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Abstract—A significant research challenge in data mining and 

machine learning is class imbalance classification since the 

majority of real-world datasets are imbalanced. When the dataset 

is highly unbalanced, the majority of available classification 

techniques frequently underperform on minority-class cases. This 

is due to the fact that they disregard the relative distribution of 

each class in favor of maximizing the overall accuracy. Various 

techniques based on sampling methods, cost-sensitive learning, 

and ensemble methods have recently been employed to handle the 

class imbalance problem. This paper proposes a new clustering-

based under-sampling (US) technique, called SOM-US, for 

handling the class imbalance problem using the self-organized 

map (SOM). To validate the proposed approach, an experimental 

study was conducted to improve the capability of a classifier-

logistic regression for software defect prediction by applying 

SOM-US over a NASA software defect dataset. The proposed 

approach was compared with six existing under-sampling methods 

on two performance measures. The results demonstrate that the 

SOM-US significantly improves the prediction capability of 

logistic regression over other under-sampling techniques for 

software defect prediction. 

Index terms—Class Imbalance, Under-Sampling, Software 

Defect Prediction. 

I. INTRODUCTION

Analysis of classification is a thoroughly considered 

technique in the domains of data mining and machine learning. 

Because of its forecasting ability, classification has been used 

in a wide range of real-world applications, such as fraud 

detection (credit card), predicting customer churn, product 

categorization, image classification, medical diagnosis, 

software defect prediction, etc. By examining the 

characteristics of a dataset with classes, classification’s study 

can create a class prediction system, also known as the classifier 

[1]. The classifier is capable of predicting the classes for the 

new examples with undefined class labels. As an example, the 

health prediction system can be used by a medical officer to 

predict whether a patient has a drug allergy or not. A training 

dataset is one that has data for a certain class, and a classifier 

needs to be trained on a training dataset in order to be able to 

predict classes. In brief, the following steps include the process 
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of classification analysis: 

1. Collection of samples.

2. Selection of attributes and samples for training.

3. Use training samples to train a class prediction system.

4. To predict the class of incoming samples, use the

predicting system.

One of the most important aspects that impact the predictive 

performance of a classifier is class imbalance [2]. When there 

are disproportionately more instances of one class than another, 

the data is said to be unbalanced. Fig. 1 depicts the imbalance 

spreading of samples in the minority class and majority class. 

The majority class is represented by red asterisk symbols, 

whereas blue circles represent the minority class. It is obvious 

that majority-class areas are much denser than minority-class 

areas. In this scenario, classifiers frequently produce an 

influenced learning model that has lower predicted accuracy for 

minority classes than for majority classes. 

Fig. 1. The class imbalance problem 

Researchers have suggested numerous approaches for 

addressing the problem of class imbalance, since it occurs in 

several real-life applications, such as medical research, risk 

management, intrusion prevention, and fraud detection. These 

approaches for addressing issues of class inequality are broadly 

categorized into two categories- algorithm level approach and 

Majority class 

Minority class 
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data level approach [3-4]. In the algorithm-level approach, 

classifiers are modified to reduce their sensitivity towards the 

class imbalance during learning over an imbalanced dataset. In 

the data-level approach, the imbalanced distribution of the 

dataset is handled by some kind of preprocessing on the original 

dataset. The data level approach includes two popular 

techniques- over-sampling and under-sampling. To deal with 

the unbalanced dataset, the oversampling strategy increases the 

minority class’s samples. The under-sampling strategy, on the 

other hand, reduces majority class samples. In general, under-

sampling approaches outperform the oversampling approaches 

[5]. As a result of their independence from the underlying 

classifier and ease of application to any situation, data-level 

techniques are the most well-liked and often used the data-level 

approaches are the most popular and the most frequently 

employed because they are independent of the underlying 

classifier and may be simply applied to any problem [6]. 

This study suggests a new cluster-based under-sampling 

technique (SOM-US) using the SOM for handling class 

imbalance problem. This study is motivated because of the 

following three reasons. 
 

• First, due to the ever-increasing volume of data 

produced in numerous scientific and technical areas, 

over-sampling procedures are much more expensive in 

terms of memory and processing requirements for 

subsequent classification tasks [6]. 

• Second, using under-sampling approaches has also 

improved classifier performance and is now the 

standard approach to dealing with asymmetric 

distributions [7]. 

