
SOM-US: A Novel Under-Sampling Technique for

Handling Class Imbalance Problem

Ajay Kumar

Abstract—A significant research challenge in data mining and

machine learning is class imbalance classification since the

majority of real-world datasets are imbalanced. When the dataset

is highly unbalanced, the majority of available classification

techniques frequently underperform on minority-class cases. This

is due to the fact that they disregard the relative distribution of

each class in favor of maximizing the overall accuracy. Various

techniques based on sampling methods, cost-sensitive learning,

and ensemble methods have recently been employed to handle the

class imbalance problem. This paper proposes a new clustering-

based under-sampling (US) technique, called SOM-US, for

handling the class imbalance problem using the self-organized

map (SOM). To validate the proposed approach, an experimental

study was conducted to improve the capability of a classifier-

logistic regression for software defect prediction by applying

SOM-US over a NASA software defect dataset. The proposed

approach was compared with six existing under-sampling methods

on two performance measures. The results demonstrate that the

SOM-US significantly improves the prediction capability of

logistic regression over other under-sampling techniques for

software defect prediction.

Index terms—Class Imbalance, Under-Sampling, Software

Defect Prediction.

I. INTRODUCTION

Analysis of classification is a thoroughly considered

technique in the domains of data mining and machine learning.

Because of its forecasting ability, classification has been used

in a wide range of real-world applications, such as fraud

detection (credit card), predicting customer churn, product

categorization, image classification, medical diagnosis,

software defect prediction, etc. By examining the

characteristics of a dataset with classes, classification’s study

can create a class prediction system, also known as the classifier

[1]. The classifier is capable of predicting the classes for the

new examples with undefined class labels. As an example, the

health prediction system can be used by a medical officer to

predict whether a patient has a drug allergy or not. A training

dataset is one that has data for a certain class, and a classifier

needs to be trained on a training dataset in order to be able to

predict classes. In brief, the following steps include the process

Manuscript received October 3, 2023; revised December 21, 2024. Date of

publication January 30, 2024. Date of current version January 30, 2024. The
associate editor prof. Matko Šarić has been coordinating the review of this

manuscript and approved it for publication.

Author is with the Department of Information Technology, KIET Group of
Institutions, Delhi-NCR, Ghaziabad-201206, India (e-mail:

ajaygarg100@gmail.com).
Digital Object Identifier (DOI): 10.24138/jcomss-2023-0133

of classification analysis:

1. Collection of samples.

2. Selection of attributes and samples for training.

3. Use training samples to train a class prediction system.

4. To predict the class of incoming samples, use the

predicting system.

One of the most important aspects that impact the predictive

performance of a classifier is class imbalance [2]. When there

are disproportionately more instances of one class than another,

the data is said to be unbalanced. Fig. 1 depicts the imbalance

spreading of samples in the minority class and majority class.

The majority class is represented by red asterisk symbols,

whereas blue circles represent the minority class. It is obvious

that majority-class areas are much denser than minority-class

areas. In this scenario, classifiers frequently produce an

influenced learning model that has lower predicted accuracy for

minority classes than for majority classes.

Fig. 1. The class imbalance problem

Researchers have suggested numerous approaches for

addressing the problem of class imbalance, since it occurs in

several real-life applications, such as medical research, risk

management, intrusion prevention, and fraud detection. These

approaches for addressing issues of class inequality are broadly

categorized into two categories- algorithm level approach and

Majority class

Minority class

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 1, MARCH 2024 69

1845-6421/03/2023-0133 © 2024 CCIS

Original scientific article

data level approach [3-4]. In the algorithm-level approach,

classifiers are modified to reduce their sensitivity towards the

class imbalance during learning over an imbalanced dataset. In

the data-level approach, the imbalanced distribution of the

dataset is handled by some kind of preprocessing on the original

dataset. The data level approach includes two popular

techniques- over-sampling and under-sampling. To deal with

the unbalanced dataset, the oversampling strategy increases the

minority class’s samples. The under-sampling strategy, on the

other hand, reduces majority class samples. In general, under-

sampling approaches outperform the oversampling approaches

[5]. As a result of their independence from the underlying

classifier and ease of application to any situation, data-level

techniques are the most well-liked and often used the data-level

approaches are the most popular and the most frequently

employed because they are independent of the underlying

classifier and may be simply applied to any problem [6].

This study suggests a new cluster-based under-sampling

technique (SOM-US) using the SOM for handling class

imbalance problem. This study is motivated because of the

following three reasons.

