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Abstract. Let 0 < p, q ≤ ∞, and ψ : [0,∞) → [0,∞) be a con-
tinuous, strictly increasing, subadditive function which satisfies ψ(0) = 0.
For sequences v = {vn}, ω = {ωn} of positive numbers we define sequence

classes ℓv,ω,ψp,q and Sω,ψ and give representation theorems for an operator

of type ℓv,ω,ψp,q and Sω,ψ.

1. Introduction

Ever since the publication of a paper by E. Schmidt [8] in 1907, particular
type of decreasing sequences of real numbers have been playing a significant
role in the study of linear operators on Hilbert and Banach spaces. Indeed,
the concept of s−numbers which arose in the study of integral operators has
led to different possibilities of defining several equivalents of s−numbers on
Banach spaces, e.g. Kolmogorov numbers, approximation numbers, Gelfand
numbers etc. [1, 5]. In this paper we are concerned with approximation
numbers which have been extensively studied in [5, 4] and [6]. Here one
finds many applications of these numbers in Hilbert space theory, theory of
operator ideals and nuclear spaces. Besides being responsible for introducing
several types of operator ideals in the class of bounded linear operators, these
numbers represent the linear operators of particular type as infinite series of
finite rank operators [2, 7]. In this paper, certain sequence classes which, as
particular cases, give rise to some well known sequence spaces, e.g. Lorentz
sequence spaces and the space of rapidly decreasing sequences, have been
defined and the representation theorems for those bounded linear operators
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whose sequences of approximation numbers belong to these classes, have been
established.

2. Preliminaries and Notations

Throughout this paper E, F will denote the Banach spaces over complex
field and L(E,F ) represents the space of all bounded linear maps between
E and F . N0 stands for the set {0, 1, 2, . . .} and N represents the set of all
natural numbers. For any scalar sequence x = {xi} ∈ c0, we denote by {si(x)}
its non-negative and decreasing rearrangement. For T ∈ L(E,F ) and n ∈ N,
the nth approximation number of T is defined as

an(T ) = inf{‖T −A‖ : A ∈ L(E,F ), rank(A) < n}.

For a detailed study on these numbers one is referred to [1] and [6]. For a
class λ of scalar sequences, T is said to be of type λ if {an(T )} ∈ λ and it is
said to be pseudo-λ nuclear [3] if there exist sequences {λn} ∈ λ, {fn} ⊂ E∗

and {yn} ⊂ F such that ‖fn‖ ≤ 1, ‖yn‖ ≤ 1, n ∈ N and T has following
representation

T (x) =

∞∑

n=1

λn fn(x) yn, ∀ x ∈ E.

If the class λ contains the space φ of finitely non-zero sequences, finite rank
operators are of type λ. For non-negative real-valued sequences {αn} and
{βn}, αn ≺ βn means that there is a constant c > 0 depending on various
parameters but not on the index n with αn ≤ cβn, n ∈ N. We write αn ∼ βn
if αn ≺ βn and βn ≺ αn, n ∈ N.

3. Operators of the type ℓv,ω,ψp,q

Let v = {vn} and ω = {ωn} be any two sequences of positive numbers
and ψ : [0,∞) → [0,∞) be a continuous function which is strictly increasing,
subadditive and satisfies ψ(0) = 0. Let us define

ℓv,ω,ψp,q = {{xi} ∈ c0 : {

∞∑

k=1

[k1/p−1/q vk ψ(ωk sk(x))]
q}1/q <∞},

for 0 < p ≤ ∞ and 0 < q <∞;

ℓv,ω,ψp,∞ = {{xi} ∈ c0 :
∞

sup
k=1

k1/p vk ψ(ωk sk(x)) <∞},

for 0 < p <∞ and q = ∞; and

ℓv,ω,ψ∞,∞ = {{xi} ∈ c0 :
∞

sup
k=1

vk ψ(ωk sk(x)) <∞},

for p = ∞ and q = ∞.
Clearly φ is a subset of the above classes. Further, when ψ is the identity

mapping and vn = ωn = 1, ∀ n ∈ N the classes defined above coincide with
the Lorentz sequence spaces.
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Proposition 3.1. Let 0 < p < ∞ and 0 < q ≤ ∞. For decreasing se-

quences v = {vn}, ω = {ωn} of positive numbers and a fixed r ∈ {2, 3, 4, . . .},

x = {xi} ∈ ℓv,ω,ψp,q ⇔ {rk/p vrk ψ(ωrk srk(x))} ∈ ℓq.