• Third, due to previous related research [8] that has 

shown superior performance than neighborhood-based 

advancements, we have chosen to apply a clustering-

based strategy for under-sampling the class-

imbalanced datasets. 

The key contribution of this study is outlined as follows: 
 

• This study proposes a novel under-sampling (US) 

technique using a self-organized map (SOM) to 

address the class imbalance problems in imbalanced 

datasets. SOM-US is the name given to the suggested 

method. 

• This paper presents a novel application of SOM (a 

popular neural network clustering technique) to reduce 

the samples of the majority class in an imbalanced 

dataset. 

• For the validity of (SOM-US), a classifier-logistic 

regression for software defect prediction was trained 

by applying SOM-US over a NASA software defect 

dataset. 

• The performance of SOM-US is compared with 

various under-sampling techniques in terms of two 

performance measures, G-measure and nMCC. 

• A statistical test was conducted to further demonstrate 

that SOM-US significantly outperformed other under-

sampling techniques. 
 

From section II to section VI, this study's remaining section 

is explained. The relevant research is described in Section II, 

Section III describes the suggested under-sampling method 

SOM US, and the experimental setup is presented in Section IV. 

In section V, the results and discussion are given. The paper is 

concluded in section VI. 

 

II. RELATED WORK 
 

This section summarizes recent studies by a variety of 

authors on how to deal with the issue of class imbalance.  

The authors in [9] propose a novel strategy to handle class 

imbalance problems in software defect prediction for both 

within-project and cross-project. In order to generate dynamic 

training datasets with the balanced dataset, they employ the idea 

of stratification embedded in the nearest neighbor. In [10], the 

authors conducted a review study on the application of under-

sampling techniques for handling class imbalance problems. 

They present the category-wise detailed comparison of the 

various under-sampling techniques, including pure under-

sampling, cluster-based under-sampling, and hybrid under-

sampling techniques.  

The authors present an empirical study in [11] to show the 

impact of class imbalance on classifier performance. Ten 

classifiers that are widely used and have been found to be 

effective were trained for this empirical study. Additionally, in 

order to optimize the performance of each classifier, thorough 

hyperparameter tuning was performed for every piece of data.  

In [12], authors proposed an innovative ensemble technique 

for handling class imbalance problems using the under-

sampling technique and constraint projection. Each base 

classifier is built using two steps: First, under-sampling the 

samples from the minority/majority class set to create a set of 

pairwise constraints, then using that set to develop a projection 

matrix. Second, a basic classifier is built in the new feature 

space using the under-sampled new training dataset. The 

authors propose a method in [13] for handling class imbalance 

problems in classifier chains using random under-sampling. 

The author demonstrates the effectiveness of their proposed 

method by an experimental study using eighteen multi-label 

datasets.  

In [14], the authors focus on the challenge of zero-shot failure 

detection in rolling bearings since it represents the most 

extreme instance of class imbalance. A two-stage zero-shot 

fault recognition system is suggested as a solution to this issue. 

First, a new feature-generating network will produce a large 

number of pseudo-fault features by including an additional 

sequence in the condition. Second, these artificial pseudo-

defect characteristics are used as the classifier to train an 

improved deep neural network. In order to recognize the 

unobserved fault samples, a condition index is specifically 

created to represent various fault classes. Finally, three datasets 

are used to demonstrate the efficacy of the suggested strategy. 

The results of the experimental study demonstrate that, even in 

the absence of fault data during training, the feature generation 

network can detect typical errors with reasonable accuracy. 

In [15], authors proposed a hybrid method for solving the 

class imbalance problem in android malware detection. In the 

proposed hybrid approach, the authors first applied K-means 

clustering for the under-sampling of the dataset to keep relevant 
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majority class samples. Then, they created minority class 

samples for data balance using the synthetic minority 

oversampling technique.  

The authors propose a method in [16] for handling the class 

imbalance problem by applying cluster-based under-sampling 

in place of random under-sampling while selecting a classifier 

in the classic hybrid approach redefinition strategy. The 

performance was evaluated on the performance measures- 

specificity, sensitivity, and G-measure while training classifiers 

on three datasets Vehicle1, Vowel, and Page-Blocks. 