• First, due to the ever-increasing volume of data

produced in numerous scientific and technical areas,

over-sampling procedures are much more expensive in

terms of memory and processing requirements for

subsequent classification tasks [6].

• Second, using under-sampling approaches has also

improved classifier performance and is now the

standard approach to dealing with asymmetric

distributions [7].

• Third, due to previous related research [8] that has

shown superior performance than neighborhood-based

advancements, we have chosen to apply a clustering-

based strategy for under-sampling the class-

imbalanced datasets.

The key contribution of this study is outlined as follows:

• This study proposes a novel under-sampling (US)

technique using a self-organized map (SOM) to

address the class imbalance problems in imbalanced

datasets. SOM-US is the name given to the suggested

method.

• This paper presents a novel application of SOM (a

popular neural network clustering technique) to reduce

the samples of the majority class in an imbalanced

dataset.

• For the validity of (SOM-US), a classifier-logistic

regression for software defect prediction was trained

by applying SOM-US over a NASA software defect

dataset.

• The performance of SOM-US is compared with

various under-sampling techniques in terms of two

performance measures, G-measure and nMCC.

• A statistical test was conducted to further demonstrate

that SOM-US significantly outperformed other under-

sampling techniques.

From section II to section VI, this study's remaining section

is explained. The relevant research is described in Section II,

Section III describes the suggested under-sampling method

SOM US, and the experimental setup is presented in Section IV.

In section V, the results and discussion are given. The paper is

concluded in section VI.

II. RELATED WORK

This section summarizes recent studies by a variety of

authors on how to deal with the issue of class imbalance.

The authors in [9] propose a novel strategy to handle class

imbalance problems in software defect prediction for both

within-project and cross-project. In order to generate dynamic

training datasets with the balanced dataset, they employ the idea

of stratification embedded in the nearest neighbor. In [10], the

authors conducted a review study on the application of under-

sampling techniques for handling class imbalance problems.

They present the category-wise detailed comparison of the

various under-sampling techniques, including pure under-

sampling, cluster-based under-sampling, and hybrid under-

sampling techniques.

The authors present an empirical study in [11] to show the

impact of class imbalance on classifier performance. Ten

classifiers that are widely used and have been found to be

effective were trained for this empirical study. Additionally, in

order to optimize the performance of each classifier, thorough

hyperparameter tuning was performed for every piece of data.

In [12], authors proposed an innovative ensemble technique

for handling class imbalance problems using the under-

sampling technique and constraint projection. Each base

classifier is built using two steps: First, under-sampling the

samples from the minority/majority class set to create a set of

pairwise constraints, then using that set to develop a projection

matrix. Second, a basic classifier is built in the new feature

space using the under-sampled new training dataset. The

authors propose a method in [13] for handling class imbalance

problems in classifier chains using random under-sampling.

The author demonstrates the effectiveness of their proposed

method by an experimental study using eighteen multi-label

datasets.

In [14], the authors focus on the challenge of zero-shot failure

detection in rolling bearings since it represents the most

extreme instance of class imbalance. A two-stage zero-shot

fault recognition system is suggested as a solution to this issue.

First, a new feature-generating network will produce a large

number of pseudo-fault features by including an additional

sequence in the condition. Second, these artificial pseudo-

defect characteristics are used as the classifier to train an

improved deep neural network. In order to recognize the

unobserved fault samples, a condition index is specifically

created to represent various fault classes. Finally, three datasets

are used to demonstrate the efficacy of the suggested strategy.

The results of the experimental study demonstrate that, even in

the absence of fault data during training, the feature generation

network can detect typical errors with reasonable accuracy.

In [15], authors proposed a hybrid method for solving the

class imbalance problem in android malware detection. In the

proposed hybrid approach, the authors first applied K-means

clustering for the under-sampling of the dataset to keep relevant

70 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 1, MARCH 2024

majority class samples. Then, they created minority class

samples for data balance using the synthetic minority

oversampling technique.

The authors propose a method in [16] for handling the class

imbalance problem by applying cluster-based under-sampling

in place of random under-sampling while selecting a classifier

in the classic hybrid approach redefinition strategy. The

performance was evaluated on the performance measures-

specificity, sensitivity, and G-measure while training classifiers

on three datasets Vehicle1, Vowel, and Page-Blocks.