Proof. For a fixed r ∈ {2, 3, 4, . . .} and k ∈ N0, let

Uk = {n : rk ≤ n < rk+1}.

Since ∑

Uk

nq/p−1 ∼ rkq/p

we get

{

∞∑

k=0

∑

Uk

[n1/p−1/q vn ψ(ωn sn(x))]
q}1/q

≤ {

∞∑

k=0

[
∑

Uk

nq/p−1] vrk ψ(ωrk srk(x))
q}1/q

≤ c {

∞∑

k=0

[rk/p vrk ψ(ωrk srk(x))]
q}1/q,

for some c > 0. Therefore {rk/p vrk ψ(ωrk srk(x))} ∈ ℓq ⇒ {xi} ∈ ℓv,ω,ψp,q .
For the converse, let

Vk = {n : rk < n ≤ rk+1}, k ∈ N0.

Since ∑

Vk

nq/p−1 ∼ r(k+1)q/p

we get

{

∞∑

k=0

[rk/p vrk ψ(ωrk srk(x))]
q}1/q

= {vq1 ψ(ω1 s1(x))
q +

∞∑

k=0

[r(k+1)/p vr(k+1) ψ(ωr(k+1) sr(k+1)(x))]q}1/q

≤ c {vq1 ψ(ω1 s1(x))
q +

∞∑

k=0

[
∑

Vk

nq/p−1] vq
r(k+1) [ψ(ωr(k+1)sr(k+1)(x))]q}1/q

≤ c {vq1 ψ(ω1 s1(x))
q +

∞∑

k=0

∑

Vk

[n1/p−1/q vn ψ(ωn sn(x))]
q}1/q,

for some c > 0. Hence we get the result.
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Theorem 3.2. Let v = {vn} and ω = {ωn} be two decreasing sequences of

positive numbers. For 0 < p < ∞, 0 < q ≤ ∞ and a fixed r ∈ {2, 3, 4, . . .}, if

T ∈ L(E,F ) is of the type ℓv,ω,ψp,q , then T can be expressed as T =
∑∞

k=0 Tk,

where Tk ∈ L(E,F ), rank (Tk) ≤ rk and {rk/p vrk ψ(ωrk ‖Tk‖)} ∈ ℓq. Con-

versely if vn = ωn = 1, ∀ n ∈ N0 and

(∗) T =

∞∑

k=0

Tk,

where Tk ∈ L(E,F ), rank (Tk) ≤ rk and
∑∞

k=0 ‖Tk‖ < ∞ then T is of the

type ℓv,ω,ψp,q provided {rk/pψ(‖Tk‖)} ∈ ℓq.

Proof. For proving the first part, suppose T ∈ L(E,F ) is of the type
ℓv,ω,ψp,q i.e. {an(T )} ∈ ℓv,ω,ψp,q . Then for a fixed r ∈ {2, 3, 4, . . .}, we can find

Sk ∈ L(E,F ) such that rank(Sk) < rk, k ∈ N0 and

‖T − Sk‖ ≤ 2ark(T ).

The result clearly holds for finite rank operator T . So we assume that T ∈
L(E,F ) is such that an(T ) 6= 0, ∀ n ∈ N. Let us define

T0 = 0, T1 = 0 and Tk+2 = Sk+1 − Sk, ∀ k ∈ N0.

Then

rank(Tk+2) < rk+2;

and also

‖Tk+2‖ ≤ ‖Sk+1 − T ‖ + ‖T − Sk‖ ≤ 4 ark(T ),

vrk ψ(ωrk ‖Tk+2‖) ≤ 4 vrk ψ(ωrk ark(T )), k ∈ N0,

[
∞∑

k=0

rkq/pvq
rk
ψ(ωrk‖Tk‖)

q]1/q ≤ 4 [
∞∑

k=0

rkq/pvq
rk
ψ(ωrkark(T ))q]1/q <∞,

by Proposition 3.1. Further we have

T = lim
k→∞

Sk =

∞∑

k=0

Tk,

since {an(T )} ∈ c0.
Conversely, we assume that T has the representation given in (∗). Let

Ah =

h−1∑

k=0

Tk.