A hybrid score-based model is proposed in [17] for handling 

class imbalance problems by integrating oversampling and 

under-sampling approaches. Based on the significance of the 

samples in the feature space, the authors use the sharing 

technique in both rounds (oversampling and under-sampling) to 

choose more appropriate samples. Synthetic samples for the 

smaller class are created during the oversampling stage by 

interpolating across sparser data. Denser samples from the 

bigger class are then chosen and eliminated during the 

subsequent under-sampling stage. Oversampling and under-

sampling are performed based on probabilities using the binary 

tournament selection operator in both phases. 

A comparative study is conducted in [18] to compare various 

class imbalance techniques for breast cancer classification 

using deep learning. In order to address the class imbalance, 

they thoroughly assess a number of techniques, including 

oversampling, under-sampling, and class weighting. 

In [19], the author proposed a neighborhood under-sampling 

approach called N-US for handling class imbalance problems 

for software defect prediction. N-US was compared with three 

common existing under-sampling methods in order to 

determine its applicability. 

In [20], authors proposed a two-phase approach in the 

categories of ensemble-based approaches and under-sampling 

data-level approaches. In their study, it is anticipated that 

employing the suggested strategy will lower the likelihood of 

modifying the data distribution while maintaining the feature 

space's overall data pattern. 

Following are the observations after thoroughly reviewing 

the related work for handling the class imbalance problem. 

• In previous studies, various researchers have proposed

a variety of models to tackle the class imbalance

problem in a dataset to improve the performance of a

classifier to predict the class of a new incoming

sample.

• Most of the researchers have focused on the under-

sampling approach for handling the class imbalance

problem to improve the predictive capability of a

classifier.

• However, no researcher has utilized the concept of

neural network technique (SOM) for under-sampling

the majority samples of an imbalanced dataset to

handle the class imbalance problem.

This paper proposes a novel under-sampling technique using 

the neural network technique- SOM to deal with class 

imbalance problems in imbalanced datasets. The proposed 

approach is referred to as SOM-US. To the best of the authors' 

knowledge, this is the first attempt to handle the class imbalance 

problem using the neural network technique- SOM. The 

following section presents a detailed description of the 

proposed under-sampling approach. 

III. PROPOSED METHOD

This paper proposes a novel under-sampling method, SOM-

US, using SOM to handle the class imbalance problem. The 

proposed under-sampling approach is based on clustering 

majority class samples using an artificial neural network 

technique-SOM. SOM [21] is a two-layered unsupervised 

neural network based on the concept of competitive learning. 

Each layer has a specific function, with the first layer serving as 

input and the second as output. The output layer is also called a 

feature map. A one- or two-dimensional lattice of neurons 

typically makes up the output layer of a SOM. Mapping each 

training vector into a feature space is the key component of the 

SOM neural network. SOM seeks to visualize the similarity 

between data vectors inside a low-dimensional feature space.  

In the context of this study, SOM is applied for clustering on 

the majority class samples of the imbalanced dataset. An 

overview of the proposed under-sampling approach SOM-US 

is given in Fig. 2, followed by a detailed stepwise description. 

Fig. 2. An overview of the proposed under-sampling approach (SOM-US) 

Step 1: Consider the imbalanced dataset, let's say Dn×p as shown 

in “(1)”. In this dataset ‘n’ denotes the total number of samples 

(S) and with ‘p’ denotes the total number of attributes (A).

𝐷𝑛×𝑝 =

𝑆/𝐴 𝑎1 𝑎2 . 𝑎𝑝
𝑠1 𝑑11 𝑑12 . 𝑑1𝑝
𝑠2 𝑑21 𝑑23 . 𝑑2𝑝
. . . . .
𝑠𝑛 𝑑𝑛1 𝑑𝑛2 . 𝑑𝑛𝑝

    (1) 

Original dataset with imbalanced class distribution 

Majority class samples 

M
in

o
ri

ty
 c

la
ss

 s
am

p
le

s 

Apply SOM for clustering majority class samples 

Consider each cluster as new majority class sample 

after averaging original majority class samples 

associated to that cluster 

Collect all new majority class samples 

New dataset after handling class imbalance 

using SOM-US 
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Step 2: Separate the imbalanced dataset Dn×p into two parts,

majority class samples (Xq×p) and minority class samples (Yr×p), 

as shown in “(2)” and “(3)”, respectively. 

𝑋𝑞×𝑝 =

𝑆/𝐴 𝑎1 𝑎2 . 𝑎𝑝
𝑠1 𝑥11 𝑥12 . 𝑥1𝑝
𝑠2 𝑥21 𝑥23 . 𝑥2𝑝
. . . . .
𝑠𝑞 𝑥𝑞1 𝑥𝑞2 . 𝑥𝑞𝑝

(2) 

Here q represents the total number of majority samples. 

