
Accurate and Fast Classification of Natural Disasters 

using CNN-LSTM and Inference Acceleration 

Nathaniel Sze Yang Tan, Mau-Luen Tham, Sing Yee Chua, and Ying Loong Lee 

Abstract—Catastrophic occurrences induced by disasters often 

lead to fatalities, extensive damage, and societal disruptions. In 

pursuit of realizing disaster-resilient smart cities, video 

surveillance systems incorporating artificial intelligence (AI) can 

automatically process and classify the disaster content in real-time. 

This advancement is fueled by the recent progress in computer 

vision and AI algorithms, specifically deep learning neural 

networks, which can be leveraged for disaster categorization tasks. 

However, minimizing the complexity of AI models while 

preserving accurate disaster classification remains a formidable 

challenge. In this paper, we propose a convolutional neural 

network-long short-term memory (CNN-LSTM) model capable of 

discerning four types of natural disasters and a non-disaster event. 

Contrary to prior research that treats input video as a sequence of 

independent frames, we demonstrate the significance of spatio-

temporal characteristics in reaping high prediction accuracy. 

Furthermore, conventional methods rely on resource-intensive 

hardware to boost AI model performance, which may not suit real-

time monitoring. To facilitate real-time disaster monitoring 

applications, the trained model is further optimized by utilizing a 

neural network acceleration platform known as OpenVINO. Our 

findings reveal that the optimized version of the proposed CNN-

LSTM model sustains 100% accuracy while boosting throughput 

by 25% in terms of frames per second (FPS). 

  Index terms—CNN-LSTM, deep learning, disaster 

classification, inference optimization, OpenVINO. 

I. INTRODUCTION

Over the past decade, there has been a marked escalation in 

the frequency of natural disasters worldwide, including 

cyclones, earthquakes, floods, and wildfires [1]. These 

calamitous events pose considerable threats to both physical 

and environmental securities, potentially resulting in numerous 

casualties and extensive property damage. Large-scale disaster 

monitoring is possible by deploying a plethora of video 

surveillance cameras [2]. Equipped with well-trained artificial 

intelligence (AI) model, these smart systems can automatically 

process and classify the disaster content in real-time. For actual 

Manuscript received November 23, 2023; revised January 8, 2024. Date of 
publication January 30, 2024. Date of current version January 30, 2024. The 

associate editor prof. Maja Braović has been coordinating the review of this 

manuscript and approved it for publication. 
This research was supported by Universiti Tunku Abdul Rahman (UTAR), 

Malaysia and ASEAN IVO project. The preliminary version of the paper was 

presented in at the 13th International Conference on Ubiquitous and Future 
Networks (ICUFN) 2022. 

Authors are with the Department of Electrical and Electronic Engineering, 

UTAR, Malaysia (e-mails: nat980718@1utar.my, thamml@utar.edu.my - 
corresponding author, sychua@utar.edu.my, leeyingl@utar.edu.my). 

Digital Object Identifier (DOI): 10.24138/jcomss-2023-0129 

AI model deployments, both the correctness of the AI result and 

processing time play a crucial role in establishing effective 

disaster response. 

Convolutional neural networks (CNNs) represent one of the 

most commonly employed AI techniques for disaster 

classification, owing to their exceptional performance in the 

domain of image classification [3]. Specifically, CNNs can 

process input videos on a frame-by-frame basis, extracting 

features that facilitate accurate classification. Popular CNN 

architectures, such as VGG-16 [4] and EfficientNet [5], have 

demonstrated the ability to achieve up to 81.6% accuracy [6] 

when utilizing datasets comprised of static disaster images. On 

the other hand, the data obtained from video feeds, such as 

video surveillance cameras, are presented in the form of moving 

images that are connected to one another rather than static 

disaster images. Consequently, these models are unable to 

adequately capture the diverse spatio-temporal characteristics 

inherent in video data. In practice, the direct application of pure 

CNN models to camera feeds may result in fluctuating 

predictions across successive video frames, an issue that can be 

mitigated through the implementation of rolling average 

prediction (RAP). 

Long short-term memory (LSTM) networks are utilized in a 

vast array of problem domains. LSTMs can be employed either 

individually or combined with other deep learning 

architectures. LSTM networks possess the capacity to 

effectively discern temporal features within sequential data [7]. 

However, their performance is limited to low-dimensional data, 

such as texts and speeches [8-9]. Lacking convolutional and 

max-pooling layers typically found in CNNs, LSTMs are ill-

equipped to manage the complex patterns present in video data. 

Given the prevalence of deep learning (DL) techniques, 

numerous researchers have combined CNN with LSTM, 

resulting in CNN-LSTM models for applications such as speech 

and handwriting recognition, as well as image and sound 

classifications [8-10]. In this study, we leverage the synergistic 

advantages of CNN-LSTM to develop an accurate disaster 

classification model. 

Model complexity is undeniably a critical factor in the 

successful implementation of disaster monitoring systems. 

Traditional approaches rely on resource-intensive graphics 

processing units (GPUs) to accelerate AI workloads. While the 

GPU parallelism is highly appreciated during the training 

phase, optimizing and executing models during the inference 

phase without drawing massive power consumption from the 

GPU remains an open research question. The Intel OpenVINO

58 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 1, MARCH 2024

1845-6421/03/2023-0129 © 2024 CCIS

Original scientific article

mailto:nat980718@1utar.my
mailto:thamml@utar.edu.my
mailto:sychua@utar.edu.my
mailto:leeyingl@utar.edu.my


toolkit has emerged as a promising solution to these challenges, 

thanks to its ability to fine-tune and optimize DL inference 

performance across various low-powered target platforms [11].  

In this work, we focused on classification models to identify 

the key elements that impact the performance of quantization. 

We discovered that the model parameters play a significant role 

in quantization performance. VGG16 [4] has a large number of 

parameters, whereas MobileNet_v1 [40] and ResNet-50 [41] 

reduce their parameters using depth-wise separable 

convolutional layers and 1×1 filters. As a result, the speedup 

and improvement factors achieved through quantization are not 

as significant compared to VGG16. 

This study has the potential to be expanded to various other 

deep learning models, including natural language processing, 

graph neural networks, pose estimation, and segmentation 

models, in order to gain valuable insights into how quantization 

impacts the performance of these models. Additionally, by 

examining the optimization techniques employed in deep 

learning frameworks, researchers can adopt the most effective 

practices for achieving efficient results during both training and 

inference stages. This characterization of optimization 

techniques can further facilitate the development of more 

efficient deep learning optimization methods by understanding 

their performance across different models and datasets. 

To achieve optimal deep neural network inference, different 

processors such as NVIDIA’s TensorRT, Google's TensorFlow 

Lite, and Intel's OpenVINO require specific deep learning 

frameworks. NVIDIA’s TensorRT is a software to optimize and 

accelerate deep learning inference that utilizes NVIDIA GPUs 

equipped with embedded processors and neural processing 

units (NPUs) [42]. TensorFlow Lite [43] is a toolset that 

facilitates on-device machine learning, allowing developers to 

deploy their models on edge devices. OpenVINO is an 

advanced toolkit developed by Intel to enhance the performance 

of neural networks on Intel hardware [44]. Additionally, 

OpenVINO is specifically designed to optimize the efficiency 

and speed of neural network computations for resource-

constrained edge device. In this work, we select OpenVINO as 

it enables the swift deployment of applications and solutions in 

various domains [45]. The proposed solution should be portable 

in such a way that the OpenVINO optimized model can be 

directly converted to TensorFlow Lite, as supported in [46]. 

In our previous study [12], we applied a transfer learning 

approach to a VGG-16 model with varying model precisions for 

disaster classification. Upon optimization by OpenVINO, we 

observed a loss of approximately 1% in accuracy compared to 

our original disaster classification model. Specifically, we 

consider the synchronous mode of the inference process, 

wherein the AI-optimized model receives images from a video 

stream and generates instantaneous predictions. 

In this paper, we build upon the work presented in [12] with 

the objective of developing a new disaster classification model 

utilizing CNN-LSTM. This model is designed to capture the 

temporal dependencies within the input video, enabling the 

classification of cyclone, flood, earthquake, and wildfire 

disasters, as well as non-disaster events, from video clips. The 

main contributions of this research are summarized as follows: 

1. We have assembled a dataset comprising up to 343 video 

clips, each containing one type of event (cyclone, flood, 

earthquake, wildfire disaster, or non-disaster). This dataset 

serves as the input for the proposed CNN-LSTM model. 