Then rank(Ah) < rh. We now fix ρ and θ such that 0 < ρ < min(1, q) and
0 < θ < 1. Define t as

1/t = 1/ρ− 1/q.
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Note that for fixed h and n,

n∑

k=h

ψ(‖Tk‖) ≤ (

n∑

k=h

ψ(‖Tk‖)
ρ)1/ρ.

We now apply the Hölder’s inequality to get

n∑

k=h

ψ(‖Tk‖) ≤ (

n∑

k=h

r−θkt/p)1/t (

n∑

k=h

rθkq/pψ(‖Tk‖)
q)1/q

= c r−θh/p (

n∑

k=h

rθkq/pψ(‖Tk‖)
q)1/q,

for a positive constant c. Since ψ is sub additive, continuous and

arh(T ) ≤ ‖T −Ah‖ ≤
∞∑

k=h

‖Tk‖,

we get

{
∞∑

h=0

rhq/pψ(arh(T ))q}1/q ≤ c {
∞∑

h=0

r(1−θ)hq/p[
∞∑

k=h

rθkq/p ψ(‖Tk‖)
q]}1/q

= c {

∞∑

k=0

[

k∑

h=0

r(1−θ)hq/p]rθkq/p ψ(‖Tk‖)
q}1/q

≤ c1 {

∞∑

k=0

rkq/p ψ(‖Tk‖)
q}1/q < ∞,

where c1 is a positive constant. Now the result follows from the preceding
proposition.

Proposition 3.3. Let 0 < q < ∞, p = ∞, vn = (1 + logn)ρ, where

−1/q < ρ <∞ and ω = {ωn} be a decreasing sequence of positive terms. For

any x = {xi} ∈ ℓv,ω,ψ∞,q , we have

∞∑

n=1

{(1 + logn)ρ ψ(ωnsn(x))}
q n−1

∼ ψ(ω1s1(x))
q +

∞∑

n=0

2n(1+ρq){ψ(ωµnsµn(x))}q ,

where µk = 22n , n ∈ N0.
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Proof. For k ∈ N0, we have

∞∑

n=1

{(1 + logn)ρ ψ(ωnsn(x))}
q n−1

= ψ(ω1s1(x))
q +

∞∑

k=0

µk+1−1∑

n=µk

(1 + logn)ρqn−1ψ(ωnsn(x))
q

≤ ψ(ω1s1(x))
q +

∞∑

k=0

[

µk+1−1∑

n=µk

(1 + logn)ρqn−1]ψ(ωµksµk(x))
q .

Since
µk+1−1∑

n=µk

(1 + log n)ρqn−1 ∼ 2k(1+ρq),

we get

∞∑

n=1

{(1+logn)ρ ψ(ωnsn(x))}q n−1 ∼ ψ(ω1s1(x))
q+

∞∑

k=0

2k(1+ρq)ψ(ωµksµk(x))
q .

For the converse, we note that

ψ(ω1s1(x))
q +

∞∑

k=0

2k(1+ρq)ψ(ωµksµk(x))
q

∼ ψ(ω1s1(x))
q + (1 + log 2)ρqψ(ω2s2(x))

q

+

∞∑

k=0

2k(1+ρq)ψ(ωµ(k+1)
sµ(k+1)

(x))q

∼ ψ(ω1s1(x))
q + (1 + log 2)ρqψ(ω2s2(x))

q

+

∞∑

k=0

[

µk+1∑

n=µk+1

(1 + logn)ρqn−1]ψ(ωµ(k+1)
sµ(k+1)

(x))q

≤ ψ(ω1s1(x))
q + (1 + log 2)ρqψ(ω2s2(x))

q

+

∞∑

k=3

[(1 + log k)ρψ(ωksk(x))]
q k−1

=

∞∑

k=1

[(1 + log k)ρ ψ(ωksk(x))]
q k−1.

Theorem 3.4. Let 0 < q <∞, −1/q < ρ <∞, vn = (1 + logn)ρ, n ∈ N

and {ωn} be a decresing sequence of positive numbers. If T ∈ L(E,F ) is of

the type ℓv,ω,ψ∞,q then there exist operators Tn ∈ L(E,F ) with rank(Tn) ≤ µn,
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where µn = 22n , n ∈ N0, such that T has a representation of the form

T =

∞∑

n=0

Tn

and

∞∑

n=0

2n(1+ρq)ψ(ωµn‖Tn‖)
q <∞.

