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Abstract. For proving reflexivity of the spaces of de Rham coho-
mology and homology of C∞-manifolds the author considers the notion of
hereditary reflexivity as well as the notion of dual hereditary reflexivity of
locally convex topological vector spaces which is interesting in itself. Com-
plete barrelled nuclear spaces with complete nuclear duals turn out to be
hereditarily reflexive. The Pontryagin duality in locally convex topological
spaces is also considered.

1. Introduction

Let Ωp(M), Ωp
c(M), Ωc

p(M), Ωp(M), p ≥ 0, be the de Rham cochain com-
plex of C∞-differential forms, the de Rham cochain complex ofC∞-differential
forms with compact supports and the de Rham chain complex of C∞-differen-
tial forms with coefficients in Schwartz distributions with compact sup-
ports (currents with compact supports), the de Rham chain complex of
C∞-differential forms with coefficients in Schwartz distributions (currents)
of a C∞-manifold M , respectively.

The locally convex topology on Ωp(M) is the topology of compact con-
vergence for all derivatives, on Ωp

c(M) it is the topology of the strict inductive
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limit lim
→i

Ωp
Ki

of the Fréchet spaces Ωp
Ki

of C∞-differential forms whose sup-

ports are contained in compact subspaces Ki ⊆M such that Ki ⊆ Ki+1 and
∪∞i=1Ki = M , on Ωc

p(M) it is the strong topology on the space of all con-
tinuous linear forms on Ωp(M) and on Ωp(M) it is the strong topology on
the space of all continuous linear forms on Ωp

c(M), respectively. Recall that,
by definition, a Fréchet space is a complete metrizable locally convex space,
shortly denoted by F -space.

These spaces are Montel spaces, i.e., barrelled spaces in which every
bounded set is relatively compact, hence reflexive (for the first time its reflex-
ivity was proved by de Rham in [17] using a different argument), moreover,
(Ωp(M),Ωc

p(M)) and (Ωp
c(M),Ωp(M)) are dual pairs in the strong topologies;

its cohomology and homology Hp(M), Hp
c (M) and Hc

p(M), Hp(M) coincide
with the usual cohomology, the cohomology of second type, the usual homol-
ogy and the homology of second type of the C∞-manifold M , respectively (de
Rham theorem).

In this author’s paper [10] it was shown that these cohomology and ho-
mology of the C∞-manifold M are also Montel spaces and its topologies are
induced by the topologies of cochain and chain spaces, respectively. One ques-
tion remained open: is the strong topology on Hc

p(M) naturally induced by
the topology of Ωc

p(M)? It should not be difficult to give a positive answer to
this question if one can prove that the Montel F -space Ωp(M) and its dual,
the Montel DF -space in the sense of Grothendieck Ωc

p(M) are hereditarily
reflexive. However, for this purpose the mentioned properties are not enough
(there is an example of a Montel F -space whose separated quotient space is
not reflexive and a closed subspace of its strong dual (which is also Montel)
is not reflexive as well [1, c. 278]). Nevertheless, these spaces have additional
properties: they are nuclear in the sense of Grothendieck and its hereditary
reflexivity was already proved in [14]. But Ωp

c(M) and Ωp(M) are also nuclear
spaces. Its hereditary reflexivity remained an unsolved problem ([16, p. 250]).

The purpose of this paper is a general study of the hereditary reflexivity
problem of locally convex topological vector spaces and a proof of the heredi-
tary reflexivity of barrelled dually nuclear and dually complete locally convex
topological vector spaces. In particular, the gap in [10] is removed and a new
proof of natural reflexivity of the de Rham cohomology and homology of a
C∞-manifold M is given. The problem of reflexivity of classical homology
and cohomology spaces is raised. The Pontryagin duality is also considered
in the case of locally convex topological vector spaces.

2. Hereditary reflexivity of locally convex topological vector

spaces

In this paper we consider only separated (i.e., Hausdorff) locally convex
topological vector spaces and we abbreviate this to locally convex topological



ON HEREDITARY REFLEXIVITY 399

vector spaces, if one does not need an additional assumption like a separated
inductive limit, a separated quotient, etc. Let E be a locally convex topo-
logical vector space endowed with a topology ξ. The space E′ of all in ξ
continuous linear forms on E is called the topological dual (or conjugate) of
E (in contrast to the algebraic dual E∗ of E, i.e., the space of all linear forms
on E). By the Hahn-Banach extension theorem for bounded linear forms, the
spaces E and E′ form a dual pair (E,E′), i.e.,

1) for each x 6= 0 in E there is some x′ ∈ E′ with < x, x′ >
def
= x′(x) 6= 0;

2) for each x′ 6= 0 in E′ there is some x ∈ E with < x, x′ > 6= 0.

Recall that a set B in a topological vector space E over the field K (R
or C) is called bounded if it is absorbed by every neighborhood U of the
origin, i.e., there exists some α > 0 such that B ⊆ λU , for all λ ∈ K with
|λ| ≥ α. In E′ there are several distinct topologies which make E′ a locally
convex topological space: the weak topology σ = σ(E′, E), i.e., the topology
of pointwise convergence or the topology of uniform convergence on all finite
sets of E; the compact-open topology or the topology of compact convergence
κ = κ(E′, E), i.e., the topology of uniform convergence on all compact sets of
E; the strong topology β = β(E′, E), i.e., the topology of uniform convergence
on all weakly bounded sets of E. In these cases we shall call E′ the weak
dual, the compact dual and the strong dual of E, respectively, and we shall
denote the space E′, endowed with these topologies, by E′σ, E′κ and E′β ,
respectively. On the space E itself there are also two distinct topologies,
consistent with the duality (E,E′), i.e., the set of all in these topologies
continuous linear forms on E coincides with E′. One of them, the smallest—
the weak topology σ = σ(E,E′), i.e., the topology of uniform convergence
on all finite sets of E′ and the second one, the finest— the Mackey topology
τ = τ(E,E′), i.e., the topology of uniform convergence on all absolutely
convex σ(E′, E)-compact sets in E′ (see in [18, Chapter 1, p. 4]); the space E,
endowed with these topologies, will be denote by Eσ and Eτ , respectively. It
is clear, that σ ≤ ξ ≤ τ , moreover, the original topology ξ = ξ(E,E′) is the
topology of uniform convergence on all equicontinuous sets of E′; if there is no
danger of confusion, we shall denote by E the space in its original topology,
but sometimes we will denote it by Eξ. A space E, for which Eξ = Eτ ,
is usually called a Mackey space. On E there is also the strong topology
β(E,E′), i.e., the topology of uniform convergence on all weakly bounded
sets of E′; it is clear, that τ ≤ β.

By definition, a space E is reflexive in the topology ξ, if its strong bidual

E′′ is just E itself, algebraically as well as topologically, i.e., E′′
def
= (E′β)′β =

E. Actually, one says that the dual pair (E,E′) is reflexive. Clearly, in this
case Eξ = Eτ = Eβ . It is well-known that there are different (but equivalent)
conditions of reflexivity (see, e.g., [19, Chapter IV, Theorem 5.6, p. 145]). We
shall here formulate some suitable conditions.
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Proposition 2.1. A locally convex space E with topology ξ is reflexive if
and only if it is infrabarrelled in the topology ξ and it is quasi-complete in the
weak topology σ(E,E′).

Recall that, by a barrel in E we mean every closed absorbent absolutely
convex set (a set A of a vector space E is called absorbent if for each x ∈ E
there is some λ > 0 such that x ∈ µA, for all µ with |µ| ≥ λ, see [18,
Chapter I, p. 5]; that A is absolutely convex means that A is convex and
balanced, ibid., p. 4). A locally convex topological vector space E is called
infrabarrelled (respectively, barrelled), if every barrel which absorbs bounded
sets (respectively, every barrel) is a neighborhood of the origin. A locally
convex topological vector space E is called quasi-complete if every closed
bounded set in E is complete.

Remark 2.2. Usually in the dual E′ of a locally convex topological space
Eξ one distinguishes the inclusions B′1 ⊆ B′2 ⊆ B′3 ⊆ B′4, where B′1 denotes
the family of all equicontinuous sets, B′2 the family of all sets with weakly
compact closed absolutely convex envelope (see [18, Chapter I, p. 5]), B′3 the
family of all strongly bounded sets, and B′4 the family of all weakly bounded
sets.

