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ENERGY DECAY ESTIMATES FOR A WAVE EQUATION

WITH NONLINEAR BOUNDARY FEEDBACK

Mohammad Cherkaoui and Naji Yebari

University Moulay Ismail and University Abdelmalek Essadi, Morocco

Abstract. We study a wave equation in one dimensional space with
nonlinear dissipative boundary feedback at both ends. We prove existence
and uniqueness of solution, strong and uniform exponential decay of energy
under some conditions in the nonlinear feedback. Decay rate estimates
of the energy are given under weak growth assumptions on the feedback
functions.

1. Introduction and main results

We consider the wave equation with a variable coefficient, controlled at
the boundary by the two feedbacks laws L1 and L2 to be determined in the
sequel:

(1.1)







ytt(x, t) − (ayx)x(x, t) = 0, 0 < x < 1, t > 0,
(ayx)(0, t) = L1(t), t > 0,

−(ayx)(1, t) = L2(t), t > 0.

We assume that the function a(.) belongs to H1(0, 1) and that

(1.2) 0 < a ≤ a(x), for all x ∈ [0, 1].

The aim of this paper is to show that the system (1.1) is well posed in
the terms of the semigroups of contractions and is asymptotically stabilized
by the nonlinear feedback laws L1 and L2 given as follows:

(1.3)
L1(t) = kp,0y(0, t) + kv,0f(yt(0, t)),
L2(t) = kp,1y(1, t) + kv,1g(yt(1, t)),

2000 Mathematics Subject Classification. 35L05, 35L20, 93D15, 34D20.
Key words and phrases. Wave equation, nonlinear boundary value problems, stabi-

lization of systems by feedback, Lyapunov stability, polynomial decay.

375



376 M. CHERKAOUI AND N. YEBARI

where kp,0, kp,1, kv,0 and kv,1 are non negative constants such that

kv,0 + kv,1 > 0,(1.4)

kp,0 + kp,1 > 0,(1.5)

f and g are suitable nonlinear functions in C0(R).
The boundary stabilization of (1.1) has been studied by many authors.

Conrad and Rao [4] have proved that the feedback law

L1(t) = kp,0y(0, t) + f(yt(0, t)),

L2(t) = kp,0y(1, t) + f(yt(1, t)), kp,0 > 0

stabilizes asymptotically the system under a suitable growth condition of f .
Indeed, in the more general cases for which f is a maximal monotone graph,
the strong asymptotic stabilization has been proved by Chen and Wang [2]
and Lasieska [8, 9].

Let us mention the work of B. Chentouf et al. [1], where a damping model
is considered and the equation tolerates a term βy, β = cte > 0, the system
is asymptotically stabilized by the nonlinear feedback law depending only on
the boundary velocities:

L1(t) = kv,0f(yt(0, t)),

L2(t) = kv,1f(yt(1, t)),

kv,0 + kv,1 > 0,

under a suitable choice of f .
In the linear version of this paper Cherkaoui [3] have proved the strong

and uniform exponential decay of the energy and also existence of a Riesz
basis associated with a spectral formulation of the problem.

With the feedback laws L1 and L2 in (1.3), we introduce the energy
associated with the system (1.1) as follows:

(1.6) E(t) =
1

2

∫ 1

0

[y2
t (x, t) + a(x)y2

x(x, t)]dx +
1

2
kp,0y

2(0, t) +
1

2
kp,1y

2(1, t).

We derive E(t) with respect to t and integrate by parts, and we show formally
that:

(1.7) E′(t) = −kv,0yt(0, t)f(yt(0, t)) − kv,1yt(1, t)g(yt(1, t)).

Throughout this paper, both f and g are nondecreasing functions in
C0(R) such that

(1.8) f(0) = g(0) = 0, f(s).s and g(s).s > 0 ∀s 6= 0.

Assumption (1.8) implies that the energy E(t) is non-increasing and a Lya-
pounov function.
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Let us define the Hilbert space H = H1(0, 1)×L2(0, 1) equipped with the
inner product:

(1.9) < (u, v), (w, z) >H=

∫ 1

0

(auxwx +vz)dx+kp,1u(1)w(1)+kp,0u(0)w(0).