Conversely, if ωn = 1, n ∈ N0 and T has a representation of the form

T =

∞∑

n=0

Tn

where Tn ∈ L(E,F ), rank(Tn) ≤ µn, n ∈ N0, such that the series
∑∞
k=0 ‖Tk‖

is convergent then T is of the type ℓv,ω,ψ∞,q provided

∞∑

n=0

2n(1+ρq)ψ(‖Tn‖)
q <∞.

Proof. We first assume that T ∈ L(E,F ) is of the type ℓv,ω,ψ∞,q . By
definition of aµk(T ), k ∈ N0, there exist operators Lk ∈ L(E,F ) with
rank(Lk) < µk such that

‖T − Lk‖ < 2 aµk(T ).

Define the operators Tk
′s as T0 = 0, T1 = L0 and Tk = Lk−1 − Lk−2, k =

2, 3, . . . .
Then ‖T1‖ ≤ 3 a1(T ) and ‖Tk‖ ≤ 4 aµk−2

(T ), k = 2, 3, . . . yield

ψ(ω1‖T1‖) ≤ 3 ψ(ω1a1(T ))

and

ψ(ωµk‖Tk‖) ≤ 4 ψ(ωµk−2
aµk−2

(T )), k = 2, 3, . . . .

Further, we note that rank(Tk) < µk. Since {ak(T )} ∈ c0, we have

T =

∞∑

n=0

Tn.
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Now,

∞∑

n=0

2n(1+ρq)ψ(ωµn‖Tn‖)
q

≤ 2(1+ρq)3qψ(ω1a1(T ))q +

∞∑

n=0

2(n+2)(1+ρq)4qψ(ωµnaµn(T ))q

∼ ψ(ω1a1(T ))q +

∞∑

n=0

2n(1+ρq)ψ(ωµnaµn(T ))q

∼

∞∑

n=1

((1 + logn)ρψ(ωnan(T )))qn−1,

by Proposition 3.3. Hence

∞∑

n=0

2n(1+ρq)ψ(ωµn‖Tn‖)
q <∞.

Conversely, let us assume that T =
∑∞

n=0 Tn where rank(Tn) ≤ 22n , n ∈
N0. For n ∈ N define

An =
n−1∑

k=0

Tk.

Then rank(An) < µn, n ∈ N. Therefore

aµn(T ) ≤ ‖T −An‖ ≤

∞∑

k=n

‖Tk‖, n ∈ N

and

aµ0(T ) ≤ ‖T ‖ ≤

∞∑

k=0

‖Tk‖.

Fix n, m ∈ N and let 0 < p < min(1, q), 0 < θ < (1+ρq)/q, 1/s = 1/p−1/q.
Applying the Holder’s inequality, we get

(
m∑

k=n

ψ(‖Tk‖)
p)1/p ≤ (

m∑

k=n

2−θks)1/s (
m∑

k=n

2θkqψ(‖Tk‖)
q)1/q

≤ C 2−θn(

m∑

k=n

2θkqψ(‖Tk‖)
q)1/q,

where C is a positive constant.
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Using the sub additivity and continuity of ψ and by the previous propo-
sition
∞∑

n=1

[(1 + logn)ρ ψ(an(T ))]q n−1 ∼ ψ(a1(T ))q +
∞∑

n=0

2n(1+ρq)ψ(aµn(T ))q

≤ ψ(a1(T ))q + Cq
∞∑

n=0

2n(1+ρq−θq)(

∞∑

k=n

2θkqψ(‖Tk‖)
q)

∼ ψ(a1(T ))q +

∞∑

k=0

(

k∑

n=0

2n(1+ρq−θq))2θkqψ(‖Tk‖)
q

≤ K [ψ(a1(T ))q +
∞∑

k=0

2k(1+ρq)ψ(‖Tk‖)
q] <∞.

Here the positive constant K depends only on q, ρ or θ. Hence we get the
result.

Theorem 3.5. Let µn = 22n , n ∈ N0 and T ∈ L(E,F ). For 0 < ρ <∞,

define vn = (1 + logn)ρ, n ∈ N and let {ωn} be a decreasing sequence of

positive numbers. If {an(T )} ∈ ℓv,ω,ψ∞,∞ then for each n ∈ N0, there exist

operators Tn ∈ L(E,F ) with rank(Tn) < µn such that

T =

∞∑

n=0

Tn

and
∞

sup
n=0

{2nρ ψ(ωµn‖Tn‖)} <∞.

