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ABSTRACT. Let 0 < p, ¢ < oo, and 9 : [0,00) — [0,00) be a con-
tinuous, strictly increasing, subadditive function which satisfies ¢ (0) = 0.
For sequences v = {vn }, w = {wn } of positive numbers we define sequence
classes E;’,j‘;’w and S, 4 and give representation theorems for an operator
of type ZZ:;”J’ and S, 4.

1. INTRODUCTION

Ever since the publication of a paper by E. Schmidt [8] in 1907, particular
type of decreasing sequences of real numbers have been playing a significant
role in the study of linear operators on Hilbert and Banach spaces. Indeed,
the concept of s—numbers which arose in the study of integral operators has
led to different possibilities of defining several equivalents of s—numbers on
Banach spaces, e.g. Kolmogorov numbers, approximation numbers, Gelfand
numbers etc. [1, 5]. In this paper we are concerned with approximation
numbers which have been extensively studied in [5, 4] and [6]. Here one
finds many applications of these numbers in Hilbert space theory, theory of
operator ideals and nuclear spaces. Besides being responsible for introducing
several types of operator ideals in the class of bounded linear operators, these
numbers represent the linear operators of particular type as infinite series of
finite rank operators [2, 7]. In this paper, certain sequence classes which, as
particular cases, give rise to some well known sequence spaces, e.g. Lorentz
sequence spaces and the space of rapidly decreasing sequences, have been
defined and the representation theorems for those bounded linear operators
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whose sequences of approximation numbers belong to these classes, have been
established.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper F, F will denote the Banach spaces over complex
field and L(E, F) represents the space of all bounded linear maps between
E and F. Ny stands for the set {0,1,2,...} and N represents the set of all
natural numbers. For any scalar sequence x = {x;} € ¢g, we denote by {s;(x)}
its non-negative and decreasing rearrangement. For T' € L(E, F) and n € N,
the n** approximation number of T is defined as

an(T) = inf{||T — A|| : A € L(E, F), rank(A) < n}.
For a detailed study on these numbers one is referred to [1] and [6]. For a
class X of scalar sequences, T is said to be of type A if {a,(T)} € A and it is
said to be pseudo-A nuclear [3] if there exist sequences {\,} € A, {fn,} C E*
and {y,} C F such that ||f,]| < 1, |lynll < 1, n € N and T has following
representation

T(x) =" A ful@) yn, ¥V z € E.
n=1

If the class A contains the space ¢ of finitely non-zero sequences, finite rank
operators are of type A. For non-negative real-valued sequences {«,} and
{Bn}, an < Bn means that there is a constant ¢ > 0 depending on various
parameters but not on the index n with a,, < ¢8,, n € N. We write a,, ~ 3,
if oy, < B, and B, < o, n € N.

3. OPERATORS OF THE TYPE Egzng

Let v = {v,} and w = {w,} be any two sequences of positive numbers
and ¢ : [0,00) — [0,00) be a continuous function which is strictly increasing,
subadditive and satisfies (0) = 0. Let us define

o0
et = {{mi} € co s D [KYPH v p(wp sk(2)))7} < oo},
k=1
for 0 < p<ooand 0 < g < o0;

03 ={{zi} €co: ?E]i) kP g p(wi sik(2)) < 0o},
for 0 < p < 0o and ¢ = co; and
038 = {{mi} € co : icflop v Y(wi sk(x)) < oo},
=1

for p = 0o and ¢ = .

Clearly ¢ is a subset of the above classes. Further, when 1 is the identity
mapping and v, = w, = 1, V n € N the classes defined above coincide with
the Lorentz sequence spaces.
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PROPOSITION 3.1. Let 0 < p < o0 and 0 < q < oco. For decreasing se-
quences v = {v,}, w={wn} of positive numbers and a fixed r € {2,3,4,...},

r={x;} € é;:fj’w & P v p(wn sk ()} € 09,
PROOF. For a fixed r € {2,3,4,...} and k € Ny, let

Up={n:r"<n<rF}

§ :nq/pfl ~ pka/p

Uk

Since

we get

DS e v, pwn su(x))]7}H

k=0 Uy

< {Z[Z nQ/pil] Uk w(w'rk Syk (x))q}l/q

k=0 Uy

< c {Z[Tk/p Upk w(wrk Spk (x))]q}l/q7
k=0

for some ¢ > 0. Therefore {r*/? v,x Y(wyr 5.0 (x))} €09 = {x;} € E;:‘;’w.
For the converse, let

Vk:{n:rk<n§rk+1}, k € Np.

