-
cess, while the blue dash line denotes the predicted capacity by 
GMCPSO(1, 1) model. The final Grey model parameters obtained 
are listed in Table 1:

Table 1

The final Grey model parameters for GMCPSO(1, 1) model.

a1 a2
MAPE

0.00337 0.00337 0.019

Fig. 7. RUL prediction using GMC(1, 1) model

The red-solid line indicates the capacity degeneration process, 
while the blue dash line denotes the predicted capacity by GMC(1, 
1) model. The final Grey model parameters obtained are listed in 
Table 2:

Table II

The final Grey model parameters for GMC(1, 1) model.

a1 a2
MAPE

0.00393 522.565 0.03811

The results of this study reveal that the Mean Squared Predicti-
on Error (MSPE) for the PSOGMC(1,1) model was 0.019, while the 
MSPE for the GMC(1, 1) model was 0.03811. This implies that the 
proposed PSOGMC(1,1) model is more precise than the GMC(1, 
1) model in predicting RUL. This is due to the fact that the PSO-
GMC(1,1) model utilizes PSO for the optimization of GMC(1, 1) 
model parameters. The PSO algorithm is an iterative optimization 
method that uses a population of particles to search for optimal so-
lutions. By using this approach, the PSOGMC(1, 1) model can find 
better solutions than those found by traditional methods such as 

whether any revisions to the training process are necessary. Model validation is a procedure that involves 
several steps. The exhibitions of the frameworks utilized in this exploration were determined using Mean 
Absolute Percentage Error (MAPE) as follows:  

𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 =
1
𝑛𝑛𝑛𝑛�
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LS algorithms. Additionally, it was found that the true Remaining 
Useful Life (RUL) of the battery was 84 charge-discharge cycles in 
total. The RUL prediction results achieved by GMC(1, 1) and PSO-
GMC(1,1) models were 119 and 87 respectively; demonstrating that 
PSOGMC(1,1) model performed better than GMC(1, 1).

This study employs a Particle Swarm Optimization (PSO)-
based Grey Prediction Model. This approach offers potential 
advantages:

Simplicity: Grey models are generally simpler to construct and 
implement compared to complex deep learning models [3].

Limited Data: Grey models can often perform well with li-
mited data, which can be advantageous in situations where large 
datasets are unavailable.

Optimization: The use of PSO to optimize the grey model’s 
coefficients may enhance its accuracy.

Grey theory modeling is a powerful tool for predicting the 
RUL of lithium-ion batteries. This approach can be employed to 
gauge the RUL of a battery based on its current usage and state 
patterns. Once a prediction of the RUL has been calculated, it can 
be used to take decisions about when to replace a battery. For in-
stance, if a battery has an estimated RUL of two years but is only 
being used once per week, then it may not need to be replaced until 
after 3 years have passed. On the other hand, if a battery has an esti-
mated RUL of one year but is being used multiple times per day, 
then it may need to be exchanged sooner than anticipated in order 
to ensure optimal functioning. However, like any approach, it also 
has its limitations. One limitation of this approach is the reliance on 
optimization techniques such as PSO. While PSO can effectively 
optimize the coefficients of the grey prediction model, it may requ-
ire significant computational resources and time to find the opti-
mal solution. This can be a drawback in real-time or time-sensitive 
applications where quick predictions of RUL are required.

IV. Conclusions
This study presents a novel grey modelling methodology with 

the objective of effectively forecasting the Remaining Useful Life 
(RUL) of lithium-ion batteries (LIBs). The evaluation of the propo-
sed methodology is conducted utilizing the dataset on battery char-
ge-discharge cycles provided by NASA. The findings indicate that 
the RUL prediction model possesses the capability to significantly 
enhance the dependability and security of energy storage systems.

The grey theory modelling approach combines grey system 
theory and optimization techniques to model the battery’s histo-
rical data and extract valuable information for predicting its RUL. 
The proposed modelling method is carefully compared with exi-
sting Grey modelling methods in terms of accuracy and computa-
tional efficiency. The experimental findings demonstrate that the 
suggested approach outperforms the current model in both output 
accuracy and computational efficiency.

Furthermore, this paper provides insights into how to further 
improve the accuracy of RUL prediction by incorporating addi-
tional factors such as current, voltage, temperature, etc., into the 
model. Further research and development are necessary to address 
above mentioned limitations and enhance the accuracy and reliabi-
lity of RUL estimation for practical applications.
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