Conversely, if ωn = 1, ∀ n ∈ N, T ∈ L(E,F ) has following representation

T =
∞∑

n=0

Tn,

where Tn ∈ L(E,F ) with rank(Tn) < µn and the series
∑∞

n=0 ‖Tn‖ is conver-

gent, then {an(T )} ∈ ℓv,ω,ψ∞,∞ provided

∞
sup
n=0

{2nρ ψ(‖Tn‖)} <∞.

Proof. Let {an(T )} ∈ ℓv,ω,ψ∞,∞ . By the definition of approximation num-
bers, there exists operator Ln ∈ L(E,F ) with rank(Ln) < µn and

‖T − Ln‖ < 2aµn(T ).

Define T0 = 0, T1 = L0 and Tn = Ln−1 − Ln−2, n = 2, 3, 4, . . ..
Then

‖T −An+1‖ = ‖T − Ln‖ ≤ 2aµn(T ) → 0 as n → ∞.
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Also, rank(Tn) < µn, ‖T1‖ ≤ 3a1(T ) and ‖Tn‖ ≤ 4aµn−2(T ), n = 2, 3, 4, . . . .
Therefore

ψ(ω1‖T1‖) ≤ 3ψ(ω1a1(T )) and ψ(ωµn‖Tn‖) ≤ 4ψ(ωµn−2aµn−2(T )),

for n = 2, 3, 4, . . . and

sup{2nρψ(ωµn‖Tn‖) : n ∈ N0}

≤ sup{2ρψ(ω1‖T1‖), 2(n+2)ρψ(ωµn+2‖Tn+2‖) : n ∈ N0}

≤ 23ρ+2 sup{ψ(ω1‖T1‖), ψ(ω2a2(T )), 2(n−1)ρψ(ωµnaµn(T )) : n ∈ N}

≤ c sup{ψ(ω1‖T1‖), (1 + log 2)ρ ψ(ω2a2(T )),

max{(1 + log k)ρψ(ωkak(T )) : µn−1 < k ≤ µn}, n ∈ N}

= c sup{(1 + logn)ρψ(ωnan(T )) : n ∈ N} <∞,

where c is a positive constant depending only on ρ.
For the converse, for n ∈ N let us write

An =

n−1∑

k=0

Tk.

Then rank(An) < µn, n ∈ N. Also, for n < m

m∑

k=n

ψ(‖Tk‖) =

m∑

k=n

2−kρ 2kρψ(‖Tk‖)

≤ 2−nρ(1 − 2−ρ)−1 sup{2kρ ψ(‖Tk‖) : k = n, n+ 1, . . . ,m}.

Since

aµ0(T ) ≤ a1(T ) ≤

∞∑

k=0

‖Tk‖

and

aµn(T ) ≤

∞∑

k=n

‖Tk‖, n ∈ N,

by the subadditivity and continuity of ψ, we get

ψ(aµ0(T )) ≤

∞∑

k=0

ψ(‖Tk‖) ≤ (1 − 2−ρ)−1 sup{2kρ ψ(‖Tk‖) : k ∈ N0}

and

ψ(aµn(T )) ≤

∞∑

k=n

ψ(‖Tk‖)

≤ 2−nρ(1 − 2−ρ)−1 sup{2kρ ψ(‖Tk‖) : k = n, n+ 1, . . .}.
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We now have

∞
sup
n=1

{(1 + logn)ρψ(an(T ))} = sup{ψ(a1(T )),max{(1 + log k)ρψ(ak(T )) :

µn ≤ k < µn+1} : n ∈ N0}

≤ k1 sup{ψ(a1(T )), 2nρψ(aµn(T )) : n ∈ N0}

≤ k2
∞

sup
n=1

{2nρψ(‖Tn‖)} <∞;

where the constants k1 > 0 and k2 > 0 depend only on ρ.

4. Operators of the type Sψ,ω

Let ψ : [0,∞) → [0,∞) be a continuous function which is strictly increas-
ing, subadditive and satisfies ψ(0) = 0. Further let ω = {ωn} be an increasing
sequence of positive numbers. We define

Sψ,ω = {{xn} ⊆ K : ∀ k ∈ N0, ∃ Mk > 0

with
∞

sup
n=0

(n+ 1)kψ(ωn|xn|) ≤Mk}.