Since
an/pfl ~ pktDa/p
Vi

we get

{Z[Tk/p Upk T/)(er Spk (x))]q}l/q

k=0

k=0
<e {of Pwr s1(2)? + D D 0P 0 (W sp (2))]7}
k=0 Vi
<c{of Plwr si(z))? + iZ[nl/”_Uq v Plwn sn(2))] 7},
k=0 Vi

for some ¢ > 0. Hence we get the result. O
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THEOREM 3.2. Letv = {v,} and w = {wy} be two decreasing sequences of
positive numbers. For 0 < p < 0o, 0 < ¢ < oo and a fized r € {2,3,4,...}, if
T € L(E,F) is of the type E;:‘;’w, then T can be expressed as T =Y po o Tk,
where Ty, € L(E, F), rank (Ty,) < % and {r*/? v.x Y(we | Tk} € £9. Con-
versely if v, =w, =1, Vn € Ny and

(%) T=>Y T,
k=0

where Ty, € L(E,F), rank (Tx) < r* and Y 7= | Tkl < oo then T is of the
type €34 provided {rk/Pp(|| Tk} € 9.

PRroOF. For proving the first part, suppose T' € L(E, F) is of the type
eV e {an(T)} € £3%%. Then for a fixed 7 € {2,3,4,...}, we can find
Sy € L(E, F) such that rank(S;) < r*, k € Ny and

IT — Skl < 2a,(T).
The result clearly holds for finite rank operator T'. So we assume that T €
L(E, F) is such that a,(T) # 0, V n € N. Let us define
To=0, T =0 and Tk+2 = Sk+1 — Sk, V k € Np.
Then

rank(Tji2) < rF+2;

and also
ITesall < ISk = Tl + 1T — Sill < 4 ape(T),
Upk T/)(er ||Tk+2||) <4 Urk w(wrk ar’“(T))a ke NO;

[ P (e [Tl < 4 (3 P08, s () < o,
k=0 k=0

by Proposition 3.1. Further we have
T = lim S = ];)Tk,

since {a,(T)} € co.
Conversely, we assume that T has the representation given in (x). Let

h—1
Ap, = ZTk.
k=0

Then rank(A) < 7". We now fix p and 6 such that 0 < p < min(1,¢) and
0 < 0 < 1. Define ¢ as

1/t=1/p—1/q.
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Note that for fixed h and n,

n n

Z (Tl < O wITl)?) .

= k=h
We now apply the Holder’s inequality to get

n

YoOUTRl) < QoYY (Y Ry (T ) e
k=h

k=h k=h

n
(Y Ry (| T ) )

k=h

for a positive constant c. Since v is sub additive, continuous and

o0
an(T) < ||IT = Apll < D I1Tll,
k=h

we get

(3 (a1} < C{Zrﬂ 9>hq/”2r“q/p (Il
h=0

oo k

= e (Y3 Ol (| y
k=0 h=0

< o MmN < o

8

where ¢; is a positive constant. Now the result follows from the preceding
proposition. O

PROPOSITION 3.3. Let 0 < ¢ < 00, p = 00, v, = (1 + logn)?, where

—1/qg < p < o0 and w = {wy} be a decreasing sequence of positive terms. For
any x = {x;} € €3%;", we have

o0

> {1 +1ogn)? (wnsn(x))} n"

n=1

~ Pwisi (@) + 22”(””‘”{1#( nSpn ()},

n=0

where py = 22" n e Np.
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ProoOF. For k € Ny, we have

o0

D {1 +1ogn)” (wnsn (@)} n*
n=1
oo ,uk+1*1
= Plwrsi(@)?+ Y Y (L+logn)n (wnsa(@))?
k=0 n=py
oo MEk+4+1— 1
Plwrsi @)+ 30 D (1 +logn)'n (w5, (2))".
k=0 n=pug
Since
Hrt1—1
Z (1 +logn) in=" ~ 2k(+ra)
n=prg
we get
> A(1+ogn)? Pwnsn (@)} 0" ~ (wisi (@) 4y 22Dy (w,, 5, (1))
n=1 k=0

For the converse, we note that

Ylwisi(2))?+ Y 20D P(wy, 5, (2))1

k=0
~ Plwisi(2)? + (1 +1og2)* 4 (wass(x))