𝑌𝑟×𝑝 =

𝑆/𝐴 𝑎1 𝑎2 . 𝑎𝑝
𝑠1 𝑦11 𝑦12 . 𝑦1𝑝
𝑠2 𝑦21 𝑦23 . 𝑦2𝑝
. . . . .
𝑠𝑟 𝑦𝑟1 𝑦𝑟2 . 𝑦𝑟𝑝

(3) 

Here r represents the total number of minority samples. It may 

be noted that (q + r) is equal to n, and the value of q is much 

higher than that of r. 

Step 3: Apply SOM on Xq×p 

Apply SOM, a neural network-based clustering technique, on 

majority class samples (Xq×p) to partition the majority class 

samples into k number of clusters. Convert each cluster into a 

new majority class sample by averaging all the attribute values 

of the original majority class samples corresponding to each 

cluster. In this way, k number of new majority class samples are 

generated. New majority class samples (Zk×p) are shown in 

“(4)”. 

𝑍𝑘×𝑝 =

𝑆/𝐴 𝑎1 𝑎2 . 𝑎𝑝
𝑠1 𝑧11 𝑧12 . 𝑧1𝑝
𝑠2 𝑧21 𝑧23 . 𝑧2𝑝
. . . . .
𝑠𝑘 𝑧𝑘1 𝑧𝑘2 . 𝑧𝑘𝑝

    (4) 

Step 4: Combine new majority class samples (Zk×p) obtained 

from “(4)” (see step 3) with original minority class samples 

(Yr×p) from “(3)” (see step 2) to obtain a new under-sampled 

dataset (Um×p) with a total of m samples as shown in “(5)”. Here 

it may be noted that m is the summation of k (new samples 

obtained by applying SOM on majority class samples in the 

original dataset) and r (minority class samples in the original 

dataset). 

𝑈𝑚×𝑝 =

𝑆/𝐴 𝑎1 𝑎2 . 𝑎𝑝
𝑠1 𝑢11 𝑢12 . 𝑢1𝑝
𝑠2 𝑢21 𝑢23 . 𝑢2𝑝
. . . . .
𝑠𝑚 𝑢𝑚1 𝑢𝑚2 . 𝑢𝑚𝑝

    (5) 

IV. EXPERIMENTAL SETUP

To check the validity of under-sampling approach SOM-US, 

an experimental study was carried out for predicting software 

defects using logistic regression as the classifier over a NASA 

software defect dataset. The performance of SOM-US is 

compared with various existing under-sampling techniques in 

terms of two performance measures, G-measure and nMCC. 

   A. Dataset 

For the validation of the proposed method, this paper uses the 

CM1 dataset [22]. CM1 is the publicly available NASA 

software defect dataset written in C language. The total number 

of samples in CM1 is 498, of which 49 (9.8%) samples 

correspond to defective class samples, and 449 (90.2 %) 

samples correspond to non-defective class samples. Here it can 

be observed that the dataset CM1 is highly imbalanced. The 

total number of attributes in CM1 is twenty-two. In these 

twenty-two attributes, five attributes represent the different line 

of code measure, four attributes represent the base Halstead 

measure, three attributes represent the McCabe metrics, eight 

attributes represent the derived Halstead measures, one attribute 

represents the branch count, and the last attribute is the defects 

(class attribute). 

B. Performance Measures

This study uses two accuracy measures, G-measure and

nMCC, to measure the predictive performance of the classifier 

over a software defect dataset after handling class imbalance 

problems using the proposed under-sampling approach SOM-

US. G-measure and nMCC are reported as stable performance 

measures [23] and are widely used in previous studies [23-25] 

for software defect prediction. These two measures are 

explained in terms of true positive (TP), false positive (FP), true 

negative (TN), and false negative (FN) as follows: 

• nMCC (normalized Matthews Correlation Coefficient)

[23] can be obtained by using the following equations.

𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)    (6) 

𝑛𝑀𝐶𝐶 =
1 +𝑀𝐶𝐶

2
  (7) 

• G-measure: It can be calculated by using the following

equations [23].