2. We have developed a CNN-LSTM-based disaster 

classification model to classify disaster and non-disaster 

events. The proposed CNN-LSTM model contains 30 

LSTM cell units, capable of storing long-term 

dependencies from 30 input data frames. The model is 

further finetuned by optimizing parameters within the 

dense layer, establishing the best architecture for disaster 

classification tasks given the relatively small dataset. 

3. Trained using the native TensorFlow platform, the 

proposed CNN-LSTM model demonstrates superior 

accuracy performance compared to pure-CNN and CNN-

RAP models. Optimized in the OpenVINO platform, the 

performance in terms of inference speed and latency of the 

proposed CNN-LSTM method has been further enhanced. 

The inference speed of the optimized models increases by 

25.0% - 63.1% in terms of FPS and exhibits 19.7 - 38.8% 

lower latency compared to the original (unoptimized) 

models when running in CPU-only mode. 

The remainder of this paper is organized as follows: Section 

II reviews related works; Section III details the research 

methodology and model architectures; Section IV presents the 

results and discussions; and finally, Section V offers concluding 

remarks. 
 

II.  RELATED WORK 
 

A. CNN 

Recently, many disaster classification studies have been 

proposed using AI, particularly CNNs [13]. Notably, majority 

of the related studies conducted were based on CNNs rather 

than traditional machine learning methods by the reason of the 

superior performance of CNNs [6]. 

In particular, the authors of [14] used a CNN and employ a 

transfer learning approach using VGG-16 to classify four types 

of natural disasters, including hurricanes, earthquakes, floods 

and wildfires. However, CNN has the drawbacks of classifying 

each input image independently of each other, which may 

hamper its performance, given that video is used as the input. 

As a result, their CNN model scores low accuracy in classifying 

natural disasters in videos. Furthermore, their model was not 

trained to classify non-disaster scenarios.  

Recognizing the importance of the absence of non-disaster 

event classification, our previous work in [12] trained a model 

to classify the above-named natural disasters and an additional 

non-disaster event from video clips. The CNN model achieves 

an accuracy of 92.30 % with 21.35 FPS in the OpenVINO 

environment. 

Nevertheless, inspired by the effectiveness of the VGG-16, 

we adopt it for the current study due to the ease of use and 

superior accuracy of the model. 

 

N. SZE YANG TAN et al.: ACCURATE AND FAST CLASSIFICATION OF NATURAL DISASTERS 59



B. RNN 

A number of studies that work on long-term data 

dependencies is based on recurrent neural networks (RNNs) 

[15], as RNNs are widely used in modeling sequence data. 

RNNs can remember the important information i.e., the input 

data, thanks to its internal memory, that allows them to be very 

precise in predicting the output. LSTM [7] and gated recurrent 

unit (GRU) [16] are actually based on the architecture of RNNs 

that is also designed to work on long-term dependencies in data. 

LSTM has three gates: Forget gate, input gate and output gate; 

whereas GRU has fewer parameters than LSTM with only two 

gates: Update gate and reset gate [17]. 

Researchers have made efforts to utilize RNN for capturing 

long-term temporal patterns in videos. For instance, the study 

in [18] proposed using LSTM to convert videos into textual 

sentences, leveraging knowledge from image description tasks. 

Another study [19] employed LSTM for modeling temporal 

information in the context of video description. Their work did 

not consider using RNN video classification, rather they 

focused on using it to generate video descriptions. This 

solidifies the statement that RNNs are limited to low-

dimensional data, such as texts and speeches as it lacks 

convolutional and max-pooling layers typically found in CNNs 

to extract the features. 

It is noteworthy that there are several variants of LSTM. 

Vanilla LSTM has a single hidden layer containing LSTM units 

that is composed of a cell, an input gate, an output gate and a 

forget gate [20]. Stacked LSTM has multiple hidden LSTM 

layers that are stacked on top of one another, making the model 

deeper and higher level of abstraction [21]. Bidirectional LSTM 

has two hidden LSTM layers of opposite direction, so that 

information is utilized from both sides [21]. 

In this paper, we select the simpler vanilla LSTM structure 

which is more preferred for real-time disaster monitoring 

applications rather than other LSTM structure as vanilla LSTM 

is computationally less intensive, allowing better performance 

in inference speed. 
 

C.  CNN-LSTM 

A video is comprised of a sequential arrangement of frames, 

where each frame holds spatial data, and the sequence of frames 

captures temporal information. To effectively capture both of 

these elements, a hybrid architecture, which combines CNN for 

spatial processing and LSTM for temporal processing, is 

employed. This particular type of hybrid architecture is 

commonly referred to as a CNN-LSTM. 

The study in [14] combined the CNN and LSTM to classify 

natural disasters such as cyclones, earthquakes, floods, and 

wildfires from videos. Interestingly, their VGG16-LSTM 

model is able to achieve two times higher accuracy than that of 

using CNN alone. However, their LSTM only trains to classify 

texts in the video description. In contrast, our aim is to utilize 

the extracted features from the CNN and LSTM to classify 

natural disasters based on the extracted features.  

Realizing that RNNs have demonstrated good performance 

on the tasks where temporal information is important, the study 

in [22] utilizes the power of CNN for extracting spatial 

information followed by a single-layer LSTM for temporal 

processing. Their CNN-LSTM model achieved 61-% accuracy 

in video classification for video facial expression recognition 

tasks. The study's moderate accuracy scores do not provide a 

definitive conclusion on the superiority or inferiority of using 

CNN-LSTM, as the authors noted the absence of prior 

publications demonstrating video classification performance on 

the specific dataset employed in their research. 

It is worth noting that one of the challenges of using deep 

learning for video processing, particularly CNN-LSTM, is the 

high computing resources required for large-scale video data 

processing [23]. 
 

D. CNN-RAP 

In general, a video contains a series of moving images that 

are co-related with each other. Therefore, averaging the 

prediction can improve the accuracy of the classification result. 

The motivation of integrating the rolling average prediction 

(RAP) to the pure-CNN model is that the CNN-RAP model may 

achieve a performance similar to that of the CNN-LSTM model 

with a lower computing power.  

The research conducted in [24] proposed a technique for 

implementing a rolling prediction average (similar to RAP) 

algorithm to enable video classification and recognition of 

abnormal interference in surveillance camera systems. The 

outcomes indicate that CNN-RAP outperforms alternative 

machine learning approaches like support vector machine 

(SVM) in terms of accuracy scores. 
 

III.  RESEARCH METHODOLOGY AND MODEL ARCHITECTURES 
 

A disaster-related image dataset is obtained online known as 

Crisis Image Benchmarks Dataset (CrisisIBD) [25]. The 

disaster images are combined to form multiple videos of exactly 

30 frames per video. Natural disasters images and videos are 

used as input data that require preprocessing before the deep 

learning tasks. Since the CNN models do not accept different 

input image sizes, a suitable image dimension of 224 × 224 is 

selected.  

The dataset collected from [25] is first split into 82% for the 

training and then validation while 18% for the testing. The 82% 

data is subsequently separated into 90% and 10% for the 

training and validation datasets, respectively. To further assess 

the generalization capability of the trained models, samples 

collected from another source of image dataset [47] and video 

[48-51] are adopted for the testing purpose. A total of three 

models are trained: A pure-CNN model and two proposed 

CNN-LSTM models are trained with either 80 or 160 of 

neurons in the dense layer. After the pure-CNN model has been 

trained, an additional model is developed by integrating the 

RAP to the pure-CNN model, as known as the CNN-RAP 

model. The performance of the four models is measured using 

the testing dataset. 

In the interest of deploying the disaster monitoring models in 

real-time, it is important to know their processing speed in 

terms of FPS and latency. Thus, additional performance 

measurement is accomplished in the TensorFlow environment 

and the OpenVINO environment.

60 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 1, MARCH 2024



 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
Fig. 1.  Methodology of the proposed models 

 

The overall implementation of this work is visualized in Fig. 

1, which also shows the procedure of training and attaining the 

performance of various models in two different environments. 
 

A. Dataset Preparation 

To ensure a high classification accuracy of the new models, 

the models need to be trained with a good image dataset. The 

images in the dataset have to be grouped together with the 

correct labels. The reason for the need of a good dataset is that 

the pure-CNN model and the proposed CNN-LSTM models are 

deep learning models, and their classification performance is 

directly affected by the training dataset. Assuming that the 

image dataset contains non-related images for a specific label, 

the model’s classification accuracy for that specific label will 

perform poorly. Preprocessing refers to the point of obtaining 

the dataset online, filtering the dataset, and attaining dataset 

quality enhancements for improving the performance of the 

deep learning models. Enhancements of the dataset include 

image dimension resizing for better learning efficiency of the 

deep learning models in the training phase.  