There are examples of spaces E for which all these families are different
(see [1, Chapter IV, § 3, Exercise 5]). The equality B′1 = B′2 characterizes
Mackey spaces, the equality B′1 = B′3 characterizes infrabarrelled spaces, the
equality B′1 = B′4 characterizes barrelled spaces; the equality B′2 = B′3 de-
scribes the isomorphism Eτ ⊆ (E′β)′β = E′′; the equality B′2 = B′4 says that

β(E,E′) = τ(E,E′), i.e., the strong topology on E is consistent with duality;
and at last, the equality B′3 = B′4 describes the isomorphism Eβ ⊆ (E′β)′β .
A sufficient condition for the last equality is quasi-completeness of Eξ, this
is why every infrabarrelled and quasi-complete space E is barrelled. In our
definitions, instead of using the term barrelled, we use the term infrabarrelled,
which is here equivalent to barrelled, in order to achieve symmetric formula-
tions: quasi-complete and infra-barrelled. If we denote by B1 ⊆ B2 ⊆ B3 ⊆ B4,
respectively, the family of all equicontinuous sets in E, the family of all sets
in E with weakly compact closed absolutely convex envelope, the family of
all bounded sets in E, then besides statements similar to the ones of above,
the equality B2 = B4 characterizes the weak quasi-completeness of E, more-
over, in this case the family B2 coincides with the family of all relatively
σ(E,E′)-compact sets in E.

Thus, reflective spaces differ from non-reflective spaces by the fact that for
them properties of equicontinuity, relative weak compactness, strong bounded-
ness and weak boundedness are equivalent, for every subset of a strongly dual
space as well as for every subset of the space itself. The inverse statement is
also true.
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Definition 2.3. A locally convex topological vector space E is called
hereditarily reflexive if each of its closed subspaces and each of its separated
quotient spaces are reflexive.

Since quasi-completeness is inherited by closed subspaces and infrabar-
relledness is inherited by separated quotients, taking into account that a closed
subspace in the original topology is also closed in the weak topology, by Propo-
sition 2.1, we obtain the following characterization of hereditary reflexivity.

Proposition 2.4. A locally convex topological vector space E is heredi-
tarily reflexive if and only if each of its closed subspace is infrabarrelled and
each of its separated quotient spaces is quasi-complete in the weak topology.

Definition 2.5. A locally convex topological vector space E is called du-
ally hereditarily reflexive if each of its closed subspaces and each of the closed
subspaces of the strong dual E′ are reflexive.

Clearly, a dually hereditary reflexive space E is hereditarily reflexive and
its strong dual E′ is also hereditarily reflexive. Moreover, in this case there is a
bijection between closed subspaces L ⊆ E and its polars Lo ⊆ E′, and one can
make the following identifications (algebraic and topological) L = (E′β/L

o)′β ,

E/L = (Lo)′β , Lo = (E/L)′β , E′β/L
o = L′β . (Recall that by a polar Lo of a

subspace L in E one understands the set of all x′ in E′ such that < x, x′ >= 0,
for each x in L. Clearly, Lo is a closed subspace in E′ and, if L is a closed
subspace in E, then (Lo)o = L.) Indeed, Lo and E/L form a dual pair
(Lo, E/L). Since the topology of a subspace Lo of E′ is consistent with the
duality (Lo, E/L) (see [19, Chapter IV, § 4, Corollary 3 to Theorem 4.1,
p. 135]) and by assumption, in this topology Lo is reflexive, then the strong
dual E/L is also reflexive. In this case β(E/L,Lo) = τ(E/L,Lo) and the last
assertion follows from the topology τ(E,E′), i.e., it is the quotient topology
of τ(E,E′), and, by the reflexivity of E, τ(E,E′) coincides with β(E,E′).
Proof of the reflexivity of E′/Lo is analogous.

Remark 2.6. It is well-known that, in general, for a closed subspace L in
E the Mackey topology τ(L,E′/Lo) is finer than the topology of a subspace
induced by τ(E,E′) but, as it was already mentioned, it is consistent with the
duality (L,E′/Lo). These topologies coincide if and only if each absolutely
convex set in E′/Lo, which is compact in the weak topology σ(E′/Lo), is
the canonical image of the absolutely convex set of E′, compact in the weak
topology σ(E′, E) (see [1, Chapter IV, § 2, Exercise 5b]). By Remark 2.2,
bounded sets and relatively weakly compact sets of reflexive spaces coincide,
consequently, a dually hereditary reflexive space E and its strong dual E′ have
the following property: every bounded set of the separated quotient space is
the canonical image of a bounded set of the space itself. The inverse statement
is also true.
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Theorem 2.7. A locally convex topological vector space E is dually hered-
itarily reflexive if and only if E and its strong dual E′ have the following
properties: each of their separated quotients is reflexive and every bounded set
of their separated quotients is the canonical image of a bounded set.

Proof. Since the “only if” part was already proved above, we prove the
“if” part. Since E = E/0 and E′ = E′/0 and the assumptions of Theorem 2.7
are trivially fulfilled, E and E′ are reflexive. One has to show that every closed
subspace L in E and its polar Lo in E′ are reflexive. But E′/Lo is reflexive,
moreover, every absolutely convex set in it, which is compact in the weak
topology, being bounded in the weak topology, is the canonical image of a
bounded set in E′, which is also closed in the weak topology and is absolutely
convex. By the reflexivity of E′, it is weakly compact, because it is quasi-
complete. Thus, the topology of the strong dual L of E′/Lo coincides with
the topology of a subspace. Proof of the reflexivity of Lo is analogous.

From the above said we get directly.

Proposition 2.8. A locally convex topological vector space E is dually
hereditarily reflexive if and only if each of its closed subspaces and each closed
subspace of the strong dual E′ are infrabarrelled.

We get immediately that reflexive Banach spaces are dually hereditarily
reflexive, which is well-known (see [1, Chapter IV, § 5, Proposition 1]).

Now we consider one more class of dually hereditarily reflexive spaces. It
is known that any vector space E can be made into a locally convex space by
taking as a base of neighborhoods of the origin the set of all absolutely convex
absorbent sets. This is the finest locally convex topology on E. It is called
the finest locally convex topology and it is usually denoted by ω while a space
E endowed with this topology, is denoted by Eω ; the strong dual of Eω is E∗.

Theorem 2.9. Every vector space endowed with the finest locally convex
topology is dually hereditarily reflexive.

Proof. It is known that every vector space, endowed with the finest
locally convex topology, is a Montel space (see [18, Chapter IV, Supplement
3, p. 54]), consequently, it is reflexive. Really, a Montel space is barrelled by
definition and since each if its closed bounded sets is compact, it is also weakly
compact, and hence complete, i.e., E is quasi-complete in the weak topology
and we can apply Proposition 2.1. Moreover, the dual E∗ endowed with
strong topology β(E∗, E), which coincides in this case with the weak topology
σ(E∗, E), is also a Montel space (see [1, Chapter IV, § 3, Proposition 7]). By
Proposition 2.8, we have to show that every closed subspace L of E and its
polar Lo in E∗ are infrabarrelled.

Recall that if E is a real or complex vector space and K is its scalar
field, then a locally convex topology µ in E is called minimal if its topology



ON HEREDITARY REFLEXIVITY 403

is minimal, i.e., if there exists no strictly coarser separated locally convex
topology on E. If E′ is the dual of E, then µ = σ(E,E′) and E = E′∗. It is
known that a separated locally convex vector space E is minimal if and only
if it is isomorphic to the topological product KI =

∏
i∈I Ki, where Ki = K.

Moreover, every closed subspace of a minimal space is itself a minimal space
and in any separated locally convex space F each minimal subspace E has a
topological complement (see [1, Chapter IV, § 1, Exercise 13]).

It is known that if one endows E∗ with the weak topology σ(E∗, E), which
coincides in our case with β(E∗, E), then E∗σ is isomorphic to some topological
product KI and, as it was said above, it is a minimal space. Moreover,
every subspace of E endowed with topology σ(E,E∗) is closed and has a
topological complement (see [1, Chapter IV, § 1, Exercise 11]). Now let L be
any closed subspace in E. Then, from the above said, L has a weak topological
complement in E. But then its polar Lo in E∗, being a closed subspace, is a
minimal space and also has a topological complement in the strong topology,
which coincides with the weak topology. But E and E∗ are reflexive and
strongly dual to each other. Consequently, L has a topological complement in
the finest locally convex topology on E. But E is barrelled in this topology,
consequently, L = E/L⊥, where L⊥ is a topological complement of L, is also
barrelled and hence infrabarrelled. On the other hand, any closed subspace
Lo in E∗, by minimality of E∗, has a topological complement, consequently,
Lo = E∗/Lo⊥ is also barrelled and hence, infrabarrelled. This completes the
proof of Theorem 2.9.

Corollary 2.10. If E is a minimal space, then it is dually hereditarily
reflexive.

To prove the assertion one has to note that in this case τ(E′, E) =
β(E′, E) and the Mackey topology τ(E′, E) is the finest locally convex topol-
ogy on E′ (see [19, Chapter IV, Exercise 6b, p. 191]).

Corollary 2.11. The singular chain complex Sn(X ;K) and the singular
cochain complex Sn(X ;K) of an arbitrary topological space X with coefficients
in a field K (R or C), endowed with the finest topology and minimal locally
convex topology, respectively, are dually hereditarily reflexive.