A hybrid score-based model is proposed in [17] for handling

class imbalance problems by integrating oversampling and

under-sampling approaches. Based on the significance of the

samples in the feature space, the authors use the sharing

technique in both rounds (oversampling and under-sampling) to

choose more appropriate samples. Synthetic samples for the

smaller class are created during the oversampling stage by

interpolating across sparser data. Denser samples from the

bigger class are then chosen and eliminated during the

subsequent under-sampling stage. Oversampling and under-

sampling are performed based on probabilities using the binary

tournament selection operator in both phases.

A comparative study is conducted in [18] to compare various

class imbalance techniques for breast cancer classification

using deep learning. In order to address the class imbalance,

they thoroughly assess a number of techniques, including

oversampling, under-sampling, and class weighting.

In [19], the author proposed a neighborhood under-sampling

approach called N-US for handling class imbalance problems

for software defect prediction. N-US was compared with three

common existing under-sampling methods in order to

determine its applicability.

In [20], authors proposed a two-phase approach in the

categories of ensemble-based approaches and under-sampling

data-level approaches. In their study, it is anticipated that

employing the suggested strategy will lower the likelihood of

modifying the data distribution while maintaining the feature

space's overall data pattern.

Following are the observations after thoroughly reviewing

the related work for handling the class imbalance problem.

• In previous studies, various researchers have proposed

a variety of models to tackle the class imbalance

problem in a dataset to improve the performance of a

classifier to predict the class of a new incoming

sample.

• Most of the researchers have focused on the under-

sampling approach for handling the class imbalance

problem to improve the predictive capability of a

classifier.

• However, no researcher has utilized the concept of

neural network technique (SOM) for under-sampling

the majority samples of an imbalanced dataset to

handle the class imbalance problem.

This paper proposes a novel under-sampling technique using

the neural network technique- SOM to deal with class

imbalance problems in imbalanced datasets. The proposed

approach is referred to as SOM-US. To the best of the authors'

knowledge, this is the first attempt to handle the class imbalance

problem using the neural network technique- SOM. The

following section presents a detailed description of the

proposed under-sampling approach.

III. PROPOSED METHOD

This paper proposes a novel under-sampling method, SOM-

US, using SOM to handle the class imbalance problem. The

proposed under-sampling approach is based on clustering

majority class samples using an artificial neural network

technique-SOM. SOM [21] is a two-layered unsupervised

neural network based on the concept of competitive learning.

Each layer has a specific function, with the first layer serving as

input and the second as output. The output layer is also called a

feature map. A one- or two-dimensional lattice of neurons

typically makes up the output layer of a SOM. Mapping each

training vector into a feature space is the key component of the

SOM neural network. SOM seeks to visualize the similarity

between data vectors inside a low-dimensional feature space.

In the context of this study, SOM is applied for clustering on

the majority class samples of the imbalanced dataset. An

overview of the proposed under-sampling approach SOM-US

is given in Fig. 2, followed by a detailed stepwise description.

Fig. 2. An overview of the proposed under-sampling approach (SOM-US)

Step 1: Consider the imbalanced dataset, let's say Dn×p as shown

in “(1)”. In this dataset ‘n’ denotes the total number of samples

(S) and with ‘p’ denotes the total number of attributes (A).

𝐷𝑛×𝑝 =

𝑆/𝐴 𝑎1 𝑎2 . 𝑎𝑝
𝑠1 𝑑11 𝑑12 . 𝑑1𝑝
𝑠2 𝑑21 𝑑23 . 𝑑2𝑝
.
𝑠𝑛 𝑑𝑛1 𝑑𝑛2 . 𝑑𝑛𝑝

 (1)

Original dataset with imbalanced class distribution

Majority class samples

M
in

o
ri

ty
 c

la
ss

 s
am

p
le

s

Apply SOM for clustering majority class samples

Consider each cluster as new majority class sample

after averaging original majority class samples

associated to that cluster

Collect all new majority class samples

New dataset after handling class imbalance

using SOM-US

A. KUMAR: SOM-US: A NOVEL UNDER-SAMPLING TECHNIQUE 71

Step 2: Separate the imbalanced dataset Dn×p into two parts,

majority class samples (Xq×p) and minority class samples (Yr×p),

as shown in “(2)” and “(3)”, respectively.

𝑋𝑞×𝑝 =

𝑆/𝐴 𝑎1 𝑎2 . 𝑎𝑝
𝑠1 𝑥11 𝑥12 . 𝑥1𝑝
𝑠2 𝑥21 𝑥23 . 𝑥2𝑝
.
𝑠𝑞 𝑥𝑞1 𝑥𝑞2 . 𝑥𝑞𝑝

(2)

Here q represents the total number of majority samples.