The effectiveness of disaster classification of the models is 

closely linked to the amount and quality of data available. 

Artificial Intelligence for Disaster Response (AIDR) is a dataset 

created by the authors in [26], which consists of filtered tweet 

messages posted by individuals during disasters. A similar work 

can be found in [27] where the authors have published a sizable 

collection of multimedia data sourced from Twitter known as 

Multimodal Crisis Dataset (CrisisMMD) that relates to various 

natural disasters. 

In order to make benchmarking fair-and-square, the authors 

in [25] combined the datasets mentioned earlier into one dataset 

named CrisisIBD, which will be used as the input dataset for 

this paper, as the dataset yields promising results by the work 

in [28]. Fig. 2 shows the typical images found in the dataset. 

The number of classes in the dataset used in this study will be 

less than that of the dataset obtained in [25]. Our objective is 

not to enhance accuracy performance by eliminating certain 

classes from the original dataset. Instead, we aim to improve 

accuracy performance by leveraging a more sophisticated deep 

learning model, specifically the CNN-LSTM model. The 

images within each category of natural disasters in the dataset  

 

 

were utilized in their original form to train the different models 

and any overlapping categories are not taken into account.  

Table I shows the dataset in the proposed study for the pure-

CNN model. Using the same dataset, the image datasets have 

been converted to video as shown in Table II for the proposed 

CNN-LSTM models. Each video has a fixed frame rate of 30 

FPS, and each frame relates to one image only. As for the video 

source obtained from [48-51], each video was trimmed to 

contain precisely 30 frames. Hence, each video is precisely one 

second long and comprises exactly 30 images of a specific class 

of natural disaster or non-disaster class, thereby fulfilling the 

time consistency needed for video-based disaster classification 

for the CNN-LSTM models. The non-disaster class of the test 

dataset exhibits a larger data volume compared to the other 

classes, as this is intended to mimic real-world scenarios where 

the absence of a disaster is the norm. 
 

TABLE I 

IMAGE DATASET SPLIT FOR THE PURE-CNN MODEL 
 

Disaster Label Train Validate Test Total 

Cyclone 1,080 120 270 + 90* 1,470 

Earthquake 1,080 120 270 + 90* 1,470 

Flood 1,080 120 270 + 90* 1,470 

Non-disaster 1,080 120 870 + 90* 2,070 

Wildfire 1,080 120 270 + 90* 1,470 

*Additional test images from source [47-51] for inference. 

 
TABLE II 

VIDEO DATASET SPLIT FOR THE PROPOSED CNN-LSTM MODELS 

 

Disaster Label Train Validate Test Total 

Cyclone 36 4 9 + 3* 49 

Earthquake 36 4 9 + 3* 49 

Flood 36 4 9 + 3* 49 

Non-disaster 36 4 29 + 3* 69 

Wildfire 36 4 9 + 3* 49 

*Additional test videos from source [47-51] for inference. 

N. SZE YANG TAN et al.: ACCURATE AND FAST CLASSIFICATION OF NATURAL DISASTERS 61



 
Fig. 2.  Typical images for different disaster types [25] 

 

B. Proposed Deep Learning Models 

Neural networks in deep learning shortens the efforts of 

training a new model in months into hours or even minutes [29], 

depending on the hardware. For example, by using high-speed 

general-purpose hardware, such as GPUs, are able to effectively 

reduce the training time [30]. The pixel values of an input image 

are extracted and assigned to each neuron in a numeric form. 

The connection between neurons contains weights that serves 

as a strength between different layers of neurons. This study 

considers two types deep learning models, which are the pure-

CNN model and the proposed CNN-LSTM models. Both 

models share a similar base CNN architecture, which is referred 

to as the base CNN model shown in Fig. 3. It is noteworthy that 

the CNN-RAP model adopts exactly the pure-CNN model with 

RAP integrated in the inference phase. 

The selection of pure-CNN’s model parameters is based on 

the findings from our previous studies in [12]. The CNN-

LSTM’s model parameters are experimented with some 

reference to [31], in which the authors used CNN and LSTM to 

detect violence from videos. 

B.1. Pure-CNN Model 

The pure-CNN model consists of a network of layered 

architectures. The pure-CNN model is selected to be a pre-

trained VGG-16 model, due to its superior performance over 

other models [32]. The development of VGG-16 is to compete 

in image classification tasks; hence it suits our task at hand. The 

CNN layered architecture extracts the image pixels in the form 

of features. The layers of the pure-CNN model include the input 

layer, the multiple 2D convolutional layers, the multiple max-

pooling layers as shown in Fig. 3, and custom model head such 

as the flatten layer, the dense layers and the dropout layer, as 

shown in Fig. 4. Table III shows the number of parameters 

present in each layer of the pure-CNN model and a total number 

of 12,848,133 trainable parameters that are attributed by the 

custom model head. The layers of the original VGG16 model 

[4] are not trained as we are employing a transfer learning 

approach, therefore, the parameters of the original layers are 

treated as non-trainable parameters. Rectified Linear Unit 

(ReLU) activation function is used in the feature extraction 

layer and SoftMax activation function is selected in the 

classification layer [33]. 
 

B.2. CNN-LSTM Model 

Our proposed CNN-LSTM model is an improved CNN 

followed by an LSTM model architecture in terms of parameter 

fine-tuning. The hybrid model has the ability of storing long 

term dependencies of 30 data, hence allowing better prediction 

as the model is able to receive an input of multiple consecutive 

images [31]. Since the CNN model only accepts a single input 

image, the layers of the base CNN model are wrapped in the 

TimeDistributed function to enable the model to process 30 

images as an input. A TimeDistributed layer will add an 

additional dimension to the input shape [34], that is the number 

of images to process per input in addition to the image 

dimensions and the number of color channels (i.e., frame, 

width, height, channel). The input parameters for the proposed 

model are (30, 224, 224, 3). 
 

 
Fig. 3. Architecture of the base CNN model 

 

In the training phase, the CNN-LSTM model utilizes each 

video (30 frames) in the dataset as input to learn the temporal 

relationship across different disasters. In the inference phase, 

the CNN-LSTM model analyzes frame-by-frame from the 1st to 

the 30th frame of the test video, before producing the 

classification result. Since the test videos can be up to 29 

seconds long, during the second inference, the CNN-LSTM 

model analyzes frames sequentially from the 2nd to the 31st 

62 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 1, MARCH 2024



frame and then produces the classification result. This process 

is repeated until the entire video stream has been processed. 

TABLE III 

PURE-CNN MODEL LAYERS AND THE NUMBER OF PARAMETERS 
 

Pure-CNN Layer (type) Number of Parameters 

input_1 (InputLayer) 0 

block1_conv1 (Conv2D) 1,792 

block1_conv2 (Conv2D) 36,928 

block1_pool (MaxPooling2D) 0 

block2_conv1 (Conv2D) 73,856 

block2_conv2 (Conv2D) 147,584 

block2_pool (MaxPooling2D) 0 

block3_conv1 (Conv2D) 295,168 

block3_conv2 (Conv2D) 590,080 

block3_conv3 (Conv2D) 590,080 

block3_pool (MaxPooling2D) 0 

block4_conv1 (Conv2D) 1,180,160 

block4_conv2 (Conv2D) 2,359,808 

block4_conv3 (Conv2D) 2,359,808 

block4_pool (MaxPooling2D) 0 

block5_conv1 (Conv2D) 2,358,808 

block5_conv2 (Conv2D) 2,359,808 

block5_conv3 (Conv2D) 2,359,808 

block5_pool (MaxPooling2D) 0 

flatten (Flatten) 0 

dense (Dense) 12,845,568 

dropout (Dropout) 0 

dense_1 (Dense) 2,565 

Total parameters 27,562,821 

Trainable parameters 12,848,133 

Non-trainable parameters 14,714,688 

 

 
Fig. 4. Architecture of the pure-CNN model 

 

The units in the LSTMs are known as memory cells, which 

are used to store the knowledge of previous states given a 

known time interval. Fig. 5 illustrates a single LSTM cell [35]. 