For proving the assertion, one has to notice that the singular chain com-
plex Sn(X ;K) =

∑
i∈I Ki and the singular cochain complex Sn(X ;K) =∏

i∈I Ki and (Sn(X ;K))∗ = Sn(X ;K).

Corollary 2.12. The singular homology Hs
n(X ;K) and the singular

cohomology Hn
s (X ;K) of every topological space X with coefficients in a

field K (R or C), endowed with the finest and the minimal locally convex
topologies, respectively, are dual to each other in the strong topologies and
Hs

n(X ;K) =
∑

j∈J Kj and Hn
s (X ;K) =

∏
j∈J Kj. Moreover, these topologies

are naturally induced by topologies on Sn(X ;K) and Sn(X ;K), respectively.
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Proof. If Sn(X ;K) is endowed with the finest locally convex topology,
the linear mapping dn : Sn(X ;K) → Sn−1(X ;K) is continuous and its dual
dn−1 : Sn−1(X ;K) → Sn(X ;K) is continuous in the minimal topology. More-
over, since Bn−1(X ;K) is a closed subspace in Sn−1(X ;K) (recall that every
subspace in the finest locally convex topology is closed), the dual mapping
dn−1 of dn is a homomorphism. Consequently, Bn(X ;K) is a minimal space
and hence it has a topological complement and thus, is itself closed. So, the
linear mapping dn, which is the dual of dn−1, is a weak homomorphism. Since
every equicontinuous set of Sn(X ;K) lying in Bn(X ;K) is the canonical im-
age of an equicontinuous set of Sn−1(X ;K) under the canonical mapping
Sn−1(X ;K) → Bn(X ;K), dn is a homomorphism in the strong topology
(see [1, Chapter IV, § 4, Exercise 3]). Thus, we have shown that topologies
on the set of singular (co)chains coincide, if they are the quotient topolo-
gies (co)chains modulo (co)cycles and if one considers them as topologies
of subspaces. Further, since the singular cycles Zn(X ;K) and the singular
coboundaries Bn(X ;K) are polars to each other and the singular bound-
aries Bn(X ;K) and the singular cocycles Zn(X ;K) are polars to each other
and Sn(X ;K) and Sn(X ;K) are dually hereditarily reflexive, Zn(X ;K) is
the strong dual of Sn(X ;K)/Bn(X ;K) and Bn(X ;K) is the strong dual of
Sn(X ;K)/Zn(X ;K), in addition, the former is the finest topology and the
latter is the minimal topology. Moreover, Zn(X ;K) is itself dually hereditarily
reflexive, consequently, Hn(X ;K) = Zn(X ;K)/Bn(X ;K) is the strong dual
of Hn(X ;K) = ker(Sn(X ;K)/Bn(X ;K) → Sn(X ;K)/Zn(X ;K)). Analo-
gously, Hn(X ;K) = Zn(X ;K)/Bn(X ;K) is the strong dual of Hn(X ;K) =
ker(Sn(X ;K)/Bn(X ;K) → Sn(X ;K)/Zn(X ;K)). In both cases the homolo-
gies are endowed with the finest topology induced by the topology of the sin-
gular chains and the cohomologies are endowed with the minimal topology
induced by the topology of the singular cochains. We immediately conclude
that Hs

n(X ;K) =
∑

j∈J Kj and Hn
s (X ;K) =

∏
j∈J Kj. This completes the

proof of Corollary 2.12.

Corollary 2.13. The Massey cochain complex Cn(X ;K) and the chain
complex Cn(X ;K) of any locally compact Hausdorff topological space X with
coefficients in the field K (R or C), endowed with the finest and minimal
locally convex topologies, respectively, are dually hereditarily reflexive.

Proof. The proof is analogous since Cn(X ;K) =
∑

i∈I Ki, Cn(X ;K) =∏
i∈I Ki and (Cn(X ;K))∗ = Cn(X ;K).

Corollary 2.14. The Massey cohomology spaces Hn(X ;K) and the
Massey homology spaces Hn(X ;K) of any locally compact Hausdorff topologi-
cal space X with coefficients in a field K (R or C), endowed with the finest and
the minimal locally convex topologies, respectively, are dual to each other in the
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strong topologies, Hn(X ;K) =
∑

j∈J Kj and Hn(X ;K) =
∏

j∈J Kj. More-

over, these topologies are naturally induced by the topologies on Cn(X ;K) and
Cn(X ;K), respectively.

Proof. Proof is analogous to the proof of Corollary 2.12.

Now let X = (Xλ, pλλ′ ,Λ) be an inverse system of topological spaces
and continuous mappings over a partially ordered directed set Λ and let
Sn(X ;K) = (Sn(Xλ;K), p∗λλ′ ,Λ) and Sn(X ;K) = (Sn(Xλ), p∗λλ′ ,Λ) be the
inverse and the direct systems of singular chains and singular cochains with
coefficients in the field K (R or C), respectively. Denote by Λm the set of all
increasing (m+1)-tuples λ = (λ0, ..., λm), m ≥ 0, where λi ∈ Λ, i = 0, 1, ...,m,
and λ0 ≤ λ1 ≤ ... ≤ λm. Then the homotopy inverse limit

(2.1) C̄n(X ;K) = ((ho lim
←λ

S∗(X;K)))n =

∞∏

m=0

∏

λ∈Λm

Sn+m(Xλ0
;K)

and the homotopy direct limit

(2.2) C̄n(X;K) = ((ho lim
→λ

S∗(X ;K)))n =

∞∑

m=0

∑

λ∈Λm

Sn+m(Xλ0
;K),

endowed with the projective and the injective topologies, respectively, are
reflexive and are strongly dual to each other, because they are, respectively,
the topological product and the topological sum of reflexive spaces dual to
each other (see [19, Chapter IV, § 5, 5.8, p. 146]).

The differential operator d̄n : C̄n(X ;K) → C̄n−1(X;K) is defined in the
following way:

(2.3) (d̄nx)λ = dn(xλ),m = 0,

(2.4)

(d̄nx)λ = (−1)mdn+m(xλ)+p∗λ0λ1
xλ1...λm

+

m∑

j=1

(−1)jxλ0...λj−1λj+1...λm
,m ≥ 1;

and the differential operator d̄n : C̄n(X;K) → C̄n+1(X;K) is defined as

(d̄nx)λ = (−1)mdn+m(xλ) +
∑

λ≤λ0

p∗λλ0
xλλ0...λm

+
∑

λ0≤λ≤λm

(−1)jxλ0...λj−1λλj ...λm
+

∑

λm≤λ

xλ0...λmλ,m ≥ 0.(2.5)

In [8] it was shown that these linear mappings dn and dn are dual and,
consequently, continuous (see [19, Chapter IV, 7.4, p. 158]).

Question 2.1. Are the reflexive spaces C̄n(X;K) and C̄n(X ;K) heredi-
tarily reflexive?
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We shall see below that every separated quotient space of C̄n(X ;K) and
every closed subspace in C̄n(X;K) are reflexive. The question, whether every
closed subspace in C̄n(X ;K) and every separated quotient space of C̄n(X ;K)
are reflexive, is open.

There is a real difficulty, because the topological product of finest topolo-
gies does not need to be the finest locally convex topology and the topological
sum of minimal topologies need not be minimal. But even after a positive
answer, the following question remains open.

Question 2.2. Are homologies Hn(C∗(X ;K)) and cohomologies
Hn(C∗(X;K)) reflexive and dual to each other? If yes, do they inherit topolo-
gies of their (co)chains?

To prove this one has to show that the continuous linear mappings dn

and dn are homomorphisms, for which it suffices to show that B̄n(X;K) and
B̄n(X ;K) are closed in their subspace topologies.

Analogous questions arises in the dual situation. If we denote by X =
(Xλ, iλλ′ ,Λ) a direct system of compact Hausdorff topological spaces and
continuous mappings over Λ and by C̄n(X ;K) = (Cn(Xλ;K), i∗λλ′ ,Λ) and
C̄n(X;K) = (Cn(Xλ;K), i∗λλ′ ,Λ) the inverse and the direct systems of the
Massey cochains and the Massey chains with coefficients in the field K (R or
C), respectively, then the homotopical inverse limit

(2.6) C̄n(X ;K) = ((ho lim
←λ

C∗(X ;K)))n =

∞∏

m=0

∏

λ∈Λm

Cn−m(Xλ0
;K)

and the homotopical direct limit

(2.7) C̄n(X;K) = ((ho lim
→λ

C∗(X;K)))n =

∞∑

m=0

∑

λ∈Λm

Cn−m(Xλ0
;K),

endowed with the projective and the injective topologies, respectively, are
reflexive and strongly dual to each other. The differential operators in these
complexes are defined in the same way as above and they are continuous in
the corresponding topologies.