We consider the following nonlinear operator:
(1.10)

D(A) =

{

(u, v) ∈ H2(0, 1) ×H1(0, 1) :
(aux)(0) = kp,0u(0) + kv,0f(v(0))

−(aux)(1) = kp,1u(1) + kv,1g(v(1))

}

,

and for all (u, v) ∈ D(A)

(1.11) A(u, v) = (v, (aux)x)

with the initial dataW0 = (y0, y1), the closed-loop system (1.1) can be written
as an evolution equation on H called problem (P)

(1.12)

{

Ẇ (t) = AW (t)
W (0) = W0

where W (t) = (y(., t), yt(., t)).
Throughout this paper, kp,0 and kp,1 are assumed to satisfy the hypothesis

(1.5).
Our main results are stated below.

Theorem 1.1. The operator A : D(A) ⊂ H −→ H defined by (1.10) and
(1.11) generates a C0-semigroup of contractions S(t) on the energy space H.

If kv,0+ kv,1 > 0, then for all initial data (y0, y1) ∈ H, the energy E(t) of
the problem (P) converges to zero as t→ +∞.

Theorem 1.2. Assume that a ∈ H1(0, 1) satisfies (1.2) and the hypothesis
(1.8) holds.

If kv,0+ kv,1 > 0 then we have:

(i) If there exist positive constants C1, C2, C3 and C4 such that for all
x ∈ R

(1.13)
C1 |x| ≤ |f(x)| ≤ C2 |x| ,
C3 |x| ≤ |g(x)| ≤ C4 |x| ,

then given any M > 1, there exists a constant ω > 0 such that

E(t) ≤ME(0)e−ωt, ∀t ≥ 0.

(ii) If there exist positive constants C1, C2, C3 and C4 and (p, q) ∈ [1,+∞[2

with max(p, q) = p ∨ q > 1 such that for all x ∈ R,

(1.14)
C1 min (|x| , |x|

p
) ≤ |f(x)| ≤ C2 |x| ,

C3 min (|x| , |x|q) ≤ |g(x)| ≤ C4 |x| ,
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then given any M > 1, there exists a constant ω > 0 depending on
E(0) such that

E(t) ≤ME(0)(1 + ωt)−
2

(p∨q)−1 , ∀t ≥ 0.

The next section is devoted to the proof of our main results.

2. Proofs of the main results

2.1. Proof of Theorem 1.1.
2.1.1. Proof of the well-posedness. By the Lumer-Phillips theorem, it is

sufficient to prove that A is an m-dissipative operator.
First, for w = (y, z) ∈ D(A), we have Aw = (z, (ayx)x),

〈Aw,w〉H = 〈(z, (ayx)x), (y, z)〉H

=

∫ 1

0

(azxyx + (ayx)xz)dx+ kp,1z(1)y(1) + kp,0z(0)y(0).

Using (1.10), we deduce that

〈Aw,w〉H = −kv,0z(0)f(z(0))− kv,1z(1)g(z(1)),

which implies that A is dissipative.
Next, we show the maximality of A, i. e. for any given (f1, f2) ∈ H, there

exists (u, v) ∈ D(A) such that (I −A) (u, v) = (f1, f2). Equivalently, we seek
u and v satisfying

(2.1)























u− v = f1,

v − (aux)x = f2,

(aux)(0) = kp,0u(0) + kv,0f(v(0)),
−(aux)(1) = kp,1u(1) + kv,1g(v(1)),

u ∈ H2(0, 1), v ∈ H1(0, 1).

Eliminating the unknown v in equation (2.1), we obtain the following reduced
problem

(2.2)















u− (aux)x = f1 + f2 = F ∈ L2(0, 1),
(aux)(0) = kp,0u(0) + kv,0f(u(0)− f1(0)),

−(aux)(1) = kp,1u(1) + kv,1g(u(1)− f1(1)),
u ∈ H2(0, 1).

Now, let us define two functions F0 and F1 by

(2.3) F0(x) = kv,0

∫ x

0

f(s)ds and F1(x) = kv,1

∫ x

0

g(s)ds, ∀x ∈ R.

From the hypothesis (1.8), we deduce that F0 and F1 are two convex functions
such that

(2.4) Fi ∈ C1(R); Fi(s) ≥ 0, ∀s ∈ R, i = 0, 1.
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In turn, let us define the function J(.) on H1(0, 1) by:

J(w) =
1

2

∫ 1

0

(

aw2
x + w2

)

dx−

∫ 1

0

Fwdx +
kp,0

2
w2(0) +

kp,1

2
w2(1)

+F0 (w(0) − f1(0)) + F1 (w(1) − f1(1)) .(2.5)

From (2.4), we deduce that the functional J(.) is convex, coercive and strongly
continuous in the space H1(0, 1). Hence there exists a unique function u ∈
H1(0, 1) such that

J(u) = inf
w∈H1(0,1)

J(w).