Each LSTM cell has three gates to regulate the information 

flow. In each time step, the current input 𝑥𝑡, current hidden state 

ℎ𝑡 and past hidden state ℎ𝑡−1 of the cell information 𝑐𝑡 is 

regulated by the three gates, that are the input gate 𝑖𝑡, output 

gate 𝑜𝑡, and forget gate 𝑓𝑡. Sigmoid function 𝜎(. ) ensures that 

the output is within the range of [0,1]. The value of the forget 

gate 𝑓𝑡 can decide what information to be retained or discarded 

from the cell state, that is, the value of 1 is to keep the 

information and value 0 means release all the information [35]. 

The output of the TimeDistributed CNN model with the 

shape of [30×25088] is served as the input to the LSTM layer. 

The LSTM layer encompasses 30 unit of cells, with each cell 

representing a time step, and each time step is a frame of an 

image. Utilizing the full sequence prediction of the LSTM, a 

dense layer with 80 or 160 neurons is applied followed by a 

global average pooling layer, and a dense layer as the final layer 

for classification duty. In this paper, the number of neurons in 

the dense layers (80 or 160) is the hyperparameter settings to 

obtain the best performance. Similar strategy is advocated in 

[52-54], where at least five choices of different number of 

neurons are analyzed. 
 

 
 

Fig. 5. Architecture of a vanilla LSTM cell 
 

In short, the architecture of the proposed CNN-LSTM model 

is built on the CNN model as a feature extractor followed by 

LSTM cells, and can be seen by linking Fig. 3 and Fig. 6. The 

number of parameters present in each layer of the CNN-LSTM 

model is shown in Table IV. In the CNN-LSTM model, the 

LSTM component accounts for the majority of the trainable 

parameters, with 3,017,165 and 3,020,045 parameters for 

models containing 80 and 160 neurons in the dense layer, 

respectively. 
 

 

Fig. 6. Architecture of the proposed CNN-LSTM models 

 

C. OPENVINO Optimization 

To benchmark the performance of the natural disaster 

classification models, all the trained models need to be 

converted and executed in the OpenVINO environment due to 

the superior performance in terms of throughput. The steps of 

this phase are described as follows. 

N. SZE YANG TAN et al.: ACCURATE AND FAST CLASSIFICATION OF NATURAL DISASTERS 63



TABLE IV 

CNN-LSTM MODEL LAYERS AND THE NUMBER OF PARAMETERS 
 

CNN-LSTM Layer (type) Number of Parameters 

input_1 (InputLayer) 01,2 

block1_conv1 (Conv2D) 1,7921,2 

block1_conv2 (Conv2D) 36,9281,2 

block1_pool (MaxPooling2D) 01,2 

block2_conv1 (Conv2D) 73,8561,2 

block2_conv2 (Conv2D) 147,5841,2 

block2_pool (MaxPooling2D) 01,2 

block3_conv1 (Conv2D) 295,1681,2 

block3_conv2 (Conv2D) 590,0801,2 

block3_conv3 (Conv2D) 590,0801,2 

block3_pool (MaxPooling2D) 01,2 

block4_conv1 (Conv2D) 1,180,1601,2 

block4_conv2 (Conv2D) 2,359,8081,2 

block4_conv3 (Conv2D) 2,359,8081,2 

block4_pool (MaxPooling2D) 01,2 

block5_conv1 (Conv2D) 2,358,8081,2 

block5_conv2 (Conv2D) 2,359,8081,2 

block5_conv3 (Conv2D) 2,359,8081,2 

block5_pool (MaxPooling2D) 01,2 

time_distributed (TimeDistributed) 14,714,6881,2 

lstm (LSTM) 3,014,2801,2 

time_distributed_1 (TimeDistributed) 2,4801, 4,9602 

dropout (Dropout) 01,2 

globale (GlobalAveragePooling) 01,2 

last (Dense) 4051, 8052 

Total parameters 17,731,8531, 17,734,7332 

Trainable parameters 3,017,1651, 3,020,0452 

Non-trainable parameters 14,714,6881,2 
1 CNN-LSTM model with 80 dense units, 2 CNN-LSTM model with 160 dense 

units. 
 

1. Obtaining the trained model: All models are trained via a 

transfer learning approach and saved as the saved model 

ProtoBuf (PB) format for the pure-CNN model, whereas 

the models are saved with Keras Hierarchical Data Format 

version 5 (HDF5) for the two proposed CNN-LSTM 

models. It is noteworthy that fine-tuning of parameters is 

carried out for the purpose of decreasing the execution time 

and increasing the accuracy. 

2. Freezing the model: The HDF5 file of the two proposed 

CNN-LSTM models are converted into the saved model 

(PB) format with its weight frozen. In contrast, the pure-

CNN model in PB format can skip this step as the weights 

have already been frozen in the training stage. 

3. Converting the model to a compatible format: All the 

trained models need to be converted into the Intermediate 

Representation (IR) format prior to their implementation in 

the OpenVINO environment [36]. The conversion is 

carried out via the Model Optimizer tool by the OpenVINO 

toolkit [37]. The input parameter for pure-CNN model is 

[1, 224, 224, 3] and proposed CNN-LSTM models is [1, 

30, 224, 224, 3]. Explaining from the right-to-left of the 

input parameter, the value “3” represents the number of 

color channels, “224” and “224” represents the image 

dimensions, “1” or “30” represents the number of images 

or frames, and specially for our proposed CNN-LSTM, “1” 

represents one video per input. Instead of the command-

line interface (CLI) method, the graphical user interface 

(GUI) method is utilized because of the intuitiveness of DL 

Workbench GUI and the essential scaling parameters. An 

XML file (which describes the network topology) and a 

BIN file (which contains the weights and biases binary 

data) [11] are generated once the conversion is successful. 

4. Executing inferences: The execution of the model is 

performed via the Inference Engine (IE) tool from the 

OpenVINO toolkit. A custom script is applied to initiate 

essential plugins, load the IR model, read the label, fetch 

input video, perform inference using IE and process the 

output. 

5. Getting the prediction results: Every output of each model 

is printed out in the terminal and recorded. The accuracy is 

manually calculated based on the recorded data. Latency in 

milli-seconds (ms) and throughput in FPS are generated 

after the inference is completed.  

 

IV.  RESULTS AND DISCUSSIONS 
 

 

This paper evaluates the performance of the natural disaster 

classification models to classify four natural disaster classes and 

a non-disaster class using three types of DL models, namely the 

pure-CNN model, CNN-RAP model, and proposed CNN-

LSTM models. 

1. Hardware on the Training Phase: The experiment in the 

TensorFlow environment is carried out on a computer 

equipped with an Intel i7-10710U 10th-generation central 

processing unit (CPU), an NVIDIA GeForce GTX 1080 Ti 

as the GPU, and 64 GB of memory. 

2. Hardware on the Inference Phase: The original models and 

the optimized models utilize the same hardware as in the 

training phase. It is noteworthy that original models are 

able to use both the CPU and GPU, while the optimized 

Fig. 7.  Training and validation accuracy of various models 

64 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 1, MARCH 2024



models are able to use the CPU and OpenVINO version 

2021.4. 

 

A. Training Performance 

An assessment of performance tests with respect to precision, 

recall, f1-score, and accuracy are conducted once the model 

training is complete. The results are generated by applying the 

classification_report function. Fig. 7 – 8 visualize the training 

and validation accuracies as well as the losses for all the models.  

The dataset split shown in Table I is used to train the pure-

CNN model and produce the results in Table V, whereas the 

dataset split shown in Table II is used to train the proposed 

CNN-LSTM models and produce the results in Table VI.  

 

TABLE V 

TRAINING PERFORMANCE OF THE PURE-CNN MODEL 
 

Disaster Label Precision Recall F1-score Support 

Cyclone 0.60 0.56 0.58 270 

Earthquake 0.72 0.79 0.75 270 

Flood 0.60 0.71 0.65 270 

Non-disaster 0.89 0.79 0.84 870 

Wildfire 0.66 0.77 0.71 270 

Accuracy 74 % 

 
 

TABLE VI 
TRAINING PERFORMANCE OF THE PROPOSED CNN-LSTM MODELS WITH 80 

OR 160 DENSE UNITS 
 

Disaster 
Label 

Precision Recall F1-score Support 

Cyclone 1.001,1.002 0.891,1.002 0.941,1.002 91,2 

Earthquake 1.001,1.002 0.891,1.002 0.941,1.002 91,2 

Flood 1.001,1.002 0.891,1.002 0.941,1.002 91,2 

Non-disaster 0.941,1.002 1.001,1.002 0.971,1.002 291,2 

Wildfire 0.901,1.002 1.001,1.002 0.951,1.002 91,2 

Accuracy 95%1, 100%2 
1 CNN-LSTM model with 80 dense units, 2 CNN-LSTM model with 160 dense 

units. 
 