If ωn = 1, ∀ n ∈ N0 and ψ is the identity mapping, we get the class of all
rapidly decreasing sequences.

Proposition 4.1. For {xn} ∈ Sψ,ω,

∞∑

n=0

(n+ 1)k (ψ(ωn|xn|))
p <∞

for each p > 0 and k ∈ N0.

Proof. Let p > 0 and k ∈ N0. We now choose a r ∈ N0 such that
rp ≥ k + 2. Since {xn} ∈ Sψ,ω, we can find a constant Mr > 0 such that

(n+ 1)r ψ(ωn|xn|) ≤Mr

for each n ∈ N0. Then

(n+ 1)k (ψ(ωn|xn|))
p ≤ (n+ 1)rp−2(ψ(ωn|xn|))

p ≤
Mp
r

(n+ 1)2

and
∞∑

n=0

(n+ 1)k (ψ(ωn|xn|))
p ≤ Mp

r

∞∑

n=0

1

(n+ 1)2
< ∞.

Proposition 4.2. Sψ,ω ⊆ ℓ1.
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Proof. Let {xn} ∈ Sψ,ω be such that {xn} is not in ℓ1. So for each
k ∈ N0 we can find an increasing sequence {nk} of natural numbers such that
nk > k, ∀ k and

nk+1∑

n=nk+1

|xn| ≥ 2k ω−1
k .

Since {ωk} is an increasing sequence, we get

2k ≤ ωk

nk+1∑

n=nk+1

|xn| ≤

nk+1∑

n=nk+1

ωn |xn|.

Therefore

ψ(2k) ≤ ψ(

nk+1∑

n=nk+1

ωn |xn|) ≤

nk+1∑

n=nk+1

ψ(ωn |xn|)

using the increasing nature of ψ. Now ψ(2k) → ∞ as k → ∞. This contradicts
the conclusion in the preceding proposition. Hence Sψ,ω ⊆ ℓ1.

Aliter: by the assumption on ψ and ω, for any {xn} ∈ Sψ,ω we have

ψ(ω0

∞∑

n=0

|xn|) ≤ ψ(

∞∑

n=0

ωn|xn|) ≤

∞∑

n=0

ψ(ωn|xn|) ≤ M2

∞∑

n=0

(n+1)−2 < ∞,

where M2 is the constant from Proposition 4.1. This shows {xn} ∈ ℓ1.

Proposition 4.3. If {xn} is a sequence such that the sequence {ωn|xn|}
is decreasing and

∞∑

n=0

(ψ(ωn|xn|))
p < ∞

for each p > 0, then {xn} ∈ Sψ,ω.
Proof. By the hypothesis, for any n ∈ N0 and p > 0 we have

(n+ 1) (ψ(ωn|xn|))
p ≤

n∑

m=0

(ψ(ωm|xm|))p ≤

∞∑

n=0

(ψ(ωn|xn|))
p ≤ M

for some M > 0. Then

(n+ 1)k ψ(ωn|xn|) = [(n+ 1) ψ(ωn|xn|)
1/k]k ≤ Mk < ∞,

for each k ∈ N0. Thus {xn} ∈ Sψ,ω.

Theorem 4.4. Let T ∈ L(E,F ). If T is of the type Sψ,ω then there exists

an increasing sequence v = {vn} such that T is pseudo Sψ,v- nuclear and

Sψ,ω ⊆ Sψ,v.

Conversely, if T is pseudo Sψ,ω- nuclear, then it is of the type Sψ,ω.
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Proof. Suppose T is of the type Sψ,ω i.e. {an(T )} ∈ Sψ,ω. Now for each
n ∈ N, we can find operators Tn ∈ L(E,F ) of rank (Tn) < n such that

‖T − Tn‖ ≤ 2 an(T ).

Let Bn = Tn+1 − Tn and bn = dim(range(Bn)). Then

bn ≤ 2(n+ 1)

and
‖Bn‖ ≤ ‖Tn+1 − T ‖ + ‖T − Tn‖ ≤ 4 an(T ).