This implies that the function λ 7→ J(u + λw) admits a minimum at λ = 0
and thus

d

dλ
[J(u+ λw)] |λ=0 = 0 ∀w ∈ H1(0, 1),

this means that for any w ∈ H1(0, 1), we have
∫ 1

0

uwdx+

∫ 1

0

auxwxdx−

∫ 1

0

Fwdx + kp,0w(0)u(0) + kp,1w(1)u(1)

+kv,0w(0)f(u(0) − f1(0)) + kv,1w(1)g(u(1) − f1(1)) = 0.(2.6)

In particular for any w ∈ C∞
0 (0, 1),

−

∫ 1

0

auxwxdx =

∫ 1

0

[u− F ]wdx,

this implies the Euler-Lagrange equations

(2.7) u− (aux)x = F ∈ L2(0, 1).

Then the H2(0, 1) regularity follows. Integrating equation (2.6) by parts and
using equation (2.7), one obtains

(2.8)
( aux)(0) = kp,0u(0) + kv,0f (u(0) − f1(0)) ,

−(aux)(1) = kp,1u(1) + kv,1g (u(1) − f1(1)) .

Therefore, u is the unique solution of system (2.2). Now, we define an element
(u, v) by u, solution of (2.2), v = u − f1, which satisfies clearly system (2.1)
and thus A is an m-dissipative operator on H.

Remark 2.1. (i) Given (y0, y1) ∈ D(A), we define

w(t) = S(t)(y0, y1) = (y(., t), yt(., t)).

Using the regularity result of Haraux [6], we obtain the following smoothness
results:

y ∈ C(R+;H2(0, 1)) ∩C1(R+;H1(0, 1)) ∩ C2(R+;L2(0, 1)).

(ii) If (y0, y1) ∈ H, then the Problem (P) admits a unique weak solution

(y, yt) = S(t)(y0, y1) ∈ C(R+; H),
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and by using again a result of Haraux [6], one obtains

y ∈ C(R+;H1(0, 1)) ∩ C1(R+;L2(0, 1)).

2.1.2. Proof of the asymptotic stability. We can assume without loss of
generality, that kv,0 > 0 and kv,1 ≥ 0. According to the density of D(A) in H
and the contraction of the semigroup S(t), it is enough to prove Theorem 1.1
for any initial data (y0, y1) ∈ D(A). Let (y0, y1) ∈ D(A), it is clear that
E(t) ≥ 0 for all t ≥ 0, and if we set w = (y, yt) we get

dE(t)

dt
=

〈

w,
dw

dt

〉

H

= 〈w,Aw〉
H

= −kv,0yt(0, t)f(yt(0, t)) − kv,1yt(1, t)g(yt(1, t)) ≤ 0,(2.9)

so, E(t) is a Lyapounov function.
The resolvent of A is compact, and according to Dafermos [5], it follows

that the trajectory O+(y0, y1) = {(y(t), yt(t)), t ≥ 0.} is relatively compact in
E for initial data in D(A). We apply the Lasalle’s invariance principle (see
[7] and [10]) to the ω-limit set

ω(y0, y1) =
{

(z0,z1) ∈ H : (z0,z1) = lim
n→+∞

S(tn)(y0, y1)

where tn → +∞ as n→ +∞
}

of the trajectory O+(y0, y1). Note that

S(t)(y0, y1) → ω(y0, y1) as t→ +∞.

In order to show the asymptotic stability, it is sufficient to prove that the
ω-limit set reduces to {(0, 0)} . For this, first (2.9) implies
(2.10)

E(t) − E(s) +

∫ t

s

[kv,0yt(0, σ)f(yt(0, σ)) + kv,1yt(1, σ)g(yt(1, σ))] dσ = 0.

Second, let (z0, z1) ∈ ω(y0, y1) ⊂ D(A) and let (z(t), zt(t)) be the trajectory
associated with (z0, z1), so according to (2.9) we obtain:

∫ t

s

[kv,0zt(0, σ)f(zt(0, σ)) + kv,1zt(1, σ)g(zt(1, σ))] dσ = 0,

therefore, we deduce from (1.8) that

{

kv,0zt(0, t)f(zt(0, t)) = 0,
kv,1zt(1, t)g(zt(1, t)) = 0

⇒

{

z(0, t) = c = const

kv,1zt(1, t) = 0
∀t ≥ 0.
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Thus ω(y0, y1) is included in the set of all initial data whose associated solution
has constant energy, so z verifies the following system:

(2.11)























ztt (x, t) − (azx)x (x, t) = 0, 0 < x < 1, t > 0,
a(0)zx (0, t) = kp,0c, t > 0,

−a(1)zx (1, t) = kp,1z(1, t), t > 0,
zt (0, t) = 0, t > 0,

(z(0), zt(0)) = (z0, z1) ∈ ω(y0, y1).