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (8) 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (9) 

𝐺 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2∗𝑇𝑃𝑅∗𝑇𝑁𝑅

(𝑇𝑃𝑅+𝑇𝑁𝑅)
(10) 

C. Experimental Design

A stepwise description of the experimental design for

validating the proposed under-sampling approach SOM-US is 

given below followed by the pictorial representation as shown 

in Fig. 3. 

Step 1: Take the software defect dataset CM1 as described in 

section IV. A. 

Step 2: Apply the proposed under-sampling approach SOM-US 

(as described in detail in section III) on the software defect 

dataset CM1.  

72 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 1, MARCH 2024



 

• Step 2.a. Use “(2)” and “(3)” to separate the original 

dataset into two parts-dataset with majority class 

samples (non-defective class) and minority class 

samples (defective class), respectively. 

• Step 2.b. In this step, SOM, a neural network-based 

clustering technique is applied to partition the majority 

class samples (non-defective class) into clusters. SOM 

was implemented using MATLAB 2022a version 

9.12. 

• Step 2.c: Convert each cluster into a new majority 

class sample by averaging all the original majority 

class samples associated with that particular cluster. 

• Step 2.d: Combine the new majority class samples 

with the original minority class samples to obtain the 

new dataset without the class imbalance problem. 

 

Step 3: Apply other existing under-sampling techniques on the 

software defect dataset CM1. 

For comparing the performance of the proposed under-

sampling approach (SOM-US), six other under-sampling 

techniques were also applied to the software defect dataset CM 

1. These six under-sampling techniques [26] are- Simple K- 

Mean (SKM)-US, Tomek Links (TL)-US, Edited Nearest 

Neighbours (ENN)-US, Condensed Nearest Neighbour (CNN)-

US, One-Sided Selection (OSS)-US, and Random (R)-US. All 

six under-sampling techniques were implemented in Jupyter 

Notebook [27]. 

 

Step 4: Train the classifier- logistic regression [28] for software 

defect prediction on eight datasets. These eight datasets are: 

• SOM-US: Dataset obtained by applying the proposed 

under-sampling method. 

• SKM-US: Dataset obtained by applying the Simple K-

Mean under-sampling. 

• TL-US: Dataset obtained by applying the Tomek 

Links under-sampling. 

• ENN-US: Dataset obtained by applying the Edited 

Nearest Neighbours under-sampling. 

• CNN-US: Dataset obtained by applying the 

Condensed Nearest Neighbour under-sampling. 

• OSS-US: Dataset obtained by applying the One-Sided 

Selection under-sampling. 

• R-US: Dataset obtained by applying the Random 

under-sampling. 

• W-US: Dataset without under-sampling. 

 

Step 5: Compare the software defect prediction results for each 

dataset in terms of two performance measures, G-measure, and 

nMCC, as described in section IV. B. 

 

V. RESULTS AND DISCUSSION 
 

This section is further divided into two parts. The first part 

presents the software defect prediction results for all eight 

datasets as described in section IV.C. The second part presents 

the statistical test that was performed to prove that the proposed 

SOM-US methodology significantly outperforms existing 

under-sampling techniques for improving the predictive 

performance of a classifier while being trained on the software 

defect dataset. 

A. Software Defect Prediction Results 
 

Software defect prediction results in terms of nMCC and G-

measure for eight datasets (seven under-sampling datasets + one 

dataset without under-sampling) are listed in Table I. Table I 

demonstrates that, in terms of both the performance metrics G-

measure and nMCC, the suggested SOM-US improved the 

capabilities of the software defect prediction model in 

comparison to alternative under-sampling techniques.  
 

TABLE I 
SOFTWARE DEFECT PREDICTION RESULTS IN TERMS OF G-MEASURE AND 

NMCC 
 

Dataset G-measure nMCC 

SOM-US (Proposed) 0.7036 0.7093 

Simple K- Mean (SKM)-US [26] 0.6327 0.6327 

Tomek Links (TL)-US [29] 0.2490 0.5854 

Condensed Nearest Neighbour 

(CNN)-US [26] 
0.4722 0.6045 

Edited Nearest Neighbours (ENN)-US 

[30] 
0.3363 0.6076 

One-Sided Selection (OSS)-US [30] 0.2489 0.5805 

Random (R)-US [26] 0.6393 0.6541 

Without under-sampling (W-US) 0.2174 0.5660 

 

The following observations are inferred from the Table I: 

• It can be observed that the proposed under-sampling 

approach SOM-US outperformed the other existing under-

sampling approaches for the software defect prediction 

over the performance metric-G-measure. Two under-

sampling approaches R-US and SKM-US also performed 

well. However, there is a significant difference between the 

performance of SOM-US and other under-sampling 

approaches. 