Tables V–VI show the performance results of the 

TensorFlow model. Precision indicates how confident the 

model classifies a given sample as positive; recall indicates how 

well the model classifies a positive sample as positive [38]; F1-

score is a combination of precision and recall scores in a 

harmonic mean form; support value is the number of test data 

that are used to produce the results in their class; and accuracy 

is the percentage of the correct predictions to the total 

predictions. Equations (1–4) show the mathematical formulas 

for obtaining the precision, recall, F1-score and accuracy. True 

positive (TP), true negative (TN), false positive (FP) and false 

negative (FN) are required [30] for the generation of the results. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 ,            (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 ,            (2) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 ,   (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 .           (4) 

 

The training results show that our proposed CNN-LSTM 

models perform better than the pure-CNN model with an 

accuracy improvement of up to 26 %. Initially, 80 neurons in 

the dense layer are employed and obtained a significantly better 

accuracy when compared to the pure-CNN model. 

Subsequently, we intend to boost the accuracy scores, and by 

employing the dense layer with 160 neurons, the accuracy 

improvement is even better, achieving 100 % accuracy.  

 

B. Inference Performance on TensorFlow Environment 

Since the task of natural disaster classification is carried out 

in real-time, it is essential to realize the performance of the 

models in terms of FPS and latency. The number of images 

processed in a single second is known as throughput (FPS), 

indicating the processing speed of the entire process. The time 

taken to perform an inference for every input is known as 

latency [39]. Table VII presents the performance of the pure-

CNN, CNN-RAP, and CNN-LSTM models, using the test 

dataset that is compiled into video format. Accuracy is not 

affected by the change in hardware, as the precision of the 

model remains the same. 

This subsection evaluates the performance of the various 

models relating to throughput, latency, and accuracy. The 

accuracy of each deep learning model is calculated by averaging 

the accuracy scores in each disaster class as shown in Equation 

5. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑥𝑛

𝑚
𝑛=1

𝑚
 ,      (5) 

 

such that, ∀𝑛, 𝑚 ∈ ℕ,  
 

where 𝑥 is the accuracy scores of each disaster class and 𝑚 is 

the upper limit of the disaster classes. 

Fig. 8.  Training and validation loss of various models 

 

N. SZE YANG TAN et al.: ACCURATE AND FAST CLASSIFICATION OF NATURAL DISASTERS 65



TABLE VII 
PERFORMANCE OF THE VARIOUS MODELS USING TEST DATASET VIDEOS IN 

TENSORFLOW ENVIRONMENT 
 

Deep 
Learning 

Model 

Through
put 

(FPS) 

Latency 

(ms) 

Accuracya 

(%) 

Accuracyb 

(%) 

Pure-CNN 
8.662, 

26.203 

115.102, 

37.763 
73.862,3 70.262,3 

CNN-RAP 
8.562, 

26.163 

116.482, 

37.823 
99.932,3 93.692,3 

CNN-LSTM 

with 80 DU 

0.402, 

9.383 

2,609.282, 

103.243 
94.832,3 88.302,3 

CNN-LSTM 

with 160 DU 

0.402, 

9.343 

2,610.202, 

103.483 
100.002,3 95.002,3 

1 Dense Units (DU), 2 CPU Results, 3 GPU Results, A Dataset from [25], B Dataset 

from [25] + [47-51]. 
 

Pure-CNN model has a respectable throughput and latency 

but has the lowest accuracy, due to the prediction flickering 

effect among consecutive video frames, the severity of which 

can be lessened by the implementation of RAP. The CNN-RAP 

model achieves a similar throughput and latency to that of the 

pure-CNN model, with significant improvement in accuracy, 

achieving up to 99.9 %. The trend of high accuracy continues 

with the proposed CNN-LSTM models, with the model trained 

with 160 dense units achieving the highest accuracy of 100 %. 

Despite the excellent accuracy, the proposed CNN-LSTM 

models have 95.3 % lower throughput and over 22 times higher 

latency using the CPU, while 64.2 % lower throughput and over 

2.7 times higher latency using the GPU, as compared to CNN-

RAP model. 

The CNN-RAP model has an extra computation step, that is 

to obtain the average results for the past 30 inferences, then only 

output a label that has the highest probability. Evidently, this 

additional computation step has a miniscule effect of 1.15 % 

lower throughput and 1.20 % higher latency using CPU; or 0.15 

% lower throughput and 0.16 % higher latency using GPU, as 

compared to the pure-CNN model as demonstrated in the 

results. Besides that, the CNN-RAP model processes a single 

image per inference and the proposed CNN-LSTM models 

process 30 images per inference. As a consequence, the 

performance of the proposed CNN-LSTM models will be 

greatly hampered, resulting in poorer performance when 

compared to CNN-based models in terms of FPS and latency. 

One additional analysis experiment is conducted to assess the 

generalization capability of the proposed solution. A total of 15 

new samples (3 per class) are collected from [47-51] and added 

to the existing testing dataset. From Table VII, it can be 

observed that all accuracy performance drops as expected. 

Nevertheless, the proposed CNN-LSTM still yields the best 

performance with 95.0% accuracy, demonstrating its 

robustness. 
 

C. Inference Performance on OpenVINO Environment 

In this stage, we evaluate the performance of the optimized 

models with the same performance metrics used in the 

TensorFlow environment. Table VIII presents the performance 

of the optimized models using the same test dataset videos that 

are used in Section 4.2. It is noteworthy that OpenVINO does 

not support the NVIDIA GPU, hence the results in Table VIII 

show the results of various models running in the Intel CPU 

hardware. 
TABLE VIII 

PERFORMANCE OF THE VARIOUS MODELS USING TEST DATASET VIDEOS IN 

OPENVINO ENVIRONMENT 
 

Deep 

Learning 

Model 

Through

put 

(FPS) 

Latency 
(ms) 

Accuracya 
(%) 

Accuracyb 
(%) 

Pure-CNN 14.00 71.12 70.80 67.94 

CNN-RAP 13.96 71.26 97.70 93.13 

CNN-LSTM 

with 80 DU 
0.50 2,094.78 94.83 88.30 

CNN-LSTM 

with 160 DU 
0.50 2,095.76 100.00 95.00 

1 Dense Units (DU), A Dataset from [25], B Dataset from [25] + [47-51]. 

 

For a clear and direct comparison, the model inferences are 

compared using only CPU mode in both the TensorFlow 

environment and the OpenVINO environment. Referring to the 

model’s performance in Table VIII and comparing with Table 

VII, the pure-CNN model achieves the performance 

improvement of 61.7 % higher FPS, 38.2 % lower latency, 

while losing 4.14 % in accuracy; the CNN-RAP model achieves 

63.1 % higher FPS, 38.8 % lower latency, while sacrificing 2.23 

% in accuracy; the proposed CNN-LSTM models achieve 25.0 

% higher FPS and 19.7 % lower latency with lossless accuracy. 

A maximum accuracy of 100 % is achieved by the proposed 

CNN-LSTM model with 160 dense units.  

OpenVINO optimization is done by removing or combining 

the layers of the model to produce an optimized model, hence 

the drop in the accuracy of the optimized model. Upon the 

optimization by OpenVINO, some layers are removed to 

produce an optimized model. For each of the models, five 

MaxPooling layers, one Flatten layer, and the Dropout layer 

have been removed as it is mostly used for model training 

purposes only. The comparisons demonstrate the performance 

enhancements across all of the models upon OpenVINO 

optimization compared to TensorFlow’s models in terms of 

frame rate and latency during inferencing. Not only that, the 

comparisons express the sturdiness of the proposed CNN-

LSTM models that its accuracy remains consistent after 

OpenVINO optimization, either with test dataset from [25] 

alone or [25] with [47-51]. The reason is that the proposed 

CNN-LSTM models learn and know the temporal relationship  

between video frames, resulting in a more stable and robust 

model.  

Overall, the proposed CNN-LSTM models achieve the best 

accuracy for inferencing in the OpenVINO environment, albeit 

with low throughput and latency. Moreover, with the 

implementation of 30-frame RAP to the pure-CNN model, the 

performance of the CNN-RAP model improves in terms of 

accuracy, but it is still lower than the proposed CNN-LSTM 

models. 
 