First, we prove that c = 0. For this, we consider the function h(x) = 1 +

kp,1

∫ 1

x
ds

a(s) and we multiply the first equation of (2.11) by h and integrate in

x and t. A straightforward computation shows that

(2.12)

[
∫ 1

0

h(x)zt(x, t)dx

]T

0

= − [h(0)kp,0 + kp,1] cT.

The left term of (2.12) is bounded uniformly with respect to T . So, we divide
(2.12) by T and let it goes to infinity, we get c = 0, then (2.11) yields

(2.13)















ztt (x, t) − (azx)x (x, t) = 0, 0 < x < 1, t > 0,
zx (0, t) = 0, t > 0,

−(azx) (1, t) = kp,1z(1, t), t > 0,
z (0, t) = 0, t > 0.

To achieve the proof, we distinguish two cases.
Case kp,1 = 0. (2.13) can be written as follows







ztt (x, t) − (azx)x (x, t) = 0, 0 < x < 1, t > 0,
zx (0, t) = zx(1, t) = 0, t > 0,

z(0, t) = 0, t > 0.

This system has a unique solution z = 0 (see [11]), so, the asymptotic stability
follows for this case.

Case kp,1 > 0. We multiply the first equation of (2.13) by ϕzx and
integrate in x and t. Then one obtains

[
∫ 1

0

ztϕzxdx

]T

0

−
1

2
ϕ(1)

∫ T

0

z2
t (1, t)dt+

1

2

∫ T

0

∫ 1

0

ϕxz
2
t dxdt

=
1

2

∫ T

0

ϕ(1)

a(1)
k2

p,1z
2(1, t)dt−

1

2

∫ T

0

∫ 1

0

a
(ϕ

a

)

x
az2

xdxdt

[
∫ 1

0

ztϕzxdx

]T

0

=
1

2

∫ T

0

ϕ(1)

a(1)
k2

p,1z
2(1, t)dt−

1

2

∫ T

0

∫ 1

0

aϕx
1

a
z2

t dxdt

−
1

2

∫ T

0

∫ 1

0

a
(ϕ

a

)

x
az2

xdxdt +
1

2
ϕ(1)

∫ T

0

z2
t (1, t)dt.
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The function ϕ is chosen so that

ϕ ∈ H1(0, 1), −a(x)ϕx ≥ kp,1, ϕ(1) ≥ 1 and − a
(ϕ

a

)

x
≥ kp,1.

With this choice and (1.2), we obtain

kp,1

2a

[

∫ T

0

[
∫ 1

0

(z2
t + a(x)z2

x)dx + kp,1z
2(1, t)

]

dt

]

+
1

2

∫ T

0

z2
t (1, t)dt

≤

[
∫ 1

0

ztϕzxdx

]T

0

,

which implies that
∫ T

0
E(t)dt ≤ C(E(T ) + E(0)) = 2CE(0),

where C is a positive constant. The energy is constant, so

E(T ) ≤
2

T
CE(0) ∀T > 0,

and then

E(t) = 0 ∀t ≥ 0,

i.e. z ≡ 0 and so zt ≡ 0. Thus ω(y0, y1) = {(0, 0)}. Therefore, the proof of
Theorem 1.1. is complete.

2.2. Proof of Theorem 1.2. We adopt the method used by Conrad and Rao
[4] but in our case we have two nonlinear feedback functions f and g satisfying
more general growth conditions. We introduce the same functional defined in
[4]

ρ(t) = 2

∫ 1

0

ytϕyxdx+ C0

∫ 1

0

ytψdx

where C0 is a positive constant and ψ is the solution of the problem






(aψx)x(x, t) = 0, 0 < x < 1,
ψ(0, t) = y(0, t),
ψ(1, t) = y(1, t).