If for any topological space X we consider an ANR-resolution in the sense
of Mardešić ([12]), then the first construction defines the strong homology
H̄n(X ;K) (for the theory of strong homology see [12]) and Čech cohomology
Ȟn(X ;K) of X with coefficients in a field K; if one considers the direct sys-
tem of all compact Hausdorff subsets in X , the second construction presents
classical homology with compact supports Hc

n(X ;K) and the strong coho-
mology H̄n(X ;K) of X (for the theory of strong cohomology see [9]) with
coefficients in a field K. Thus all questions which arose concern the topolog-
ical vector space structures of classical (co)homologies of topological spaces
with coefficients in the field K (R or C).
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My student Volodya Marchenko gave a positive answer to the second ques-
tion in the case of inverse sequences X = (Xi, pii+1,N) (he studied reflexivity
of the Čech homology and cohomology of metric compacta [11]).

The class of spaces considered above is a subclass of Montel spaces and as
we have already seen, reflective spaces. Nevertheless, even a Montel F -space
can have a non-reflexive separated quotient. There is an example of a Montel
F -space E and its closed subspace L such that E/L = l1, where l1 is Banach
space of absolutely summable sequences of real numbers, which is not weakly
quasi-complete. So the polar Lo in the strongly dual DF -space E′ is not
infrabarrelled, consequently, it is not reflexive (see [1, Chapter V, § 5, Exercise
21]). In the next section we consider one more subclass of Montel spaces,
which consists of dually hereditarily reflective spaces.

3. On hereditary reflexivity of nuclear locally convex spaces

The definition of a nuclear space is rather complicated and belongs to
A. Grothendieck [4]. However, the class of nuclear locally convex topological
vector spaces has a number of remarkable properties and, by its significance
in Functional Analysis takes the same place as the class of normed spaces.
If one takes into account that the intersection of these two classes is trivial,
i.e., it coincides with finite dimensional vector spaces, which have a unique
locally convex topological structure, then the properties of nuclear locally con-
vex topological spaces, in some sense, are complementary to the properties of
normed spaces. The most important for us here is that every bounded subset
of a nuclear space is precompact. Second, that nuclearity is inherited by any
closed subspace as well as by every separated quotient space. Third, that ev-
ery complete nuclear space is an inverse limit of Hilbert spaces, endowed with
projective topology. Crucial for our problems will be the property of complete
nuclear spaces that the canonical mapping of a complete nuclear space E to
its separated quotient E/L transfers the family of all bounded sets to the base
of all bounded sets in E/L. Some authors (A. Pietsch [14]) tried to avoid the
original Grothendieck definition of nuclear spaces via techniques of topolog-
ical tensor products based at the study of absolutely summable mappings.
Although for our purposes the above mentioned properties of nuclear spaces
suffice, we shall give minimal data reductions (from [19, Chapter III, § 6 and
§ 7, p. 92–106]) concerning their structure because of the importance of the
de Rham (co)chains we study here.

Recall the definition of the topological tensor product of locally convex
vector spaces E and F over the same field K (as above, K = R or C). Let E,
F be vector spaces over K and let B(E,F ) be the vector space of all bilinear
forms on E × F . For each pair (x, y) ∈ E × F , the mapping f 7→ f(x, y)
is a linear form on B(E,F ) and hence an element ux,y of the algebraic dual
B(E,F )∗. Clearly, the mapping ϕ : (x, y) 7→ ux,y of the product E × F to
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B(E,F )∗ is bilinear. The linear envelope of the set ϕ(E × F ) in B(E,F )∗ is
denoted by E ⊗ F and is called the tensor product of E and F ; ϕ is called
the canonical bilinear mapping of E × F to E ⊗ F . Every element u ∈ E ×F
admits the following representation u =

∑
i

xi ⊗ yi. This representation u

is not unique but one can assume that both sets {xi} and {yi} are linearly
independent and consist of r ≥ 0 elements. This number r is uniquely defined
by u and is called the rank of u. The finest topology on E ⊗ F , for which
the canonical mapping ϕ is continuous, is called the projective topology of the
tensor product. Such topology always exists; it is always separated and locally
convex. In most cases the tensor product with the projective topology is an
incomplete space. Denote by E⊗̃F the completion of the tensor product with
the projective topology.

Now we need the definition of a nuclear mapping of locally convex topo-
logical vector spaces. For our purposes we restrict ourselves to a simpler
definition of a nuclear mapping f : E → F of Banach spaces E and F . Let
L(E,F ) be the vector space of all linear continuous mappings endowed with
the normed topology. This space is complete. Now let E′ be the strong dual
of a Banach space E. Every element v ∈ E′ ⊗ F defines a linear mapping

u ∈ L(E,F ). To be exact, if v =
r∑

i=1

fi ⊗ yi, then x 7→ u(x) =
r∑

i=1

fi(x)yi and

the mapping v 7→ u is even an algebraic isomorphism of E′ ⊗ F in L(E,F ).
Moreover, this embedding is continuous in the projective topology on E ⊗ F
and the strong (i.e., normed) topology on L(E,F ). Since the latter is com-
plete, the mapping v 7→ u has a continuous extension π on E⊗̃F with values in
L(E,F ). Linear mappings containing in the image of π are called nuclear. We
need the following Proposition (see [19, Chapter III, Proposition 7.1, p. 99]).

Proposition 3.1. A linear mapping u ∈ L(E,F ) is nuclear if and only
if it is of the form

(3.1) x 7→ u(x) =

∞∑

i=1

λifi(x)yi,

where
∞∑

i=1

|λi| < +∞, {fi} is an equicontinuous sequence in E′, and {yi} is a

sequence contained in an absolutely convex bounded set B ⊆ F .

Now let E be a locally convex topological vector space and {Uα, α ∈ A} be
a base of absolutely convex neighborhoods of the origin in E. The set A can be
ordered by putting α ≤ α′ whenever Uα′ ⊆ Uα. Denote by qα, the Minkowski
functional of a neighborhood Uα, given by the formula qα(x) = inf{µ > 0 :
x ∈ µUα}, x ∈ E. Since Uα is a neighborhood of the origin, qα : E → R

is a continuous mapping and Vα = q−1
α (0) is a closed subspace in E. Put

Eα = E/Vα, and denote by pα, the canonical mapping of E onto Eα. If xα
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is an equivalent class x ∈ E mod Vα, then xα 7→ ||xα|| = qα(x) is a norm
on Eα, which induces a topology coarser than the quotient topology on E/Vα,
consequently, pα : E → Eα is continuous. If α ≤ α′, then each equivalence
class xα′ mod Vα′ is contained in a unique equivalence class xα mod Vα,
because Vα′ ⊆ Vα. The mapping pαα′ : xα′ 7→ xα is linear and continuous,
because ||xα|| ≤ ||xα′ ||, which is called the canonical mapping of Eα′ to Eα.
Moreover, for every α ≤ α′ ≤ α′′, we have the equality pαα′pα′α′′ = pαα′′ , and
for each α ∈ A, evidently, pαα = 1Eα

.
The inverse limit F = lim

←α
(Eα, pαα′ , A) endowed with the projective

topology is a separated locally convex topological vector space, everywhere
dense in F = lim

←α
(Eα, pαα′ , A), where Eα is the completion of the normed

space Eα, and pαα′ : Eα′ → Eα is a continuous extension of the map-
ping pαα′ : Eα′ → Eα, α ≤ α′. If E is a complete space, then E =
lim
←α

(Eα, pαα′ , A) = lim
←α

(Eα, pαα′ , A). If E is not complete, then its completion

is E = lim
←α

(Eα, pαα′ , A).

Definition 3.2. A locally convex topological vector space E is called nu-
clear, if for each of its absolutely convex neighborhoods Uα of the origin there
exists an absolutely convex neighborhood Uα′ of the origin, α ≤ α′, such that
the canonical mapping of Banach spaces pαα′ : Eα′ → Eα is nuclear.

Examples of nuclear spaces are (see, e.g., [19, Chapter III, § 8, p. 106–
108; or [14], Chapter 6]): minimal spaces KI ; the space DF (Rn), n ≥ 1, of
all real (or complex) valued infinitely differentiable functions on Rn, whose
supports are contained in a compact subset F , endowed with the topology
of uniform convergence of every derivative; the space D(Rn), n ≥ 1, which
is a union of all DF (Rn), where F runs over the family of all compact sub-
sets in Rn), endowed with the strict inductive limit of topologies in DF (Rn),
n ≥ 1; the space E(Rn), n ≥ 1, of all real (or complex) infinitely differentiable
functions on Rn, endowed with the topology of compact convergence for all
derivatives; the space H(D) of all functions holomorphic on a domain D in
the complex plane, endowed with the topology of compact convergence; the
space of Schwartz distributions D′(Rn), endowed with the strong topology;
the spaces of Schwartz distributions with compact supports E ′(Rn), endowed
with the strong topology; the space H′(D), endowed with the strong topology;
spaces Ωp(M), Ωp

c(M), Ωc
p(M), Ωp(M), p ≥ 0, mentioned in the Introduc-

tion and many others (e.g., Köthe gestufter Raum or ladder space with some
additional properties, see [19, Chapter III, Exercise 25, p. 120–121]).