V.  CONCLUSION 
 

Natural disasters continue to pose significant threats to 

humanity. With the advancement in technology, the integration 

of AI and DL algorithms have shown promising results in 

disaster classification performance, paving the way for better 

disaster management and response. This work developed three 

66 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 1, MARCH 2024



types of DL models that accurately classifies four types of 

natural disaster and non-disaster events. The presented 

inference results demonstrate that our proposed CNN-LSTM 

models achieve up to 41.2 % accuracy improvement in 

classifying different types of disaster events compared to the 

CNN-RAP model and pure-CNN model. Furthermore, the 

inference performance of the models achieves up to 63.1 % 

higher throughput (FPS) and 38.8 % lower latency in the 

OpenVINO platform compared to the native TensorFlow 

platform using CPU. Hence, the finding is expected to 

substantially improve real-time disaster monitoring 

applications. Nevertheless, the enhancements in throughput and 

latency achieved through OpenVINO optimization for the 

CNN-LSTM model are comparatively less substantial when 

compared to the improvements observed in the CNN-RAP 

model and the pure-CNN model. This difference can be 

attributed to the computational intensity of the LSTM layer, 

which necessitates the processing of extracted features from 30 

images generated by the CNN model, resulting in minimal gains 

in terms of throughput and latency performance. Also, for this 

very reason, a positive aspect of this circumstance is that the 

CNN-LSTM model is able to achieve lossless accuracy 

following the optimization process. Future research directions 

will be on federated learning for the training phase and 

distributed learning for the inference phase. 

 

ACKNOWLEDGEMENTS 
 

This research was supported by the Ministry of Higher 

Education, Malaysia (MoHE) through Fundamental Research 

Grant Scheme (FRGS/1/2023/ICT08/UTAR/02/1). The work 

was also supported by the Universiti Tunku Abdul Rahman 

(UTAR), Malaysia, under UTAR Research Fund (UTARRF) 

(IPSR/RMC/UTARRF/2021C1/T05). 

 

REFERENCES 
 

[1] H. Ritchie, P. Rosado, and M. Roser. Natural Disasters. Our World in Data. 
2022. Available online: https://ourworldindata.org/natural-disasters 

(accessed on 21 March 2023). 

[2] K. Okamoto, T. Mochida, D. Nozaki, Z. Wen, X. Qi, and T. Sato, “Content-
Oriented Surveillance System Based on ICN in Disaster Scenarios,” Int. 

Symp. Wirel. Pers. Multimed. Commun. WPMC, vol. 2018-November, pp. 

484–489, Jul. 2018, doi: http://doi.org/10.1109/WPMC.2018.8712852. 
[3] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. F. Li, 

“Large-scale video classification with convolutional neural networks,” 

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 1725–
1732, Sep. 2014, doi: http://doi.org/10.1109/CVPR.2014.223. 

[4] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for 

Large-Scale Image Recognition,” 3rd Int. Conf. Learn. Represent. ICLR 
2015. - Conf. Track Proc., Sep. 2014, doi: http://doi.org/10.48550/ 

arxiv.1409.1556. 

[5] M. Tan and QV. Le, “EfficientNet: Rethinking Model Scaling for 
Convolutional Neural Networks,” International Conference on Machine 

Learning, pp. 6105–6114, 2019, doi: https://arxiv.org/abs/1905.11946. 
[6] F. Alam, F. Ofli, M. Imran, T. Alam, and U. Qazi, “Deep Learning 

Benchmarks and Datasets for Social Media Image Classification for 

Disaster Response,” Proc. 2020 IEEE/ACM Int. Conf. Adv. Soc. Networks 
Anal. Mining, ASONAM 2020, pp. 151–158, Dec. 2020, doi: 

http://doi.org/10.1109/ASONAM49781.2020.9381294. 

[7] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural 
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 

http://doi.org/10.1162/NECO.1997.9.8.1735. 

[8] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. 
Schmidhuber, “LSTM: A Search Space Odyssey,” IEEE Trans. Neural 

Networks Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017, doi: 

http://doi.org/10.1109/TNNLS.2016.2582924. 

[9] A. Shewalkar, D. Nyavanandi, and S. A. Ludwig, “Performance Evaluation 
of Deep neural networks Applied to Speech Recognition: Rnn, LSTM and 

GRU,” J. Artif. Intell. Soft Comput. Res., vol. 9, no. 4, pp. 235–245, Oct. 

2019, doi: http://doi.org/10.2478/JAISCR-2019-0006. 
[10] S. Mangal, P. Joshi, and R. Modak, “LSTM vs. GRU vs. Bidirectional 

RNN for script generation,” Aug. 2019, doi: http://doi.org/10. 

48550/arxiv.1908.04332. 
[11] “Model Optimizer Developer Guide - OpenVINOTM Toolkit.” 

https://docs.openvino.ai/2021.2/openvino_docs_MO_DG_Deep_Learning

_Model_Optimizer_DevGuide.html (accessed Mar. 15, 2023). 
[12] N. T. Sze Yang, M. L. Tham, S. Y. Chua, Y. Loong Lee, Y. Owada, and S. 

Poomrittigul, “Efficient Device-Edge Inference for Disaster 

Classification,” Int. Conf. Ubiquitous Futur. Networks, ICUFN, vol. 2022-
July, pp. 314–319, 2022, doi: http://doi.org/10.1109/ICUFN55119. 

2022.9829668. 

[13] K. Muhammad, T. Hussain, M. Tanveer, G. Sannino, and V. H. C. De 
Albuquerque, “Cost-Effective Video Summarization Using Deep CNN 

with Hierarchical Weighted Fusion for IoT Surveillance Networks,” IEEE 

Internet Things J., vol. 7, no. 5, pp. 4455–4463, May 2020, doi: 
http://doi.org/10.1109/JIOT.2019.2950469. 

[14] V. B. Gadhavi, S. Degadwala, and D. Vyas, “Transfer Learning Approach 

For Recognizing Natural Disasters Video,” Proc. 2nd Int. Conf. Artif. 
Intell. Smart Energy, ICAIS 2022, pp. 793–798, 2022, doi: 

http://doi.org/10.1109/ICAIS53314.2022.9743035. 

[15] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A Critical Review of Recurrent 
Neural Networks for Sequence Learning,” May 2015, doi: 

http://doi.org/10.48550/arxiv.1506.00019. 

[16] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of 
Gated Recurrent Neural Networks on Sequence Modeling,” Dec. 2014, doi: 

http://doi.org/10.48550/arxiv.1412.3555. 

[17] R. Cahuantzi, X. Chen, and S. Güttel, “A comparison of LSTM and GRU 
networks for learning symbolic sequences,” Jul. 2021, doi: 

http://doi.org/10.48550/arxiv.2107.02248. 

[18] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and K. 
Saenko, “Translating Videos to Natural Language Using Deep Recurrent 

Neural Networks,” NAACL HLT 2015 - 2015 Conf. North Am. Chapter 

Assoc. Comput. Linguist. Hum. Lang. Technol. Proc. Conf., pp. 1494–
1504, Dec. 2014, doi: http://doi.org/10.3115/v1/n15-1173. 

[19] J. Donahue et al., “Long-term recurrent convolutional networks for visual 
recognition and description,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. 

Pattern Recognit., vol. 07-12-June-2015, pp. 2625–2634, Oct. 2015, doi: 

http://doi.org/10.1109/CVPR.2015.7298878. 
[20] G. Van Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-

term memory model,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5929–5955, Dec. 

2020, doi: http://doi.org/10.1007/S10462-020-09838-1. 
[21] A. Sahar and D. Han, “An LSTM-based indoor positioning method using 

Wi-Fi signals,” ACM Int. Conf. Proceeding Ser., Aug. 2018, doi: 

http://doi.org/10.1145/3271553.3271566. 
[22] M. Abdullah, M. Ahmad, and D. Han, “Facial Expression Recognition in 

Videos: An CNN-LSTM based Model for Video Classification,” 2020 Int. 

Conf. Electron. Information, Commun. ICEIC 2020, Jan. 2020, doi: 
http://doi.org/10.1109/ICEIC49074.2020.9051332. 

[23] V. Sharma, M. Gupta, A. Kumar, and D. Mishra, “Video Processing Using 

Deep Learning Techniques: A Systematic Literature Review,” IEEE 
Access, vol. 9, pp. 139489–139507, 2021, doi: http://doi.org/ 

10.1109/ACCESS.2021.3118541. 