We verify that the following inequalities hold

∫ 1

0

aψxyxdx =

[
∫ 1

0

a−1(s)ds

]−1

[y(1, t) − y(0, t)]
2
≥ 0,

∫ 1

0

ψ2dx ≤ 5
[

y2(0, t) + y2(1, t)
]

,

similarly,
∫ 1

0

ψ2
t dx ≤ 5

[

y2
t (0, t) + y2

t (1, t)
]

.
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The function ϕ is chosen so that

ϕ ∈ H1(0, 1), ϕx ≥ 1, a
(ϕ

a

)

x
≥ 1, ϕ(0) < 0, ϕ(1) > 0

and
kp,0ϕ(0)a(1) + kp,1ϕ(1)a(0) = 0.

We can show that there exist positive constants K0, K1 and K2 such that for
any t ≥ 0,

(2.14) |ρ(t)| ≤ K0E(t),

(2.15)
ρ′(t) ≤ −E(t) +K1

[

y2
t (0, t) + y2

t (1, t)
]

+K2

[

f2(yt(0, t)) + g2(yt(1, t))
]

.

Given ε > 0, we introduce (see [4]) the perturbed energy by

(2.16) Eε(t) = E(t) + ερ(t) [E(t)]
(p∨q)−1

2 .

In the formula (2.16), the exponent p∨q seems to be new. This together with
the non-increasing of the energy E(t) implies that for any M > 1

(2.17) M−1/2 [Eε(t)]
(p∨q)+1

2 ≤ [E(t)]
(p∨q)+1

2 ≤M1/2 [Eε(t)]
(p∨q)+1

2

with

ε ≤ K−1
0 [E(0)]

1−(p∨q)
2 (1 −M

− 1
(p∨q)+1 ).

Now, we calculate the derivative of the perturbed energy Eε(t).
(2.18)

E′
ε(t) = E′(t) + ε

(p ∨ q) − 1

2
ρ(t)E′(t) [E(t)]

(p∨q)−3
2 + ερ′(t) [E(t)]

(p∨q)−1
2

on the other hand, from (1.13), (1.14) and (2.15), one obtains

(2.19) ρ′(t) ≤ −E(t) +K3y
2
t (0, t) +K4y

2
t (1, t)

where
K3 = K1 +K2C

2
2 and K4 = K1 +K2C

2
4 .

Plugging (1.7), (2.14) and (2.19) into equation (2.18), one obtains

E′
ε(t) ≤

[

−1 + ε
(p ∨ q) − 1

2
K0 [E(0)]

(p∨q)−1
2

]

[kv,0yt(0, t)f(yt(0, t)) + kv,1yt(1, t)g(yt(1, t))](2.20)

+ε [E(t)]
(p∨q)−1

2
[

K3y
2
t (0, t) +K4y

2
t (1, t)

]

− ε [E(t)]
(p∨q)+1

2 .

Now we distinguish the case p ∨ q = 1 and p ∨ q > 1.
(i) Case p ∨ q = 1. In this case (2.20) yields

E′
ε(t) ≤

(

ε
K4

C3
− kv,1

)

yt(1, t)g(yt(1, t))

+

(

ε
K3

C1
− kv,0

)

yt(0, t)f(yt(0, t)) − εE(t).
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If we choose ε ≤ ε0 = min
(

C3kv,1

K4
,

C1kv,0

K3

)

, then from (1.8) and (2.17), the

previous inequality becomes

E′
ε(t) ≤ −εE(t) ≤ −εM−1/2Eε(t).

Now, integrating
E′

ε
(t)

Eε(t) on [0, t], and using (2.17), we get

E(t) ≤ME(0)e−ωt, ∀t ≥ 0,

where ω = εM−1/2, with ε ≤ min
(

ε0,K
−1
0 (1 −M− 1

2 )
)

.

(ii) Case p ∨ q > 1.
If y2

t (1, t) > 1, it follows from hypothesis (1.8) and (1.14) that

(2.21) εK4 [E(t)]
(p∨q)−1

2 y2
t (1, t) ≤

εK4

C3
[E(0)]

(p∨q)−1
2 yt(1, t)g(yt(1, t)).

However, while y2
t (1, t) ≤ 1, by Young’s inequality, we have for any parameter

δ > 0,

εK4 [E(t)]
(p∨q)−1

2 y2
t (1, t) ≤

2ε

(p ∨ q) + 1
(K4δ)

(p∨q)+1
2 |yt(1, t)|

(p∨q)+1

+ε
(p ∨ q) − 1

(p ∨ q) + 1
δ
−

(p∨q)+1
(p∨q)−1 [E(t)]

(p∨q)+1
2 .