𝑌𝑟×𝑝 =

𝑆/𝐴 𝑎1 𝑎2 . 𝑎𝑝
𝑠1 𝑦11 𝑦12 . 𝑦1𝑝
𝑠2 𝑦21 𝑦23 . 𝑦2𝑝
.
𝑠𝑟 𝑦𝑟1 𝑦𝑟2 . 𝑦𝑟𝑝

(3)

Here r represents the total number of minority samples. It may

be noted that (q + r) is equal to n, and the value of q is much

higher than that of r.

Step 3: Apply SOM on Xq×p

Apply SOM, a neural network-based clustering technique, on

majority class samples (Xq×p) to partition the majority class

samples into k number of clusters. Convert each cluster into a

new majority class sample by averaging all the attribute values

of the original majority class samples corresponding to each

cluster. In this way, k number of new majority class samples are

generated. New majority class samples (Zk×p) are shown in

“(4)”.

𝑍𝑘×𝑝 =

𝑆/𝐴 𝑎1 𝑎2 . 𝑎𝑝
𝑠1 𝑧11 𝑧12 . 𝑧1𝑝
𝑠2 𝑧21 𝑧23 . 𝑧2𝑝
.
𝑠𝑘 𝑧𝑘1 𝑧𝑘2 . 𝑧𝑘𝑝

 (4)

Step 4: Combine new majority class samples (Zk×p) obtained

from “(4)” (see step 3) with original minority class samples

(Yr×p) from “(3)” (see step 2) to obtain a new under-sampled

dataset (Um×p) with a total of m samples as shown in “(5)”. Here

it may be noted that m is the summation of k (new samples

obtained by applying SOM on majority class samples in the

original dataset) and r (minority class samples in the original

dataset).

𝑈𝑚×𝑝 =

𝑆/𝐴 𝑎1 𝑎2 . 𝑎𝑝
𝑠1 𝑢11 𝑢12 . 𝑢1𝑝
𝑠2 𝑢21 𝑢23 . 𝑢2𝑝
.
𝑠𝑚 𝑢𝑚1 𝑢𝑚2 . 𝑢𝑚𝑝

 (5)

IV. EXPERIMENTAL SETUP

To check the validity of under-sampling approach SOM-US,

an experimental study was carried out for predicting software

defects using logistic regression as the classifier over a NASA

software defect dataset. The performance of SOM-US is

compared with various existing under-sampling techniques in

terms of two performance measures, G-measure and nMCC.

 A. Dataset

For the validation of the proposed method, this paper uses the

CM1 dataset [22]. CM1 is the publicly available NASA

software defect dataset written in C language. The total number

of samples in CM1 is 498, of which 49 (9.8%) samples

correspond to defective class samples, and 449 (90.2 %)

samples correspond to non-defective class samples. Here it can

be observed that the dataset CM1 is highly imbalanced. The

total number of attributes in CM1 is twenty-two. In these

twenty-two attributes, five attributes represent the different line

of code measure, four attributes represent the base Halstead

measure, three attributes represent the McCabe metrics, eight

attributes represent the derived Halstead measures, one attribute

represents the branch count, and the last attribute is the defects

(class attribute).

B. Performance Measures

This study uses two accuracy measures, G-measure and

nMCC, to measure the predictive performance of the classifier

over a software defect dataset after handling class imbalance

problems using the proposed under-sampling approach SOM-

US. G-measure and nMCC are reported as stable performance

measures [23] and are widely used in previous studies [23-25]

for software defect prediction. These two measures are

explained in terms of true positive (TP), false positive (FP), true

negative (TN), and false negative (FN) as follows:

• nMCC (normalized Matthews Correlation Coefficient)

[23] can be obtained by using the following equations.

𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁) (6)

𝑛𝑀𝐶𝐶 =
1 +𝑀𝐶𝐶

2
 (7)

• G-measure: It can be calculated by using the following

equations [23].

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (8)

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (9)

𝐺 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2∗𝑇𝑃𝑅∗𝑇𝑁𝑅

(𝑇𝑃𝑅+𝑇𝑁𝑅)
(10)

C. Experimental Design

A stepwise description of the experimental design for

validating the proposed under-sampling approach SOM-US is

given below followed by the pictorial representation as shown

in Fig. 3.

Step 1: Take the software defect dataset CM1 as described in

section IV. A.