From Proposition 3.1 and Definition 3.2 one obtains immediately the fol-
lowing properties of nuclear mappings and nuclear spaces.

Proposition 3.3. Every nuclear mapping is compact, i.e., there exists
a neighborhood of the origin, whose image under this mapping is relatively
compact.
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Proposition 3.4. Every bounded subset of a nuclear space is precompact.

Proposition 3.5. Every complete nuclear space E is isomorphic to the
projective limit of some family (cardinality of A) of Hilbert spaces, i.e., E =
lim
←α

(Eα, pαα′ , A), where Eα is a Hilbert space. Moreover, for each α ≤ α′, the

mapping pαα′ : Eα′ → Eα is nuclear.

The latter statement follows from the well-known fact that the composi-
tion of a nuclear mapping with a linear continuous mapping (and vice versa)
is nuclear (see [19, Chapter III, Corollary 2 to 7.1, p. 100]).

Proposition 3.6. Every subspace and every separated quotient space of
a nuclear space is nuclear. The topological product of an arbitrary family of
nuclear spaces is nuclear and the topological sum of countably many nuclear
spaces is a nuclear space. Moreover, the projective limit of any family of
nuclear spaces and the inductive limit of a sequence of nuclear spaces are
nuclear.

For a proof see [19, Chapter III, Theorem 7.4 and its Corollary, p. 103].
For nuclear spaces Propositions 2.1 and 2.4 are more symmetric.

Proposition 3.7. A nuclear space E with the topology ξ is reflexive if
and only if E is infrabarrelled and quasi-complete in ξ.

Proof. Necessity follows immediately from Proposition 2.1, because a
space, which is quasi-complete in the weak topology, is quasi-complete in any
finer topology, in particular, in ξ. On the other hand, every space, which
is nuclear and quasi-complete in ξ, is quasi-complete in the weak topology,
because the closure of any bounded set is compact, consequently, it is compact
in the weak topology and hence it is complete.

Proposition 3.8. A nuclear space E is hereditarily reflexive if and only if
each of its closed subspaces is infrabarrelled and each of its separated quotients
is quasi-complete.

The property of all bounded sets of separated quotients, we used in Theo-
rem 2.9, is crucial for us. These properties are fulfilled in every Banach space,
more general, in any DF -space in the sense of Grothendieck [5].

Theorem 3.9. Every bounded set in the separated quotient E/L of a
complete nuclear space E is the canonical image of a bounded set in E.

Proof. Let F = E/L be the separated quotient space and let ϕ : E → F
be the canonical mapping. Further, let B be a bounded set in F . We shall
show that there exists a bounded set C in E such that ϕ(C) = B.

Represent, by Proposition 3.5, the complete nuclear space E as an inverse

limit lim
←α

(Eα, pαα′ , A) of Hilbert spaces Eα = ˜(E/Uα), endowed with the
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projective topology, where {Uα, α ∈ A} is for this purpose an appropriate
base of convex neighborhoods of the origin in E, and pαα′ , α ≤ α′, are nuclear
mappings. Denote by pα : E → Eα the corresponding projection, for each
α ∈ A. Then {Vα = ϕ(Uα), α ∈ A} will be a base of convex neighborhoods
of the origin in E/L with the same property. Indeed, we can identify Fα =
˜(F/Vα) with the quotient Eα/Lα, where Lα is the closure in Eα of the set
pα(L) (see [19, Chapter III, Exercise 3, p. 116]). Since Eα is a Hilbert space,
consider its decomposition in the topological sum Eα = Lα ⊕ L⊥α , where
L⊥α is the orthogonal complement of Lα in Eα. Thus, Fα can be identified
with L⊥α , and F is everywhere dense in the projective topology of the inverse
limit F = lim

←α
(L⊥α , qαα′ , A), where the mapping qαα′ : L⊥α′ → L⊥α , α ≤ α′,

is induced by the nuclear mapping pαα′ : Eα′ → Eα and it is itself nuclear.

Really, by Proposition 3.1, pαα′ has a form
∞∑

i=1

λifi(x)yi, where x ∈ Eα′ ,

yi ∈ Eα, fi ∈ (Eα′ )′. Since the strong dual (Eα′)′ of Eα′ is also a Hilbert
space, there are a decomposition fi = f1

i +f2
i in (Eα′)′ = (Lα′)′⊕(L⊥α′)′ and a

decomposition yi = y1
i +y2

i in Eα = Lα⊕L
⊥
α such that f1

i (L⊥α′) = f2
i (Lα′) = 0.

Then the linear mapping qαα′ , α ≤ α, has the form
∞∑

i=1

λif
2
i (x)y2

i , where

x ∈ L⊥α′ (see details in [19, Chapter III, Theorem 7.4, p. 103–105]).
Therefore, by completeness of E, the space F can be identified with a

subset in E but, in general, not with a subspace with the topology induced
by E. We denote this bijection by ψ : F → ψ(F ) ⊂ E. If B is bounded in F ,
then, for each α ∈ A, the set qα(B) is bounded in Fα = L⊥α and hence, it
is bounded in Eα. But then the set C = ψ(B), having bounded projections
pα(C) = qα(B), for each α ∈ A, is bounded. By construction, ϕ(C) = B.
This completes the proof of Theorem 3.9.

Remark 3.10. If ψ(F ) is topologically identified with F , then it is a
topological complement of L in E, thus, E/L is a complete space (for example,
when E = KI). We shall see below that E/L can be incomplete, but even if it
is a complete space, one cannot, in general, identify it with a subspace of E. It
is known (see [19, Chapter IV, Exercise 12a, p. 192–193]) that in the complete
nuclear space DG there is a closed subspace L such that (DG)/L = KI . If L
had a topological complement equal to KI , then on the latter there should
be a continuous norm (because such norm exists in DG), but this is not true,
because there is no continuous norm on KI (see [19, Chapter IV, Exercise 6b,
p. 191]).

Remark 3.11. Actually, a more general statement of Theorem 3.9 is
valid: If E is represented as an inverse limit of spaces Eλ, endowed with
the projective topology such that each closed subspace of Eλ, λ ∈ Λ, has
a topological complement, then every bounded set in the separated quotient
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E/L of the spaceE is the canonical image of a bounded set in E. In particular,
this is true for spaces E, which are represented as inverse systems of spaces
Eλ endowed with finest locally convex topologies; or when E is the topological
product of Hilbert spaces and for closed subspaces of E.

As a Corollary of Theorem 3.9 we obtain the following propositions.

Proposition 3.12. A complete barrelled nuclear space is dually heredi-
tarily reflexive if and only if it is hereditarily reflexive.

Proof. One has only to prove sufficiency. Let L be any closed subspace
of E. It is reflexive by assumption. We shall prove that Lo is also reflexive. We
need to show that Lo is infrabarrelled. Since E/L is reflexive by assumption,
its strong dual Lo with the Mackey topology τ(Lo, E/L) is reflexive and thus,
infrabarrelled. It remains to show that the topology τ(Lo, E/L) coincides
with the topology of a subspace Lo in E′. By Remark 2.6, for this purpose it
is sufficient to see that every absolute convex set in E/L, which is compact in
the weak topology σ(E/L,Lo), is the canonical mapping of an absolute convex
set in E, which is compact in the weak topology σ(E,E′). Since E and E/L
are reflexive, and by Remark 2.2, for reflexive spaces the properties of being
weakly bounded, bounded and being relatively weakly compact coincide, we
apply Theorem 3.9 to any absolute convex set B in E/L, which is weakly
compact and hence weakly bounded, and we find a bounded set C in E,
whose canonical image is the set B. Take now the closed absolute convex
envelope C of the closure C̄ in E, which is compact, because E is complete
(see [19, Chapter IV, § 11, Theorem 11.4, p. 189]). Evidently, it is mapped
onto B.

Proposition 3.13. A complete barrelled nuclear space E, which has a
complete nuclear strongly dual space E′, is dually hereditarily reflexive if and
only if for every closed subspace L in E the quotient spaces E/L and E′/Lo

are reflexive.

Proof. One has to prove only sufficiency (necessity has been already
shown above). For this purpose it is enough to show that L and Lo are
infrabarrelled. One can show it as in the proof of Proposition 3.12, because,
by assumption, E′ is also complete and nuclear. E′ is also barrelled, because
E/0 is reflexive by assumption.

The main result of this section is the following.

Theorem 3.14. Every complete barrelled nuclear space E, whose strong
dual E′ is complete and nuclear, is dually hereditarily reflexive.

Proof. By Theorem 3.9 and Proposition 3.6, it is enough to show that,
for every closed subspace L of E, the quotients E/L and E′/Lo are quasi-
complete. Note that they are barrelled, because barrelledness is inherited by
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separated quotients. From Proposition 3.6 we obtain that E is reflexive. Con-
sequently, its strongly dual space E′ is also reflexive and hence barrelled. Let
B be a closed bounded set in E/L, which, by Proposition 3.4, is precompact.
We shall prove that B is compact in E/L and thus, complete. Since B is the
canonical image of a bounded set of C, which is actually closed in E, and by
completeness of E and by Proposition 3.4, it is compact. Consequently, B is
also compact and thus, complete. So, E/L is quasi-complete.