[24] Y. H. Yang, J. S. Xu, Y. Gordienko, and S. Stirenko, “Abnormal 
Interference Recognition Based on Rolling Prediction Average 

Algorithm,” Adv. Intell. Syst. Comput., vol. 1247 AISC, pp. 306–316, 2021, 

doi: http://doi.org/10.1007/978-3-030-55506-1_28. 
[25] F. Alam, F. Ofli, M. Imran, T. Alam, and U. Qazi, “Deep Learning 

Benchmarks and Datasets for Social Media Image Classification for 

Disaster Response,” Proc. 2020 IEEE/ACM Int. Conf. Adv. Soc. Networks 
Anal. Mining, ASONAM 2020, pp. 151–158, Nov. 2020, doi: 

http://doi.org/10.48550/arxiv.2011.08916. 

[26] M. Imran, C. Castillo, J. Lucas, P. Meier, and S. Vieweg, “AIDR: Artificial 
intelligence for disaster response,” WWW 2014 Companion - Proc. 23rd 

Int. Conf. World Wide Web, pp. 159–162, Apr. 2014, doi: 

http://doi.org/10.1145/2567948.2577034. 
[27] F. Alam, F. Ofli, and M. Imran, “CrisisMMD: Multimodal Twitter Datasets 

from Natural Disasters,” Proc. Int. AAAI Conf. Web Soc. Media, vol. 12, 

no. 1, pp. 465–473, Jun. 2018, doi: http://doi.org/10.1609/ 
ICWSM.V12I1.14983. 

[28] Y. J. Wong, M. L. Tham, B. H. Kwan, E. M. A. Gnanamuthu, and Y. 

Owada, “An Optimized Multi-Task Learning Model for Disaster 

N. SZE YANG TAN et al.: ACCURATE AND FAST CLASSIFICATION OF NATURAL DISASTERS 67

https://ourworldindata.org/natural-disasters
http://doi.org/10.1109/WPMC.2018.8712852
http://doi.org/10.1109/CVPR.2014.223
http://doi.org/10.48550/arxiv.1409.1556
http://doi.org/10.48550/arxiv.1409.1556
https://arxiv.org/abs/1905.11946
http://doi.org/10.1109/ASONAM49781.2020.9381294
http://doi.org/10.1162/NECO.1997.9.8.1735
http://doi.org/10.1109/TNNLS.2016.2582924
http://doi.org/10.2478/JAISCR-2019-0006
http://doi.org/10.48550/arxiv.1908.04332
http://doi.org/10.48550/arxiv.1908.04332
https://docs.openvino.ai/2021.2/openvino_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html
https://docs.openvino.ai/2021.2/openvino_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html
http://doi.org/10.1109/ICUFN55119.2022.9829668
http://doi.org/10.1109/ICUFN55119.2022.9829668
http://doi.org/10.1109/JIOT.2019.2950469
http://doi.org/10.1109/ICAIS53314.2022.9743035
http://doi.org/10.48550/arxiv.1506.00019
http://doi.org/10.48550/arxiv.1412.3555
http://doi.org/10.48550/arxiv.2107.02248
http://doi.org/10.3115/v1/n15-1173
http://doi.org/10.1109/CVPR.2015.7298878
http://doi.org/10.1007/S10462-020-09838-1
http://doi.org/10.1145/3271553.3271566
http://doi.org/10.1109/ICEIC49074.2020.9051332
http://doi.org/10.1109/ACCESS.2021.3118541
http://doi.org/10.1109/ACCESS.2021.3118541
http://doi.org/10.1007/978-3-030-55506-1_28
http://doi.org/10.48550/arxiv.2011.08916
http://doi.org/10.1145/2567948.2577034
http://doi.org/10.1609/ICWSM.V12I1.14983
http://doi.org/10.1609/ICWSM.V12I1.14983


Classification and Victim Detection in Federated Learning Environments,” 
IEEE Access, vol. 10, pp. 115930–115944, 2022, doi: 

http://doi.org/10.1109/ACCESS.2022.3218655. 

[29] M. F. Mushtaq et al., “BHCNet: Neural Network-Based Brain Hemorrhage 
Classification Using Head CT Scan,” IEEE Access, vol. 9, pp. 113901–

113916, 2021, doi: http://doi.org/10.1109/ACCESS.2021.3102740. 

[30] Capra, M., Bussolino, B., Marchisio, A., Masera, G., Martina, M., & 
Shafique, M. (2020). Hardware and Software Optimizations for 

Accelerating Deep Neural Networks: Survey of Current Trends, 

Challenges, and the Road Ahead. IEEE Access, 8, 225134–225180. 
https://doi.org/10.1109/ACCESS.2020.3039858. 

[31] A. M. R. Abdali and R. F. Al-Tuma, “Robust Real-Time Violence 

Detection in Video Using CNN and LSTM,” SCCS 2019 - 2019 2nd Sci. 
Conf. Comput. Sci., pp. 104–108, Mar. 2019, doi: 

http://doi.org/10.1109/SCCS.2019.8852616. 

[32] Arif, M. A. Amin, A. A. Ali, and A. K. M. M. Rahman, “Visual attention-
based comparative study on disaster detection from social media images,” 

Innov. Syst. Softw. Eng., vol. 16, no. 3–4, pp. 309–319, Dec. 2020, doi: 

http://doi.org/10.1007/S11334-020-00368-1. 
[33] D. R. Hartawan, T. W. Purboyo, and C. Setianingsih, “Disaster victims 

detection system using convolutional neural network (CNN) method,” 

Proc. - 2019 IEEE Int. Conf. Ind. 4.0, Artif. Intell. Commun. Technol. 
IAICT 2019, pp. 105–111, Jul. 2019, doi: http://doi.org/ 

10.1109/ICIAICT.2019.8784782. 

[34] S. Montaha, S. Azam, A. K. M. R. H. Rafid, M. Z. Hasan, A. Karim, and 
A. Islam, “TimeDistributed-CNN-LSTM: A Hybrid Approach Combining 

CNN and LSTM to Classify Brain Tumor on 3D MRI Scans Performing 

Ablation Study,” IEEE Access, vol. 10, pp. 60039–60059, 2022, doi: 
http://doi.org/10.1109/ACCESS.2022.3179577. 

[35] Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural 

Networks: LSTM Cells and Network Architectures,” Neural Comput., vol. 
31, no. 7, pp. 1235–1270, Jul. 2019, doi: http://doi.org/10. 

1162/NECO_A_01199. 

[36] “Converting a Model to Intermediate Representation (IR) - OpenVINOTM 
Toolkit.”, https://docs.openvino.ai/2021.2/openvino_docs_MO_DG_pre- 

pare_model_convert_model_Converting_Model.html (accessed Mar. 15, 

2023). 
[37] “Converting a Model Using General Conversion Parameters - 

OpenVINOTM Toolkit.”, https://docs.openvino.ai/2021.2/openvino_docs_  
MO_DG_prepare_model_convert_model_Converting_Model_General.ht

ml (accessed Mar. 15, 2023). 

[38] Q. M. Areeb, Maryam, M. Nadeem, R. Alroobaea, and F. Anwer, “Helping 
Hearing-Impaired in Emergency Situations: A Deep Learning-Based 

Approach,” IEEE Access, vol. 10, pp. 8502–8517, 2022, doi: 

http://doi.org/10.1109/ACCESS.2022.3142918. 
[39] S. Bernabe, C. Gonzalez, A. Fernandez, and U. Bhangale, “Portability and 

Acceleration of Deep Learning Inferences to Detect Rapid Earthquake 

Damage from VHR Remote Sensing Images Using Intel OpenVINO 
Toolkit,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 

6906–6915, 2021, doi: http://doi.org/10.1109/JSTARS.2021.3075961. 

[40] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural 
Networks for Mobile Vision Applications,” Apr. 2017, Accessed: Jan. 22, 

2024. [Online]. Available: https://arxiv.org/abs/1704.04861v1. 

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image 
Recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern 

Recognit., vol. 2016-December, pp. 770–778, Dec. 2015, doi: 

http://doi.org/10.1109/CVPR.2016.90. 
[42] U. Elordi, N. Aranjuelo, L. Unzueta, J. L. Apellaniz, and I. Arganda-

Carreras, “Optimizing Video Analytics Deployment for In-Flight Cabin 

Readiness Verification,” IEEE Access, vol. 11, pp. 92985–92995, 2023, 
doi: http://doi.org/10.1109/ACCESS.2023.3309050. 

[43] “TensorFlow Lite | ML for Mobile and Edge Devices.” 

https://www.tensorflow.org/lite (accessed Jan. 22, 2024). 
[44] M. Lebedev and P. Belecky, “A Survey of Open-source Tools for FPGA-

based Inference of Artificial Neural Networks,” Proc. - 2021 Ivannikov 

Meml. Work. IVMEM 2021, pp. 50–56, 2021, doi: 
http://doi.org/10.1109/IVMEM53963.2021.00015. 