Step 2: Apply the proposed under-sampling approach SOM-US

(as described in detail in section III) on the software defect

dataset CM1.

72 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 1, MARCH 2024

• Step 2.a. Use “(2)” and “(3)” to separate the original

dataset into two parts-dataset with majority class

samples (non-defective class) and minority class

samples (defective class), respectively.

• Step 2.b. In this step, SOM, a neural network-based

clustering technique is applied to partition the majority

class samples (non-defective class) into clusters. SOM

was implemented using MATLAB 2022a version

9.12.

• Step 2.c: Convert each cluster into a new majority

class sample by averaging all the original majority

class samples associated with that particular cluster.

• Step 2.d: Combine the new majority class samples

with the original minority class samples to obtain the

new dataset without the class imbalance problem.

Step 3: Apply other existing under-sampling techniques on the

software defect dataset CM1.

For comparing the performance of the proposed under-

sampling approach (SOM-US), six other under-sampling

techniques were also applied to the software defect dataset CM

1. These six under-sampling techniques [26] are- Simple K-

Mean (SKM)-US, Tomek Links (TL)-US, Edited Nearest

Neighbours (ENN)-US, Condensed Nearest Neighbour (CNN)-

US, One-Sided Selection (OSS)-US, and Random (R)-US. All

six under-sampling techniques were implemented in Jupyter

Notebook [27].

Step 4: Train the classifier- logistic regression [28] for software

defect prediction on eight datasets. These eight datasets are:

• SOM-US: Dataset obtained by applying the proposed

under-sampling method.

• SKM-US: Dataset obtained by applying the Simple K-

Mean under-sampling.

• TL-US: Dataset obtained by applying the Tomek

Links under-sampling.

• ENN-US: Dataset obtained by applying the Edited

Nearest Neighbours under-sampling.

• CNN-US: Dataset obtained by applying the

Condensed Nearest Neighbour under-sampling.

• OSS-US: Dataset obtained by applying the One-Sided

Selection under-sampling.

• R-US: Dataset obtained by applying the Random

under-sampling.

• W-US: Dataset without under-sampling.

Step 5: Compare the software defect prediction results for each

dataset in terms of two performance measures, G-measure, and

nMCC, as described in section IV. B.

V. RESULTS AND DISCUSSION

This section is further divided into two parts. The first part

presents the software defect prediction results for all eight

datasets as described in section IV.C. The second part presents

the statistical test that was performed to prove that the proposed

SOM-US methodology significantly outperforms existing

under-sampling techniques for improving the predictive

performance of a classifier while being trained on the software

defect dataset.

A. Software Defect Prediction Results

Software defect prediction results in terms of nMCC and G-

measure for eight datasets (seven under-sampling datasets + one

dataset without under-sampling) are listed in Table I. Table I

demonstrates that, in terms of both the performance metrics G-

measure and nMCC, the suggested SOM-US improved the

capabilities of the software defect prediction model in

comparison to alternative under-sampling techniques.

TABLE I
SOFTWARE DEFECT PREDICTION RESULTS IN TERMS OF G-MEASURE AND

NMCC

Dataset G-measure nMCC

SOM-US (Proposed) 0.7036 0.7093

Simple K- Mean (SKM)-US [26] 0.6327 0.6327

Tomek Links (TL)-US [29] 0.2490 0.5854

Condensed Nearest Neighbour

(CNN)-US [26]
0.4722 0.6045

Edited Nearest Neighbours (ENN)-US

[30]
0.3363 0.6076

One-Sided Selection (OSS)-US [30] 0.2489 0.5805

Random (R)-US [26] 0.6393 0.6541

Without under-sampling (W-US) 0.2174 0.5660

The following observations are inferred from the Table I:

• It can be observed that the proposed under-sampling

approach SOM-US outperformed the other existing under-

sampling approaches for the software defect prediction

over the performance metric-G-measure. Two under-

sampling approaches R-US and SKM-US also performed

well. However, there is a significant difference between the

performance of SOM-US and other under-sampling

approaches.

• It can also be observed that the proposed under-sampling

approach SOM-US performs better than the other existing

under-sampling approaches for the software defect

prediction over the performance measure nMCC.

To prove that the SOM-US significantly outperforms

existing under-sampling techniques for improving the

predictive performance of a classifier while being trained on the

software defect dataset, we have conducted a statistical test as

described in the following subsection (section V.B).