Y 2R S ()
k=0
~ P(wisi ()7 + (1 +log 2)P19 (wasy(x))?
[e%s} HE4+1
+2 1Y (L 1ogn) (g Sugerry (2))°

k=0 n=pr+1
< Ywisi (@) + (1 + log 2)74) (wasz(x))

+ (1 + log k)t (wrsi ()] k!
k=3
[(1+logk)? Y(wrsk(x))]? kL.
k:l

O

THEOREM 3.4. Let 0 < ¢ < o0, —1/¢< p < o0, v, =(1+1logn)’, neN
and {wn} be a decresing sequence of positive numbers. If T € L(E,F) is of
the type eggf then there exist operators T,, € L(E,F) with rank(T,) < fin,
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where p, = 22", n € Ny, such that T has a representation of the form

(o)
T:Z%Tn

and

3 2Dy, [T < oc.
n=0

Conversely, if w, =1, n € Ng and T has a representation of the form

o0
T = ZTn
n=0

where T, € L(E, F), rank(T,) < pin, n € No, such that the series Y oo o || Tk ||
is convergent then T is of the type E&“f(}w provided

o0
> 2" POy (|T, )0 < oo

n=0

PROOF. We first assume that T € L(E, F) is of the type Egg‘féw. By
definition of a,,(T), k € Ny, there exist operators L, € L(E,F) with
rank(Ly) < py such that

17— Lell < 2 a,,, (T).
Define the operators Ty, ‘s as To = 0, 71 = Lo and T = Ly_1 — Ly_o, k =
2,3,....

Then ||T1]| <3 ay(T) and || Tk < 4 ap, ,(T), k=2,3,... yield

Y(wil|Th]) < 3 P(wiai(T))
and
w(w#k ”Tk”) <4 w(wuk—2auk—2(T))a k= 27 3; ceee

Further, we note that rank(T%) < . Since {ax(T)} € co, we have

T:iTn.

n=0



430 M. GUPTA AND L. R. ACHARYA

Now,

> 2 0wy, ||Tull)

n=0

o0
< 2(1+”‘1)3q¢(w1a1(T))q + Z 2(n+2)(1+pq)4qw(wunaun (T))?

n=0

~ w(wuh(T))q + Z 2n(1+pq)¢(w”naun (T))q
n=0

(1 + logn)Peh(wnan(T)))In 1,

2
NE

1

3
Il

by Proposition 3.3. Hence

00
> 20Dy, | Tall)? < oo
n=0

Conversely, let us assume that T = Y"°° | T;, where rank(T},) < 22", n €
Ng. For n € N define

n—1
Ap =Ty
k=0
Then rank(A4,) < fin, n € N. Therefore

Ay, (1) < T — Anl < Z T, neN

k=n

and
o (T) < ||T < |1 Tell-
k=0

Fixn, m € Nand let 0 < p < min(1,q), 0< 8 < (1+pq9)/q, 1/s=1/p—1/q.
Applying the Holder’s inequality, we get

(3 20k ytle (3 20k Tyt
k=n k=n

m

O LTl

k=n

IN

< 0277 2| Tul) )V,

k=n

where C' is a positive constant.
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Using the sub additivity and continuity of v and by the previous propo-
sition
(oo}
S 01 +logn)? $(an(T)]? 0=t ~ (as(T))" + j{jz"'l+Pq ay, (T))"?

n=1

< Y(ar(T))? + C* 22" 1+p0-0a) 22"’“’1/) 1T%[)?)

n=0 =
oo k
~ q+z Z gn(1+pa=0a))90kay, (|| Ty, || )4
k=0 n=0
<K [y ‘1+22k L+00) ) (|| T3 ]|)9] < 0.

Here the positive constant K depends only on g, p or 6. Hence we get the
result. O

THEOREM 3.5. Let pn, = 22", n € Ng and T € L(E,F). For 0 < p < oo,
define v, = (1 +1logn)?, n € N and let {w,} be a decreasing sequence of
positive numbers. If {an(T)} € (52%¢ then for each n € Ny, there exist
operators Ty, € L(E, F) with rank(T, ) < p, such that

T = ZTn
n=0

and
Sgpo{Q”” Y(wp, [ Tnll)} < 00

Conversely, if w, =1, VneN, T € L(E,F) has following representation

o0
T:ZTn,

where T,, € L(E, F) with rank(T,,) < ji,, and the series Y o || Ty || is conver-
gent, then {an(T)} € €35% provided

SEPO{T”) (I Tl))} < oo
PRrROOF. Let {a,(T)} € é};g(;y By the definition of approximation num-
bers, there exists operator L,, € L(FE, F') with rank(L,,) < p, and
[T = Ln|l < 2ay, (T).