Proof of quasi-completeness of E′/Lo is analogous, becauseE′ is barrelled.

Corollary 3.15. The spaces DF (Rn), D(Rn), E(Rn), H(D), D′(Rn),
E ′(Rn), H′(D), Ωp(M), Ωp

c(M), Ωc
p(M), Ωp(M), p ≥ 0, n ≥ 1 are dually

hereditarily reflexive.

Remark 3.16. In [20] a closed subspace L in the complete barrelled
nuclear space D(R1) = lim

→n
D[−n,n](R

1) is exhibited, which is not bornological

(in other terminology, boundedly closed space, i.e., if every convex set in E
absorbing all bounded sets is a neighborhood of the origin in E). On the
other hand, the strict inductive limit lim

→n
L ∩ D[−n,n](R

1) is bornological (see

[19, Chapter 2, Corollary 2 to Proposition 8.2, p. 62]). Thus, there are two
different reflexive topologies on L: the first one is the topology of a subspace
L of E and the second one is the topology of the strict inductive limit. For
the first topology, the strongly dual E′/Lo is quasi-complete but incomplete

and, for the second topology, the strongly dual is the completion ˜(E′/Lo)
of E′/Lo. This example shows that there exist incomplete reflexive spaces,
precisely E′/Lo (first example of an incomplete reflexive space was given in
[7]). Since topology of the strict inductive limit is finer than the topology of
a subspace on L, the identity mapping L → L is continuous but it is not an
isomorphism and the inverse mapping with a closed graph is not continuous.
This is one more example showing that the Closed graph theorem for the strict
inductive limit of F -spaces as well as the Open mapping theorem cannot be
improved by supposing merely barrelledness of another space (see details in
[18, Chapter VI, Supplement 1, p. 123–124]). This example, as is was pointed
out by D. A. Raykov (see [16, Appendix 2, p. 249]), shows that D′(R1) is not
fully complete (for the definition of a fully complete space see [18, Chapter VI,
§ 2, p. 111]). We have shown a stronger result that this space is not hereditarily
complete (it is a negative answer to Raykov’s question). Analogous questions
are open for the space D(R1) itself.

A positive answer to the following problem would generalize Theo-
rem 3.14.

Problem 3.1. Let E be a quasi-complete infrabarrelled nuclear space,
whose strong dual E′ is nuclear. Is E dually hereditarily reflexive?



414 JU. T. LISICA

It should be enough to prove Theorem 3.9 replacing the assumption of
completeness by the assumption of quasi-completeness. On the other hand,
the positive solution of this Problem will make all the above spaces strongly
hereditarily reflexive, i.e., every separated quotient space of such a space is
itself hereditarily reflexive (hereditary reflexivity of closed subspaces is evi-
dent).

4. Reflexivity of the de Rham cohomology and homology

The hereditary reflexivity of the de Rham cochains and chains (currents)
of C∞-manifolds has been shown above. For proving a natural reflexivity of
the corresponding de Rham cohomology and homology, i.e., a reflexivity which
is a consequence of the reflexivity of cochains and chains, one has to show, first
of all, that coboundaries Bn(M), Bn

c (M) and boundaries Bn(M), Bc
n(M) are

closed subspaces of Ωn(M), Ωn
c (M) and Ωn(M), Ωc

n(M), respectively. Co-
cycles Zn(M), Zn

c (M) and cycles Zn(M), Zc
n(M) are automatically closed,

because the differential operators dn : Ωn(M) → Ωn+1(M), dn
c : Ωn

c (M) →
Ωn+1

c (M) and dn : Ωn(M) → Ωn−1(M), dc
n : Ωc

n(M) → Ωc
n−1(M) are contin-

uous (see [17, Chapter III, § 11]). Closedness of coboundaries and boundaries
is a consequence of a rather non-trivial and fine de Rham theorem saying that
Bn(M), Bn

c (M) and Bn(M), Bc
n(M) are polars of cycles and cocycles Zc

n(M),
Zn(M) and Zn

c (M), Zn(M), respectively, (see [17, Chapter IV, § 18, Theo-
rems 14, 17, 17’, 18]). The fact that cycles and cocycles Zc

n(M), Zn(M) and
Zn

c (M), Zn(M) are polars of coboundaries and boundaries Bn(M), Bn
c (M)

and Bn(M), Bc
n(M), respectively, is a simple consequence of the facts that

polars in Ωn(M), Ωn
c (M) and Ωn(M), Ωc

n(M) are null-subspaces and that dc
n,

dn and dn, dn
c are dual, respectively.

Secondly, since coboundaries and boundariesBn(M), Bn
c (M) andBn(M),

Bc
n(M) have two topologies: the quotient topology and the topology of a sub-

space in Ωn(M), Ωn
c (M) Ωn(M), Ωc

n(M), respectively, one has to show that
these topologies coincide, in other words, one has to show that the differen-
tials dn, dn

c and dn, dc
n are homomorphisms in the strong topologies. This is

an immediately consequence of the following theorem.

Theorem 4.1. Let f : E → F be a weak homomorphism of complete
barrelled nuclear spaces with complete nuclear strongly dual spaces E′ and F ′

such that f(E) is closed in F . Then f is a strong homomorphism and its dual
mapping f ′ : F ′ → E′ is also a strong homomorphism.

Proof. From the continuity of f we obtain the continuity of f ′. From
closedness of f(E) in F we obtain that f ′ is a weak homomorphism. Since
f is a homomorphism, the image f ′(F ′) is closed in E′. Put L = kerf and
M = kerf ′. Then, by the hereditary reflexivity of E and F ′, the quotient E/L
is reflexive and Lo is its strong dual (Lo ⊆ E′), besides Lo = f ′(F ′), and F ′/M
is also reflexive and Mo is its strong dual (Mo ⊆ F ), besides Mo = f(E) (see
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[1, Chapter IV, § 4, Corollary to Proposition 2]). We shall prove that f is
a strong homomorphism. It is known that f is a strong homomorphism if
and only if every equicontinuous set in E′, being contained in f ′(F ′), is the
canonical image of an equicontinuous set in F ′ under the canonical mapping
F ′ onto Lo = f ′(F ′) = F ′/M (see [1, Chapter IV, § 4, Exercise 3a]). Since E′

and Lo are reflexive, their equicontinuous sets coincide with weakly bounded
sets in E′ and Lo, respectively. Since the weak topology is inherited under
separated quotients and closed subspaces, and f ′ is a weak homomorphism,
weak bounded sets in Lo are the same in the subspace Lo of E′, and in the
quotient F ′/M . By reflexivity of F ′/M , weakly bounded sets coincide with
strongly bounded sets. Since F ′ is a complete nuclear space, every strongly
bounded set in F ′/M is the canonical image of a strongly bounded set in
F ′ under the canonical mapping F ′ onto F ′/M , which, by reflexivity of F ′,
coincides with an equicontinuous set in F ′. The proof that f ′ is a strong
homomorphism is analogous.

Remark 4.2. Notice, that even for F -spaces E and F , in contrast to the
case of Banach spaces (for which the same property of covering all bounded
sets under canonical mappings onto the quotient spaces holds), in general, a
strong topological homomorphism f : E → F does not guarantee a strong
homomorphism f ′ : F ′ → E′ (see [1, Chapter IV, § 4, Exercise 5b]).

Theorem 4.1 shows that if a complete barrelled nuclear space E with a
complete nuclear strongly dual space E′ is a (co)chain complex, with contin-
uous (co)differentials d : E → E, d2 = 0, and with closed (co)boundaries B,
then, first, E′ is also a (co)chain complex with continuous (co)differentials
d′ : E′ → E′, d′2 = 0, secondly, (co)homologies H = Z/B are correctly
defined with the quotient topology as well as with the topology of a sub-
space, since H = ker(E/B → E/Z). Similarly, for (co)homologies of E′.
This is why one has to prove not only reflexivity of H but also coincidence
of these two topologies on H , or, which is the same, that a natural linear
mapping Z → H ⊆ E/B is a strong homomorphism. Since Z is itself reflex-
ive, as we have shown above, Z/B is reflexive and its strongly dual space is
a closed subspace H ′ of E′/Zo with the induced topology. Similarly, H ′ as
the quotient Z ′/B′ (here ′ does not mean duality but refers to (co)cycles and
(co)boundaries in E′), is reflexive and its strong dual as a closed subspace
of E/B is H . In the general case, we cannot prove coincidence of these two
topologies on H and H ′, but if E coincides with one of the following spaces
Ω∗(M), Ω∗c(M), Ω∗(M), Ωc

∗(M), then their (co)homologies are reflexive and
the two topologies coincide.