B. Statistical Test

The Bayesian sign test was carried out to show that the

suggested SOM-US methodology significantly outperforms

existing under-sampling techniques for improving the

predictive performance of a classifier while being trained on the

software defect dataset. The Bayesian sign test was proposed by

Benavoli [31]. The results of the Bayesian Test for the proposed

SOM-US approach are listed in Table II to Table III.

From Table II to Table III, it is evident that the performance

of the proposed SOM-US strategy against all other under-

sampling approaches is identifiable since the posterior

A. KUMAR: SOM-US: A NOVEL UNDER-SAMPLING TECHNIQUE 73

Fig. 3. Experimental design

probability p(rope) is almost equal to 0 (0.05). Furthermore,

compared to alternative under-sampling techniques, the

posterior probability p(left) of SOM-US for both measures (G-

measure and nMCC) is significantly higher (> 95%). Hence it

can be concluded that the proposed under-sampling approach

SOM-US significantly outperformed other under-sampling

methods.
TABLE II

BAYESIAN TEST RESULTS FOR G-MEASURE

SOM-US against
G-measure

p (left) p (rope) p (right)

Simple K- Mean (SKM)-US 0.9686 0.0314 0

Tomek Links (TL)-US 0.9688 0.0312 0

CNN-US 0.9682 0.0317 0

ENN-US 0.9676 0.0324 0

One-Sided Selection (OSS)-US 0.9687 0.0313 0

Random (R)-US 0.9686 0.0314 0

W-US 0.9688 0.0312 0

V. CONCLUSION

This study proposed a novel under-sampling approach SOM-

US using SOM for handling class imbalance problems. The

proposed approach is based on clustering majority samples

using the SOM, a neural network technique. For the validation

of the proposed approach, an experimental study was conducted

for software defect prediction on a NASA software defect

dataset-CM1. Firstly, SOM-US was applied to dataset CM1 to

get the under-sampled dataset. Next, a classifier (in this study,

logistic regression) was trained on the under-sampled dataset

generated by the proposed SOM-US approach. Next, the

performance of SOM-US was compared with six other under-

sampling approaches considering two performance measures-

G-measure and nMCC.

TABLE III

BAYESIAN TEST RESULTS FOR NMCC

SOM-US against
nMCC

p (left) p (rope) p (right)

Simple K- Mean (SKM)-US 0.9681 0.0318 0

Tomek Links (TL)-US 0.9692 0.0308 0

CNN-US 0.9689 0.0311 0

ENN-US 0.9696 0.0304 0

One-Sided Selection (OSS)-US 0.9688 0.0312 0

Random (R)-US 0.9678 0.0322 0

W-US 0.9694 0.0306 0

The experimental results demonstrate that the SOM-US

greatly outperforms other under-sampling strategies in terms of

G-measure as well as nMCC for the software defect prediction

model. In order to demonstrate that SOM-US greatly

outperformed alternative under-sampling techniques, a

statistical test known as the Bayesian sign test was carried out.

In a dataset with an unequal class distribution, the class

imbalance issue can be solved using the suggested under-

sampling method. The proposed method SOM-US is utilized in

this work to predict software defects, but it can be applied to

various classification issues in many application fields of

engineering, science, management, etc. to address issues with

class imbalance.

 This study used only one dataset for the experimental study.

However, the proposed approach may be extended over a large

number of datasets as the future work. Moreover, the proposed

approach may be applied to handling the class imbalance

problem in other application areas such as in finance-related

applications (for example credit card fraud detection), medical

science (for example in predicting various kinds of diseases),

etc.

REFERENCES

[1] D. Dablain, B. Krawczyk, and N. V. Chawla, "DeepSMOTE: Fusing deep
learning and SMOTE for imbalanced data," IEEE Transactions on Neural
Networks and Learning Systems, 2022.

[2] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing,
“Learning from class-imbalanced data: Review of methods and
applications,” Expert System with Applications vol. 73, pp. 220–239,
2017.

[3] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Tackling class overlap and
imbalance problems in software defect prediction,” Software Quality
Journal vol. 26, no. 1, pp. 97–125, 2018.

[4] E. A. Felix, and S. P. Lee, “Systematic literature review of preprocessing
techniques for imbalanced data,” IET Software vol. 13, no. 6, pp. 479–96,
2019.