Define d0 = 0, dn =
∑n

i=1 bi and let vj = ωn, dn−1 < j ≤ dn, n ∈ N. Then

ψ(vdn ‖Bn‖) ≤ 4 ψ(vdn an(T )),

using the subadditive nature of ψ. We now have, for each p > 0
∞∑

n=0

bn (ψ(vdn ‖Bn‖))
p ≤ 2.4p

∞∑

n=0

(n+ 1)(ψ(ωn an(T )))p <∞

by Proposition 4.1. Now each Bn has a representation of the form

Bn(x) =

bn∑

i=1

λni f
n
i (x) yni

for each x ∈ E, where ‖fni ‖ ≤ 1, ‖yni ‖ ≤ 1 and ‖λni ‖ ≤ ‖Bn‖, for each
i = 1, 2, . . . , bn. Then

∞∑

n=0

bn∑

i=1

(ψ(vdn−1+i |λ
n
i |))

p ≤

∞∑

n=0

bn (ψ(ωn ‖Bn‖))
p < ∞

for each p > 0. Since {an(T )} ∈ ℓ1, an(T ) → 0 as n→ ∞. Therefore for each
x ∈ E,

T (x) = lim
n→∞

Tn+1(x) =

∞∑

n=0

Bn(x) =

∞∑

n=0

bn∑

i=1

λni f
n
i (x) yni .

Thus T can be rewritten as

T (x) =

∞∑

i=0

µi gi(x) zi(4.1)

where gn ∈ X∗, zn ∈ Y, ‖gn‖ ≤ 1, ‖zn‖ ≤ 1, for each n ∈ N0 and µi’s are
given by

µdn−1+j = λnj , 1 ≤ j ≤ bn.

Sequences {gn} and {zn} are defined in the similar fashion corresponding to
{fn} and {yn} respectively. Note that

∞∑

n=0

ψ(vn |µn|))
p =

∞∑

n=1

bn∑

j=1

ψ(vdn−1+j |λ
n
j |)

p ≤

∞∑

n=1

bnψ(ωn‖Bn‖)
p <∞.
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for each p > 0. In particular when p = 1, we get {vn|µn|} ∈ ℓ1 ⊂ c0,
by the continuity and subadditivity of ψ. Thus the terms of the sequence
{vn|µn|} can be rearranged in a decreasing order. Let σ be the permutation
which is being used in making such a rearrangement. Since the above series is
convergent even if we replace n by σ(n), by Proposition 4.3, we get {µσ(n)} ∈
Sψ,v. Further we note that the convergence of series in (4.1) is unconditional.
Indeed for any permutation σ, we have

‖

m∑

i=n

µσ(i) gσ(i)(x) zσ(i)‖ ≤ ‖x‖

m∑

i=n

|µσ(i)| → 0

as n, m → ∞ because Sψ,v ⊆ ℓ1. Thus T is pseudo Sψ,ω -nuclear.
Conversely, if T is pseudo Sψ,ω -nuclear, then it can written as

T (x) =
∞∑

i=0

λi fi(x) yi

where fn ∈ X∗, yn ∈ Y, ‖fn‖ ≤ 1, ‖yn‖ ≤ 1, for each n ∈ N0 and {λi} ∈
Sψ,ω. For n ∈ N0, we define

Tn(x) =

n−1∑

i=0

λi fi(x) yi.

It follows

an(T ) ≤ ‖T − Tn‖ ≤ sup
‖x‖≤1

‖

∞∑

i=n

λi fi(x) yi‖ ≤

∞∑

i=n

|λi|.

Using the increasing nature of {ωn}, we get

ωn an(T ) ≤
∞∑

i=n

ωi |λi|,

ψ(ωn an(T )) ≤

∞∑

i=n

ψ(ωi |λi|).

Therefore, for any p ∈ [0, 1),

(ψ(ωn an(T )))p ≤ (

∞∑

i=n

ψ(ωi |λi|))
p ≤

∞∑

i=n

(ψ(ωi |λi|))
p,

so
∞∑

n=0

(ψ(ωn an(T )))p ≤

∞∑

n=0

∞∑

i=n

(ψ(ωi |λi|))
p =

∞∑

n=0

(n+1) (ψ(ωn |λn|))
p < ∞.

Since ℓp ⊆ ℓq, if p ≤ q, we get the convergence of the above series for all p > 0.
Now the result follows from Proposition 4.3.
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