Define Ty =0, Ty =Lpand T, =L,—1 — L2, n=2,3,4,....
Then

IT — Awiall = |IT — Lull < 2, (T) — Oasn — oo
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Also, rank(T},) < pin, |T1|| < 3a1(T) and ||T,,|| < 4an, ,(T), n=2,3,4,....
Therefore

Y(wil|Th]]) < 3¢ (wiai(T)) and (wy,
forn=2,3,4,... and

sup{2"7 P (wp, [|Tnll) : n € No}
< sup{2°9 (i | T1]), 20279 (wp | Tas2ll) = € No}
< 2% 2 sup{y(wi||T1]), $(w2as(T)), 2" VP(wp, ap, (T)) : n € N}
< ¢ sup{t(@ilITill), (1 +1og2)” Blwsas(T)),
max{(1 +log k)’ (wrar(T)) : pin—1 < k < pp},n € N}
= ¢ sup{(1 +logn) Y (wnan(T)) : n € N} < oo,

Tn ”) S 4w(w#nf2aﬂnf2 (T))a

where c is a positive constant depending only on p.
For the converse, for n € N let us write

n—1
A, = Z Ty
k=0
Then rank(A4,,) < pn, n € N. Also, for n < m

> (I Tkl > 27k gkey(| 7))

k=n k=n

< 27(1L—270)  sup {2 (ITl) k=m0t 1. m).

Since
o0
auo (T) < ar(T ZIITkII
and

)
@, (T) < Y| Tll, n €N,

by the subadditivity and continuity of 1, we get

(@ (T Z (ITell) < (L — 277) "L sup{2 (| Tel]) : k € No}
and
Y(ap, (T) < > (Tl
k=n

< 27(1—277) " sup{2% (I Tk]))  k=nn+ 1,
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We now have
ili{(l +logn) v(an(T))} = sup{y(a1(T)), max{(1+ log k)"t (ar(T)) :

pn <k < piny1}:n €N}

< k1 sup{¢(ai(T)), 2"y (a,, (T)) : n € No}
<k sUp{2" (| Tul)} < oo;
n=1
where the constants k1 > 0 and k3 > 0 depend only on p. o

4. OPERATORS OF THE TYPE Sy .

Let ¢ : [0,00) — [0, 00) be a continuous function which is strictly increas-
ing, subadditive and satisfies 1(0) = 0. Further let w = {w,,} be an increasing
sequence of positive numbers. We define

Spw = {{l‘n}gK:Vk’GNo, d M, >0
with sup(n + 1) (wp|2,]) < My}
n=0

If w, =1, Vn € Ny and v is the identity mapping, we get the class of all
rapidly decreasing sequences.

PROPOSITION 4.1. For {z,} € Sy.w,

o

Y+ 1P ((wnlzal))? < o0

n=0
for each p >0 and k € Ny.

PROOF. Let p > 0 and k € Ny. We now choose a r € Ny such that
rp > k+ 2. Since {z,,} € Sy, we can find a constant M, > 0 such that

(n+1)" Y(wnlrnl) < M,

for each n € Ny. Then

D rp—2 wolz P My
(n+ D walra )P € ()Pl € 2
and
- P pio: 1
n§:0(n+1)k (w(wn|xn|)) < M; ~ (n+1)2 < oo

PROPOSITION 4.2. S, C /1.
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PROOF. Let {x,} € Sy be such that {z,} is not in ¢*. So for each
k € Ny we can find an increasing sequence {nj} of natural numbers such that
ng >k, V k and

MNk+1

Z |z, > 2% Wit

n=ng+1

Since {wy} is an increasing sequence, we get

N1 MNk41
2 < wp D el <) wa laal.
n=ng+1 n=ng+1
Therefore
NE41 Nk41
$(2F) < ( Z wn |Tn|) < Z Y(wn [2n])
n=ng+1 n=ng+1

using the increasing nature of 19. Now 1(2¥) — 0o as k — co. This contradicts
the conclusion in the preceding proposition. Hence Sy, ., C 2
ALITER: by the assumption on ¢ and w, for any {z,} € Sy ., we have