• It can also be observed that the proposed under-sampling 

approach SOM-US performs better than the other existing 

under-sampling approaches for the software defect 

prediction over the performance measure nMCC. 

To prove that the SOM-US significantly outperforms 

existing under-sampling techniques for improving the 

predictive performance of a classifier while being trained on the 

software defect dataset, we have conducted a statistical test as 

described in the following subsection (section V.B). 
 

 

B. Statistical Test 
 

The Bayesian sign test was carried out to show that the 

suggested SOM-US methodology significantly outperforms 

existing under-sampling techniques for improving the 

predictive performance of a classifier while being trained on the 

software defect dataset. The Bayesian sign test was proposed by 

Benavoli [31]. The results of the Bayesian Test for the proposed 

SOM-US approach are listed in Table II to Table III. 

From Table II to Table III, it is evident that the performance 

of the proposed SOM-US strategy against all other under-

sampling approaches is identifiable since the posterior  
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Fig. 3. Experimental design 

 

probability p(rope) is almost equal to 0 (0.05). Furthermore, 

compared to alternative under-sampling techniques, the 

posterior probability p(left) of SOM-US for both measures (G-

measure and nMCC) is significantly higher (> 95%). Hence it 

can be concluded that the proposed under-sampling approach 

SOM-US significantly outperformed other under-sampling 

methods. 
TABLE II 

BAYESIAN TEST RESULTS FOR G-MEASURE 
 

SOM-US against 
G-measure 

p (left) p (rope) p (right) 

Simple K- Mean (SKM)-US 0.9686 0.0314 0 

Tomek Links (TL)-US 0.9688 0.0312 0 

CNN-US 0.9682 0.0317 0 

ENN-US 0.9676 0.0324 0 

One-Sided Selection (OSS)-US 0.9687 0.0313 0 

Random (R)-US 0.9686 0.0314 0 

W-US 0.9688 0.0312 0 
 

V. CONCLUSION  
 

This study proposed a novel under-sampling approach SOM-

US using SOM for handling class imbalance problems. The 

proposed approach is based on clustering majority samples 

using the SOM, a neural network technique. For the validation 

of the proposed approach, an experimental study was conducted 

for software defect prediction on a NASA software defect 

dataset-CM1. Firstly, SOM-US was applied to dataset CM1 to 

get the under-sampled dataset. Next, a classifier (in this study, 

logistic regression) was trained on the under-sampled dataset 

generated by the proposed SOM-US approach. Next, the 

performance of SOM-US was compared with six other under-

sampling approaches considering two performance measures- 

G-measure and nMCC.  
 

TABLE III 

BAYESIAN TEST RESULTS FOR NMCC 
 

SOM-US against 
nMCC 

p (left) p (rope) p (right) 

Simple K- Mean (SKM)-US 0.9681 0.0318 0 

Tomek Links (TL)-US 0.9692 0.0308 0 

CNN-US 0.9689 0.0311 0 

ENN-US 0.9696 0.0304 0 

One-Sided Selection (OSS)-US 0.9688 0.0312 0 

Random (R)-US 0.9678 0.0322 0 

W-US 0.9694 0.0306 0 
 

 

The experimental results demonstrate that the SOM-US 

greatly outperforms other under-sampling strategies in terms of 

G-measure as well as nMCC for the software defect prediction 

model. In order to demonstrate that SOM-US greatly 

outperformed alternative under-sampling techniques, a 

statistical test known as the Bayesian sign test was carried out.  

In a dataset with an unequal class distribution, the class 

imbalance issue can be solved using the suggested under-

sampling method. The proposed method SOM-US is utilized in 

this work to predict software defects, but it can be applied to 

various classification issues in many application fields of 

engineering, science, management, etc. to address issues with 

class imbalance. 

 This study used only one dataset for the experimental study. 

However, the proposed approach may be extended over a large 

number of datasets as the future work. Moreover, the proposed 

approach may be applied to handling the class imbalance 

problem in other application areas such as in finance-related 

applications (for example credit card fraud detection), medical 

science (for example in predicting various kinds of diseases), 

etc. 
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