Theorem 4.3. The de Rham cohomology Hn(M) and the de Rham coho-
mology with compact supports Hn

c (M) of a C∞-manifold M are reflexive and
their strong duals are the de Rham homology with compact supports Hc

n(M)
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and the de Rham homology Hn(M) of a C∞-manifold M , respectively. More-
over, both topologies induced by the topologies of the corresponding spaces of
(co)chains coincide.

Proof. The spaces Ωn(M) and Ωc
n(M) are complete, barrelled, nu-

clear, and hence reflexive, and they are strong duals of each other (de
Rham theorem). The coboundaries Bn(M) and the boundaries with com-
pact supports Bc

n(M) are closed subspaces of Ωn(M) and Ωc
n(M), respec-

tively, and the subspaces Zn(M), Bn(M) and Bc
n(M), Zc

n(M) are polars to
each other, respectively (de Rham’s result). Since, by Theorem 3.14, Ωn(M)
and Ωc

n(M) are hereditarily reflexive, Zn(M), Bn(M), Ωn(M)/Zn(M),
Ωn(M)/Bn(M) and Zc

n, Bc
n, Ωc

n(M)/Zc
n(M), Ωn(M)c/Bc

n(M) are reflexive
and their strong dual spaces are Ωc

n(M)/Bc
n(M), Ωc

n(M)/Zc
n(M), Bc

n(M),
Zc

n(M) and Ωn(M)/Bn(M), Ωn(M)/Zn(M), Bn(M), Zn(M), respectively.
The spaces Zn(M) and Zc

n(M) are themselves complete, barrelled and nu-
clear, but, in general, their strong duals can be incomplete, therefore,
we can state only a reflexivity (not hereditary reflexivity) of quotients
Hn(M) = Zn(M)/Bn(M) and Hc

n(M) = Zc
n(M)/Bc

n(M) and their strongly
dual spaces are Hc

n(M) = ker(Ωc
n(M)/Bc

n(M) → Ωc
n(M)/Zc

n(M)) and
Hn(M) = ker(Ωn(M)/Bn(M) → Ωn(M)/Zn(M)), respectively. Since the
de Rham cohomology Hn(M) coincides (up to an isomorphism) with the
singular cohomology Hn

s (M ; R) and the de Rham homology with compact
supports Hc

n(M) coincides with the singular homology Hs
n(M ; R), as we have

seen above, it is the minimal space and Hc
n(M) is endowed with the finest

locally convex topology. Moreover, σ(Hn(M), Hc
n(M)) = τ(Hn(M), Hc

n(M))
and β(Hc

n(M), Hn(M)) = ω(Hn(M), Hc
n(M)). Therefore, two topologies on

Hn(M) are consistent with duality (Hn(M), Hc
n(M)), and they are Mackey

spaces and their strong topologies on the dual spaces will be the finest, con-
sequently, they coincide on Hc

n(M).
Proof of a natural reflexivity of Hn

c (M) and Hn(M) is analogous, because
Hn(M), n ≥ 0, are minimal spaces.

5. “Pontryagin duality” in locally convex topological vector

spaces

It is known (see [1, Chapter IV, § 3, Exercise 1c]) that whenever E is
an infrabarrelled space, then the strong topology on E′ coincides with the
topology of compact convergence if and only if E is a Montel space (because
the closure of every bounded set is compact). Therefore, for Montel space E,
not only the identities E = (E′β)′β and E′ = ((E′)′β)′β hold but also E = (E′κ)′κ
and E′ = ((E′)′κ)′κ, because E′ is a Montel space too (see [1, Chapter, § 3,
Proposition 7]). In this case one says that there is a “Pontryagin duality”
between E and E′ (see [1, p. 250]). This terminology goes back to the famous
Pontryagin duality between locally compact Hausdorff groups G and their
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character groups Γ, i.e., the groups of all continuous homomorphisms Γ =
{G → T}, T = R/Z, endowed with the compact-open topology and in these
topologies G and Γ are character groups of each other. Moreover, for any
closed subgroup H of G and its annihilator Λ in Γ the groups G/H and H
are topologically isomorphic to Λ and Γ/Λ, respectively, (see [15, Chapter 6,
§ 40, Theorems 53 and 54]; [13, Chapter 7, Theorem 27]). In our terminology
Pontryagin duality coincides with dual hereditary reflexivity.

Kaplan ([6]) generalized Pontryagin duality to arbitrary topological
Abelian groups considering character group endowed with the compact-open
topology and in the case, when the repeated character group with the
compact-open topology coincided with the original group including its topol-
ogy, it was called reflexive. Although, the class of reflexive groups is not fully
described, it contains not only all locally compact Hausdorff Abelian groups
but also all Banach spaces considered as topological groups (see [21]). Kaplan
has shown that if one has an arbitrary family of reflexive groups, then its
direct product with the Tychonov topology is also reflexive. Moreover, its
dual character group is the direct sum endowed with a special topology (see
details in [13, Chapter 5, Remark to Theorem 17]). Hereditary reflexivity was
not considered by Kaplan.

Since every quasi-complete and infrabarrelled nuclear space is Montel, we
have shown above that every complete barrelled nuclear space E with com-
plete nuclear strong dual space E′ is hereditarily reflexive in the sense of the
“Pontryagin duality”, i.e., E = (E′κ)′κ and E′ = ((E′)′κ)′κ. Thus, concerning
the Pontryagin duality in locally convex topological vector spaces, like in the
usual strong reflexivity cases, we shall discuss below their κ-reflexivity, hered-
itary κ-reflexivity and dual hereditary κ-reflexivity. One can raise a natural
question: Which further classes of locally convex topological vector spaces are
κ-reflexive, hereditarily κ-reflexive and dually hereditarily κ-reflexive?

From the well-known Banach and Dieudonné results (see [2] for a general-
ization of the Banach theorem) saying that for a Banach space E (respectively,
for an F -space E) there exists a finest topology τf on E′, which coincides with
σ(E′, E) on every equicontinuous set and hence, by the Grothendieck theorem
[3], has the property that E = (E′τf

)′, moreover, this topology τf coincides

with the topology of compact convergence (see [19, Chapter IV, Corollary 2
to Theorem 6.3, p. 151]). Since every complete metric space E is a Mackey
space, the family of all equicontinuous sets in E′, by Remark 2.2, coincides
with the family of all sets having weakly compact closed absolutely convex
envelope. And since, for an F -space E, its dual space E′ endowed with the
topology of compact convergence is complete (see [1, Chapter IV, § 3, Exercise
20a]) and, for the complete space E′, the closed absolutely convex envelope
of any compact set is compact (see [19, Chapter IV, Theorem 11.5, p. 189]),
the family of all closed equicontinuous sets in E′ coincides with the set of all
compact sets in E′τf

and hence E = (E′κ)′κ. Moreover, since an F -space E,
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evidently, is hereditarily complete and hereditarily barrelled and the topology
of compact convergence in these cases is also hereditary (see [1, Chapter IV,
§ 3, Exercise 12a]), we have actually proved the following theorem.

Theorem 5.1. Every F -space, in particular, every Banach space is hered-
itarily κ-reflexive.

Remark 5.2. By completeness of E and E′τf
, the topology of compact

convergence is inherited by the quotients E/L and E′τf
/Lo, respectively, and

since E is metric and thus the topology of compact convergence is inherited
by closed subspaces L, we can identify E/L = ((E/L)′κ)′κ, L = (L′κ)′κ and
E′τf

/Lo = ((E′τf
/Lo)′κ)′κ. For the identification Lo = ((Lo)′κ)′κ, it is necessary

and sufficient that every compact set in E/L is the canonical image of some
compact set in E under the canonical mapping E onto E/L. Thus, for an
F -space to be dually hereditarily κ-reflexive, it is necessary and sufficient that
the stated property be fulfilled for every closed subspace L, for example, it is
fulfilled when E is a nuclear F -space.

Now from Theorem 5.1 we obtain immediately the following theorems.

Theorem 5.3. Let E =
∏

γ∈Γ

Eγ be a direct product of F -spaces Eγ ,

γ ∈ Γ, endowed with the Tychonov topology (projective topology). Then E is
κ-reflexive and its dual E′, endowed with the topology of compact convergence
coincides with the direct sum

∑
γ∈Γ

E′γ , endowed with the topology of compact

convergence.