[5] S.-J. Yen and Y.-S. Lee, "Cluster-based under-sampling approaches for
imbalanced data distributions," Expert Systems with Applications, vol.
36, no. 3, pp. 5718–5727, 2009., https://doi.org/10.1016/
j.eswa.2008.06.108

[6] G. Ponce, J. S. Sánchez, R. M. Valdovinos, and J. R. Marcial-Romero,
"DBIG-US: A two-stage under-sampling algorithm to face the class

Software defect dataset (CM1) with class

imbalance

P
ro

p
o

se
d

 S
O

M
-U

S

Train Classifier with eight datasets

(7 under-sampling dataset+ 1 dataset without under-sampling)

S
im

p
le

 K
-M

ea
n
 (

S
K

M
)-

U
S

T
o

m
ek

 L
in

k
s

(T
L

)-
U

S

C
o
n
d

en
se

d
 N

ea
re

st
 N

ei
g
h
b

o
u

r
(C

N
N

)-
U

S

E
d

it
ed

 N
ea

re
st

 N
ei

g
h
b

o
u

rs
 (

E
N

N
)-

U
S

O
n

e
S

id
ed

 S
el

ec
ti

o
n

R
an

d
o

m
 (

R
)-

U
S

D
at

as
et

 w
it

h
o

u
t

U
S

Comparison over two performance measures (G-measure and

nMCC)

74 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 1, MARCH 2024

imbalance problem," Expert Systems with Applications, vol. 168, no.
114301, p. 114301, 2021. https://doi.org/10.1016/j.eswa.2020.114301.

[7] A. D. Pozzolo, O. Caelen, and G. Bontempi, "When is undersampling
effective in unbalanced classification tasks?," in Machine Learning and
Knowledge Discovery in Databases, Cham: Springer International
Publishing, 2015, pp. 200–215. https://doi.org/10.1007/978-3-319-23528-
813

[8] C.-F. Tsai, W.-C. Lin, Y.-H. Hu, and G.-T. Yao, "Under-sampling class
imbalanced datasets by combining clustering analysis and instance
selection," Information Sciences, vol. 477, pp. 47–54, 2019.
https://doi.org/10.1016/j.ins.2018.10.029

[9] L. Gong, S. Jiang, L. Bo, L. Jiang, and J. Qian, "A novel class-imbalance
learning approach for both within-project and cross-project defect
prediction," IEEE Transactions on Reliability, vol. 69, no. 1, pp. 40–54,
2020. https://doi.org/10.1109/TR.2019.2895462

[10] D. Devi, S. K. Biswas, B. Purkayastha, “A review on solution to class
imbalance problem: Undersampling approaches,” In: International
Conference on Computational Performance Evaluation (ComPE), IEEE,
2020.

[11] W. Zheng and M. Jin, "The effects of class imbalance and training data
size on classifier learning: An empirical study," SN Computer Science,
vol. 1, no. 2, 2020. https://doi.org/10.1007/s42979-020-0074-0

[12] H. Guo, J. Zhou, and C. A. Wu, “Ensemble learning via constraint
projection and undersampling technique for class-imbalance problem,”
Soft Computing vol. 24, no. 7, pp. 4711–27, 2020.

[13] B. Liu, and G. Tsoumakas, “Dealing with class imbalance in classifier
chains via random undersampling,” Knowledge- Based Systems vol. 192,
no. 105292, p. 105292, 2020.

[14] T. Pan, J. Chen, J. Xie, Z. Zhou, and S. He “Deep feature generating
network: A new method for intelligent fault detection of mechanical
systems under class imbalance,” IEEE Transactions on Industrial
Informatics vol. 17, no. 9, pp. 6282–93, 2021.

[15] J. Guan, X. Jiang, and B. Mao, "A method for class-Imbalance Learning
in Android malware detection," Electronics (Basel), vol. 10, no. 24, p.
3124, 2021. https://doi.org/10.3390/electronics10243124

[16] H. Hartono, E. Ongko, and D. Abdullah, "Hybrid approach redefinition
with cluster-based instance selection in handling class imbalance
problem," International Journal of Advances in Intelligent Informatics,
vol. 7, no. 3, p. 345, 2021. https://doi.org/10.26555/ijain.v7i3.515

[17] B. Mirzaei, F. Rahmati, and H. Nezamabadi-pour, "A score-based
preprocessing technique for class imbalance problems," Pattern Analysis
and Applications, vol. 25, no. 4, pp. 913–931, 2022.
https://doi.org/10.1007/s10044-022-01084-1

[18] R. Walsh and M. Tardy, "A comparison of techniques for class imbalance
in deep learning classification of breast cancer," Diagnostics (Basel), vol.
13, no. 1, p. 67, 2022. https://doi.org/10.3390/diagnostics13010067