Glwo S leal) < (S walzal) < 3 v(walzal) < Mo 3 (n41)72 < oo,
n=0 n=0 n=0 n=0
where My is the constant from Proposition 4.1. This shows {z,} € £*. O

PROPOSITION 4.3. If {zy,} is a sequence such that the sequence {wy|zn|}

is decreasing and
(oo}

> (Wwnlzal)) < oo
n=0
for each p > 0, then {x,} € Sy ..
PrROOF. By the hypothesis, for any n € Ny and p > 0 we have

(n+1) @walza)P < Y @lwmlenl)? < Y (Dlwalza)))? < M
m=0 n=0

for some M > 0. Then
(n+1)F Y(wnlznl) = [(n+1) G(walza])*]F < M* < oo,
for each k € Ng. Thus {z,} € Sy... O

THEOREM 4.4. Let T € L(E,F). If T is of the type Sy ., then there exists
an increasing sequence v = {vp} such that T is pseudo Sy .- nuclear and

Stpw S S0

Conversely, if T is pseudo Sy .- nuclear, then it is of the type Sy ..
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PROOF. Suppose T is of the type Sy o i.e. {an(T)} € Sy.... Now for each
n € N, we can find operators T,, € L(E, F) of rank (T,,) < n such that

IT = Tall < 2 an(T).
Let B, = Tny1 — T, and b, = dim(range(B;)). Then
b < 2(n+1)

and
[Bull < |Tos1 =T+ T —Tnl| <4 an(T).
Define dy =0, d,, = >, b; and let v; = w,, dp—1 < j < d,, n € N. Then

$(va, [|Bnll) < 4 ¢(va, an(T)),

using the subadditive nature of ¥». We now have, for each p > 0

D bn (W(va, IBal)? < 247 Y (04 1)@ (wn an(1)) < o0
n=0

n=0
by Proposition 4.1. Now each B,, has a representation of the form

bn
= DN @)
i=1

for each z € E, where ||f/*|| < 1, |ly?|| < 1 and [|A?| < ||Bn]|, for each
i=1,2,...,b,. Then

bn

Z P(vd, it [AT])” Z wn [[Bal))? < o0
)

for each p > 0. Since {a,(T)} € ¢, a,(T) — 0 as n — oo. Therefore for each

reE,
%) oo b
T'(z) = nlggo Toyi(z) = ZBn(I) = ZZ)‘? fi(@) yi'.
n=0 n=0 i=1

Thus T can be rewritten as
o0

(4.1) T(x) = Z,ui 9i(x) zi
i=0

where g, € X*, z, €Y, |lgnll <1, |lzn|| <1, for each n € Ny and p;’s are
given by

Bdprtj = Ajs 1< J < by
Sequences {g,} and {z,} are defined in the similar fashion corresponding to
{fn} and {y,} respectively. Note that

00 bn

Db )P =30 D (0a, 1+ AT <Y butb(wnl| Bal)?

n=0 n=1j=1 n=1
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for each p > 0. In particular when p = 1, we get {vn|un|} € &1 C co,
by the continuity and subadditivity of 1. Thus the terms of the sequence
{Un|pn|} can be rearranged in a decreasing order. Let o be the permutation
which is being used in making such a rearrangement. Since the above series is
convergent even if we replace n by o(n), by Proposition 4.3, we get {fty(n)} €
Sy,v. Further we note that the convergence of series in (4.1) is unconditional.
Indeed for any permutation o, we have

1Y tot) 9o)(@) 2ol < Nl D lpa@l — 0

i=n

as n, m — oo because Sy, C ¢1. Thus T is pseudo Sy ., -nuclear.
Conversely, if T' is pseudo Sy ., -nuclear, then it can written as

T(z) = ZM fi(z) yi
i=0

where f, € X*, yp €Y, |[fall <1, |lynll < 1, for each n € Ny and {\;} €
Syw. For n € Ny, we define

n—1
Tn(z) = Z)\z‘ fi(z) yi.
=0

It follows
an(T) < ||TTn||s|i?21n§Ai Fiw) wll < iw.
Using the increasing nature of {w,}, we get
o an(T) < i Il
Ve (D)) < 3wl M)
Therefore, for any p € [0, 1), -
(lm an(@)P < (3 ber NP < S (@l MDY,
SO = =
iowm @) < i S (0 P = i{)(m) (leom Pa))? < c0.

Since P C 01, if p < q, we get the convergence of the above series for all p > 0.
Now the result follows from Proposition 4.3. O
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