[45] J. Prieto et al., “A Light Vehicle License-Plate-Recognition System Based 

on Hybrid Edge–Cloud Computing,” Sensors 2023, Vol. 23, Page 8913, 
vol. 23, no. 21, p. 8913, Nov. 2023, doi: http://doi.org/10.3390/S23218913. 

[46] “openvino2tensorflow PyPI.”, https://pypi.org/project/openvino2tensor 

flow/ (accessed Jan. 22, 2024). 
[47] “Disaster Images Dataset.”, https://www.kaggle.com/datasets/varpit94/ 

disaster-images-dataset/data (accessed Jan. 22, 2024). 

[48] “Strong wind and rain blowing big green tree in bad weather 9933089 
Stock Video at Vecteezy.” https://www.vecteezy.com/video/9933089-

strong-wind-and-rain-blowing-big-green-tree-in-bad-weather (accessed 

Jan. 22, 2024). 
[49] “Aerial view of flooding in a residential area in northern Thailand. River 

water overflows after heavy rains and floods agricultural area and villages. 

11756195 Stock Video at Vecteezy.”, https://www.vecteezy.com/  
video/11756195-aerial-view-of-flooding-in-a-residential-area-in-

northern-thailand-river-water-overflows-after-heavy-rains-and-floods-

agricultural-area-and-villages (accessed Jan. 22, 2024). 
[50] “Beautiful aerial view of nature on the hill of agricultural tourism, 

Terasering Panyaweuyan, in Majalengka, West Java-Indonesia 9278994 

Stock Video at Vecteezy.” https://www.vecteezy.com/video/9278994-
beautiful-aerial-view-of-nature-on-the-hill-of-agricultural-tourism-

terasering-panyaweuyan-in-majalengka-west-java-indonesia (accessed 

Jan. 22, 2024). 
[51] “Forest Fires Near the City 2017963 Stock Video at Vecteezy.” 

https://www.vecteezy.com/video/2017963-forest-fires-near-the-city 

(accessed Jan. 22, 2024). 
[52] G. Xu, T. Ren, Y. Chen, and W. Che, “A One-Dimensional CNN-LSTM 

Model for Epileptic Seizure Recognition Using EEG Signal Analysis, 

Front. Neurosci., vol. 14, 2020, doi: http://doi.org/10.3389/ 
fnins.2020.578126. 

[53] T. Bao, S. A. R. Zaidi, S. Xie, P. Yang, and Z. -Q. Zhang, "A CNN-LSTM 

Hybrid Model for Wrist Kinematics Estimation Using Surface 
Electromyography," IEEE Trans Instrum Meas, vol. 70, pp. 1-9, 2021, doi: 

http://doi.org/10.1109/TIM.2020.3036654. 

[54] I. Priyadarshini, and C. Cotton, “A novel LSTM–CNN–grid search-based 
deep neural network for sentiment analysis,” J Supercomput, vol. 77, pp. 

13911-13932, 2021, doi: https://doi.org/10.1007/s11227-021-03838-w. 

 

 
Nathaniel Sze Yang Tan received his BEng degree 

in Electrical and Electronics Engineering from 

Universiti Tunku Abdul Rahman in 2022. He is 
currently a Master student at Universiti Tunku Abdul 

Rahman. His research interests focus on computer 
vision, machine learning and neural networks. 
 

 

 
 

Mau-Luen Tham received the Bachelor of 
Engineering and Doctor of Philosophy in the field of 

Telecommunication Engineering from the 

University of Malaya. He is currently an Associate 

Professor with Universiti Tunku Abdul Rahman. 

His research interests include the IoT, machine 

learning/deep learning/deep reinforcement learning, 
and beyond-5G communications. 

 
 

Sing Yee Chua received the BEng degree in 

Electrical and Electronics Engineering from the 
University of Technology Malaysia and the PhD 

degree in engineering from Monash University. She 

is currently an Assistant Professor at Universiti 
Tunku Abdul Rahman. Her research interests 

include computer vision, signal and image 

processing, and optical engineering. 

 

 
Ying Loong Lee received the B.Eng. (Hons.) 

degree in electronics majoring in 
telecommunications and the Ph.D. degree from 

Multimedia University in 2012 and 2017, 

respectively. He is currently an Assistant Professor 
in the Department of Electrical and Electronic 

Engineering, Lee Kong Chian Faculty of 

Engineering and Science, Universiti Tunku Abdul 
Rahman. His current research interests include 

wireless communications for 5G and 6G, fixed-

mobile convergence and applications of artificial intelligence in 
telecommunications. 

68 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 1, MARCH 2024

http://doi.org/10.1109/ACCESS.2022.3218655
http://doi.org/10.1109/ACCESS.2021.3102740
https://doi.org/10.1109/ACCESS.2020.3039858
http://doi.org/10.1109/SCCS.2019.8852616
http://doi.org/10.1007/S11334-020-00368-1
http://doi.org/10.1109/ICIAICT.2019.8784782
http://doi.org/10.1109/ICIAICT.2019.8784782
http://doi.org/10.1109/ACCESS.2022.3179577
http://doi.org/10.1162/NECO_A_01199
http://doi.org/10.1162/NECO_A_01199
https://docs.openvino.ai/2021.2/openvino_docs_MO_DG_prepare_model_convert_model_Converting_Model.html
https://docs.openvino.ai/2021.2/openvino_docs_MO_DG_prepare_model_convert_model_Converting_Model.html
https://docs.openvino.ai/2021.2/openvino_docs_MO_DG_prepare_model_convert_model_Converting_Model_General.html
https://docs.openvino.ai/2021.2/openvino_docs_MO_DG_prepare_model_convert_model_Converting_Model_General.html
https://docs.openvino.ai/2021.2/openvino_docs_MO_DG_prepare_model_convert_model_Converting_Model_General.html
http://doi.org/10.1109/ACCESS.2022.3142918
http://doi.org/10.1109/JSTARS.2021.3075961
https://arxiv.org/abs/1704.04861v1
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/ACCESS.2023.3309050
https://www.tensorflow.org/lite
http://doi.org/10.1109/IVMEM53963.2021.00015
http://doi.org/10.3390/S23218913
https://pypi.org/project/openvino2tensorflow/
https://pypi.org/project/openvino2tensorflow/
https://www.kaggle.com/datasets/varpit94/disaster-images-dataset/data
https://www.kaggle.com/datasets/varpit94/disaster-images-dataset/data
https://www.vecteezy.com/video/9933089-strong-wind-and-rain-blowing-big-green-tree-in-bad-weather
https://www.vecteezy.com/video/9933089-strong-wind-and-rain-blowing-big-green-tree-in-bad-weather
https://www.vecteezy.com/%20%20video/11756195-aerial-view-of-flooding-in-a-residential-area-in-northern-thailand-river-water-overflows-after-heavy-rains-and-floods-agricultural-area-and-villages
https://www.vecteezy.com/%20%20video/11756195-aerial-view-of-flooding-in-a-residential-area-in-northern-thailand-river-water-overflows-after-heavy-rains-and-floods-agricultural-area-and-villages
https://www.vecteezy.com/%20%20video/11756195-aerial-view-of-flooding-in-a-residential-area-in-northern-thailand-river-water-overflows-after-heavy-rains-and-floods-agricultural-area-and-villages
https://www.vecteezy.com/%20%20video/11756195-aerial-view-of-flooding-in-a-residential-area-in-northern-thailand-river-water-overflows-after-heavy-rains-and-floods-agricultural-area-and-villages
https://www.vecteezy.com/video/9278994-beautiful-aerial-view-of-nature-on-the-hill-of-agricultural-tourism-terasering-panyaweuyan-in-majalengka-west-java-indonesia
https://www.vecteezy.com/video/9278994-beautiful-aerial-view-of-nature-on-the-hill-of-agricultural-tourism-terasering-panyaweuyan-in-majalengka-west-java-indonesia
https://www.vecteezy.com/video/9278994-beautiful-aerial-view-of-nature-on-the-hill-of-agricultural-tourism-terasering-panyaweuyan-in-majalengka-west-java-indonesia
https://www.vecteezy.com/video/2017963-forest-fires-near-the-city
http://doi.org/10.3389/fnins.2020.578126
http://doi.org/10.3389/fnins.2020.578126
http://doi.org/10.1109/TIM.2020.3036654
https://doi.org/10.1007/s11227-021-03838-w