Since min(|yt(1, t)| , |yt(1, t)|
q
) = |yt(1, t)|

q
, and p ∨ q ≥ q, we have

|yt(1, t)|
1+(p∨q)

≤ |yt(1, t)|
q
≤

1

C3
yt(1, t)g(yt(1, t)).

This implies that

εK4 [E(t)]
(p∨q)−1

2 y2
t (1, t) ≤

2ε

p ∨ q + 1

(K4δ)
(p∨q)+1

2

C3
yt(1, t)g(yt(1, t))

+ε
(p ∨ q) − 1

(p ∨ q) + 1
δ
−

(p∨q)+1
(p∨q)−1 [E(t)]

(p∨q)+1
2 .(2.22)

Combining (2.21) and (2.22), one has

εK4 [E(t)]
(p∨q)−1

2 y2
t (1, t) ≤ ε

(p ∨ q) − 1

(p ∨ q) + 1
δ
−

(p∨q)+1
(p∨q)−1 [E(t)]

(p∨q)+1
2

+εK5yt(1, t)g(yt(1, t))(2.23)

where K5 = K4

C3
[E(0)]

(p∨q)−1
2 + 2

(p∨q)+1
(K4δ)

(p∨q)+1
2

C3
. Similarly, we can show

that

εK3 [E(t)]
(p∨q)−1

2 y2
t (0, t) ≤ ε

(p ∨ q) − 1

(p ∨ q) + 1
δ
−

(p∨q)+1
(p∨q)−1 [E(t)]

(p∨q)+1
2

+εK6yt(0, t)f(yt(0, t)),(2.24)
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with K6 = K3

C1
[E(0)]

(p∨q)−1
2 + 2

(p∨q)+1
(K3δ)

(p∨q)+1
2

C1
. Inserting (2.23) and (2.24)

into (2.20), we obtain

E′
ε(t)≤ ε

[

2
(p ∨ q) − 1

(p ∨ q) + 1
δ
−

(p∨q)+1
(p∨q)−1 − 1

]

[E(t)]
(p∨q)+1

2

+

[

−kv,0 + εkv,0
(p ∨ q) − 1

2
K0 [E(0)]

(p∨q)−1
2 + εK6

]

yt(0, t)f(yt(0, t))

+

[

−kv,1 + εkv,1
(p ∨ q) − 1

2
K0 [E(0)]

(p∨q)−1
2 + εK5

]

yt(1, t)g(yt(1, t)).

This implies that

(2.25) E′
ε(t) ≤ −µε [E(t)]

(p∨q)+1
2

provided that δ is chosen such that for some µ > 0, 2 (p∨q)−1
(p∨q)+1δ

−
(p∨q)+1
(p∨q)−1 − 1 ≤

−µ < 0, and ε is chosen as follows

−kv,i + ε

[

K6−i + kv,i
(p ∨ q) − 1

2
K0 [E(0)]

(p∨q)−1
2

]

≤ 0,

where i = 0, 1. Combining (2.17) and (2.25), we get

(2.26) E′
ε(t) ≤ −µεM−1/2 [Eε(t)]

(p∨q)+1
2 .

Finally, solving the differential inequality (2.26) and using (2.17), we obtain

E(t) ≤ME(0)(1 + ωt)−
2

(p∨q)−1

with ω = (p∨q)−1
2 µεM

−
p∨q

(p∨q)+1 [E(0)]
(p∨q)−1

2 .

This completes the proof of Theorem 1.2.

Remark 2.2. The result of Theorem 1.2 (ii) remains true if we replace
(1.14) with

(2.27)
C1 |x| ≤ |f(x)| ≤ C2 max

(

|x| , |x|
1
p

)

,

C3 |x| ≤ |g(x)| ≤ C4 max
(

|x| , |x|
1
q

)

,

or with

(2.28)
C1 |x| ≤ |f(x)| ≤ C2 max

(

|x| , |x|
1
p

)

,

C3 min (|x| , |x|
q
) ≤ |g(x)| ≤ C4 |x| ,

where (p, q) ∈ [1,+∞[2 with max(p, q) = p ∨ q > 1.
For the cases (2.27) and (2.28) the energy decay estimates is: given any

M > 1, there exists a constant ω > 0 depending on E(0) such that

E(t) ≤ME(0)(1 + ωt)−
2

(p∨q)−1 , ∀t ≥ 0.
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Université Abdelmalek Essaadi
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