Proof. The fact that the topological product E and the topological sum
E′ are dual to each other is a consequence of known theorems (see [18, Chap-
ter V, Propositions 26 and 25, p. 93]): 1) The dual of the topological product∏
γ∈Γ

Eγ is the direct sum
∑
γ∈Γ

E′γ of the duals E′γ of Eγ , moreover, if each Eγ is

separated, and each E′γ has the topology of Aγ-convergence (where the sets
of Aγ are supposed to be absolutely convex), then the direct sum topology on∑
γ∈Γ

E′γ is the topology of A-convergence, where A is the set of all products
∏

γ∈Γ

Aγ , with Aγ ∈ Aγ , for each γ ∈ Γ; and 2) The dual of the topological

sum
∑
γ∈Γ

E′γ is the product
∏

γ∈Γ

Eγ of the duals Eγ of E′γ , moreover, if each

E′γ is separated and each Eγ has the topology of Aγ-convergence, then the
product topology on

∏
γ∈Γ

Eγ is the topology of A′-convergence, where A′ is the

set of all finite unions of sets of
⋃

γ∈Γ

A′γ . In our case Aγ consists of all closed

absolutely convex envelopes of compact sets in Eγ , which, as said above, are
compact themselves, because of the completeness of Eγ . But the Aγ-topology
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on E′γ coincides with the κ-topology, because the passage to absolutely con-
vex envelopes and their closures does not change the topology of compact
convergence (see [1, Chapter III, § 3]). On the other hand, by the Tychonov
theorem, the product

∏
γ∈Γ

Aγ of compact sets Aγ ∈ Aγ is compact and the

family A is cofinal in the set of all compact sets in E, the A-topology on
E′ also coincides with the κ-topology, because the A-topology is not changed
under the passage to the closures of all subsets of the elements in A (see [1,
Chapter III, § 3]). On the other hand, A′ consists of various compact sets
in E′γ . Since the family A′ is cofinal in the set of all compact subsets in E′ (in
a separated topological direct sum the closed set A is compact if and only if it
is contained in a finite sum of compact subsets of the E′γ , see [18, Chapter V,
Corollary to Proposition 24, p. 93]), the A′-topology on E′ also coincides with
the κ-topology, because the A-topology is not changed under the passage to
closures of all subsets of the elements in A (see [1, Chapter III, § 3]). At
last, since a topological product of Mackey spaces is a Mackey space (see [19,
Chapter IV, Corollary 2 to Theorem 4.3, p. 137]) and the topological sum of
separated complete spaces is a complete space (see [18, Chapter V, Proposi-
tion 23, p. 92]), the family of all closed equicontinuous sets in E′, as we have
seen above, coincides with the family of all compact sets in E′, E = (E′)′κ.
Evidently, E′ = ((E′)′κ)′κ, if one endows E′ with the topology of direct sum.

Theorem 5.4. Let E =
∑
γ∈Γ

Eγ be the topological sum of F -spaces Eγ , γ ∈

Γ. Then E is κ-reflexive and its dual space E′, endowed with the topology of
compact convergence, coincides with the topology of the direct product

∏
γ∈Γ

E′γ

of spaces E′γ , γ ∈ Γ, endowed with the topology of compact convergence.

Proof. By the same two theorems, used in the proof of the previous
theorem, the topological sum E and the topological product E′ are dual to
each other (one has to change only the place of primes in the formulae). In
our case Aγ consists of various compact sets in Eγ . And since the family A is
cofinal in the set of all compact subsets in E (in a separated topological sum
a set A is compact if and only if it is contained in a finite sum of compact
subsets of Eγ , see [18, Chapter V, Corollary to Proposition 24, p. 93]), the
A-topology on E′ also coincides with the κ-topology, because the A-topology
is not changed under the passage to closures of all subsets of the elements in
A (see [1, Chapter III, § 3]). On the other hand, A′γ consists of various closed
absolutely convex envelopes of compact sets in E′γ , which, as said above, are
compact themselves because of completeness of E′γ .

At last, since the topological sum of Mackey spaces is a Mackey space
(see [19, Chapter IV, Corollary 2 to Theorem 4.3, p. 138]) and the topological
product of separated complete spaces is a complete space (see [18, Chapter V,
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Corollary 1 to Proposition 18, p. 88]), the family of all closed equicontinuous
sets in E′ coincides, as above, with the set of all compact sets in E′, E = (E′)′κ.
Evidently, E′ = ((E′)′κ)′κ, if one endows E with the topology of direct sum.

Theorem 5.5. Let E = lim
→n

En be the strict inductive limit of a sequence

of F -spaces. Then E is κ-reflexive and its dual space E′, endowed with the
topology of compact convergence, is the inverse limit lim

←n
E′n, endowed with the

projective topology.

Proof. It is known (see [18, Chapter V, Proposition 15, p. 85]) that the
dual of the separated inductive limit E = lim

→γ
(Eγ , uγγ′,Γ) is the projective

limit E′ = lim
←γ

(E′γ , u
′
γγ′,Γ) of the dual spaces E′γ of Eγ . Moreover, if each Eγ

is a separated space and each E′α has the topology of Aγ-convergence, then
the projective topology of the inverse limit lim

←γ
(E′γ , u

′
γγ′,Γ) is the topology of

A-convergence, where A is the set of finite unions of sets of
⋃

γ∈Γ

uγ(Aγ).

In our case, the strict inductive limit of a sequence of separated spaces
is separated itself and An consists of various compact sets in En. And since
the family A is cofinal in the set of all compact subsets in E (in the strict
inductive limit a set A is compact if and only if it is contained in one of the
spaces En, for some n, see [18, Chapter VII, Propositions 2, 4, pp. 128, 129]),
the A-topology on E′ also coincides with the κ-topology.

It is also known (see [19, Chapter IV, Proposition 4.4, p. 139]) that if E =
lim
←γ

(Eγ , uγγ′,Γ) is a reduced projective limit (i.e., for each γ, the projection

uγ(E) is dense in Eγ) of locally convex spaces, then the dual E′, under its
Mackey topology τ(E′, E), can be identified with the inductive limit E′ =
lim
→γ

(E′γ , u
′
γγ′,Γ) of the family (E′γ , u

′
γγ′,Γ) with respect to the dual mappings

u′γγ′ of uγγ′. In our case, since unn+1 : En → En+1 is a homomorphism, for

each n ∈ N, (from the assumption of strict inductive limit), the dual mapping
u′nn+1 : E′n+1 → E′n is surjective and hence, E′ = lim

←n
E′n is a reduced limit,

consequently, the dual of E′ can be identified with the inductive limit E with
the Mackey topology.

Since the strict inductive limit of Mackey spaces is a Mackey space (see
[19, Chapter IV, Corollary 2 to Theorem 4.3, p. 138]) and the projective
limit of separated complete spaces is a complete space (see [19, Chapter II,
Proposition 5.3, p. 52]) and the family of all closed equicontinuous sets in E′

coincides, as above, with the family of all compact sets in E′, E = (E′)′κ.
Evidently, E′ = ((E′)′κ)′κ, if one considers the projective topology in E′. This
completes the proof of Theorem 5.5. Notice, that the strict inductive limit of
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F -spaces is a complete space (see [18, Chapter VII, Proposition 3, p. 128]),
therefore, in our case, E is a complete space.

Remark 5.6. From the proofs of Theorems 8, 9 and 10 one can see that
F -spaces Eγ in these theorems can be replaced by complete κ-reflexive Mackey
spaces Eγ such that E′γ have also a complete Mackey topology τ(E′γ , Eγ), in
particular, the topology of compact convergence.

Remark 5.7. As to hereditary κ-reflexivity as well as to dual hereditary
κ-reflexivity, it was noted in Remark 5.2, since the topology of compact con-
vergence is inherited by the quotients E/L and E′/Lo, respectively, that we
can identify E/L = ((E/L)′κ)′κ and E′/Lo = ((E′/Lo)′κ)′κ. For the identifi-
cation L = (L′κ)′κ and Lo = ((Lo)′κ)′κ it is necessary and sufficient that every
compact set in E/L be the canonical image of a compact set in E under the
canonical mapping E onto E/L and every compact set in E′/Lo is the canoni-
cal image of a compact set in E′ under the canonical mapping E′ onto E′/Lo.
For example, this is the case for complete barrelled nuclear spaces E, whose
strongly dual spaces E′ are also complete and nuclear.

Remark 5.8. Notice, that every locally convex topological vector space
E is reflexive in the weak topology, i.e., Eσ = ((Eσ)′σ)′σ. Moreover, Eσ is
dually hereditarily reflexive, because the weak topology is inherited by closed
subspaces an separated quotients. We can say the same about the Mackey
topology, i.e., Eτ = ((Eτ )′τ )′τ . However, in general, Eτ is neither hereditarily
τ -reflexive, nor dually hereditarily τ -reflexive, because the Mackey topology is
inherited by separated quotients, but in general, it is not inherited by closed
subspaces. If E is a metrizable space, then clearly, it is hereditarily τ -reflexive,
but it is not dually hereditarily τ -reflexive. On the other hand, every infinite-
dimensional vector space E can be endowed with a locally convex topology
such that it is not κ-reflexive, precisely, endow E with the finest locally convex
topology ω and then consider it with the weak topology σ(E,E∗). Then
Eσ 6= ((Eσ)′β)′β = ((Eσ)′κ)′κ. The latter equality is fulfilled, because, as it
was already noticed, for Montel spaces the strong topology coincides with the
topology of compact convergence.
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