[19] S. Goyal, "Handling class-imbalance with KNN (neighbourhood) under-
sampling for software defect prediction," Artificial Intelligence Review,
vol. 55, no. 3, pp. 2023–2064, 2022. https://doi.org/10.1007/s10462-021-
10044-w

[20] F. Hooshmand, and S. A. MirHassani, "A novel two-phase clustering-
based under-sampling method for imbalanced classification
problems," Expert Systems with Applications, vol. 213, no. 119003, p.
119003, 2023. https://doi.org/10.1016/j.eswa.2022.119003

[21] T. Kohonen, "Essentials of the self-organizing map," Neural Networks,
vol. 37, pp. 52–65, 2013. http://dx.doi.org/10.1016/j.neunet.2012.09.018

[22] J. S. Shirabad and T. J. Menzies, The PROMISE repository of software
engineering databases. School of Information Technology and
Engineering, University of Ottawa, Canada, 2005. [Online]. Available:
http://promise.site.uottawa.ca/SERepository

[23] K. Kaur and A. Kumar, “MCDM-EFS: A novel ensemble feature selection
method for software defect prediction using multi-criteria decision
making,” Intelligent Decision Technologies, vol. 17, no. 4, pp. 1283-1296,
2023. https://doi.org/10.3233/IDT-230251

[24] N. A. Bhat and S. U. Farooq, “An improved method for training data
selection for cross-project defect prediction,” Arabian Journal for Science
& Engineering, vol. 47, no. 2, pp. 1939–1954, 2022.

[25] M. Nevendra and P. Singh, “A survey of software defect prediction based
on deep learning,” Archives Computational Methods in Engineering, vol.
29, no. 7, pp. 5723–5748, 2022.

[26] S. Loov, "Comparison of undersampling methods for prediction of ¨
casting defects based on process parameters," Master's thesis, University
of Skovde, 2021.

[27] Kluyver, T. et al., 2016. Jupyter Notebooks – a publishing format for
reproducible computational workflows. In F. Loizides & B. Schmidt, eds.
Positioning and Power in Academic Publishing: Players, Agents and
Agendas. pp. 87–90.

[28] L. Gong, S. Jiang, and L. Jiang, "Tackling class imbalance problem in
software defect prediction through cluster-based over-sampling with
filtering," IEEE Access, vol. 7, pp. 145725–145737, 2019.
https://doi.org/10.1109/ACCESS.2019.2945858

[29] M. Alamri and M. Ykhlef, “Survey of Credit Card Anomaly and Fraud
Detection Using Sampling Techniques,” Electronics, vol. 11, no. 23, pp.
4003, 2022.

[30] P. Kumar, R. Bhatnagar, K. Gaur, and A. Bhatnagar, “Classification of
imbalanced data:Review of methods and applications,” IOP Conference
Series: Materials Science & Engineering, vol. 1099, no. 1, p. 012077,
2021.

[31] Benavoli, G. Corani, J. Demšar, and M. Zaffalon, "Time for a change: a
tutorial for comparing multiple classifiers through Bayesian
analysis", The Journal of Machine Learning Research, vol. 18 no. 1,
pp.2653-2688, 2017. http://jmlr.org/papers/v18/16-305.html

Ajay Kumar is assistant professor with Department

of Information Technology, KIET Group of

Institutions, Delhi-NCR, Ghaziabad, India. He
completed his Ph.D. in Computer Science and

Engineering (CSE) from the University School of

Information, Communication & Technology, Guru
Gobind Singh Indraprastha University (GGSIPU),

New Delhi, India. He received his master degree in

CSE from National Institute of Technical Teachers
Training and Research, Chandigarh. He has done his

Bachelor of Engineering degree in CSE from Dr. B.

R. A University Agra, Uttar Pradesh, India. His
research fields include software engineering, multi-criteria decision-making,

soft computing, artificial intelligence, and machine learning.

A. KUMAR: SOM-US: A NOVEL UNDER-SAMPLING TECHNIQUE 75

https://doi.org/10.1007/s42979-020-0074-0
https://doi.org/10.3390/electronics10243124
https://doi.org/10.26555/ijain.v7i3.515
https://doi.org/10.1007/s10044-022-01084-1
https://doi.org/10.3390/diagnostics13010067
https://doi.org/10.1007/s10462-021-10044-w
https://doi.org/10.1007/s10462-021-10044-w
https://doi.org/10.1016/j.eswa.2022.119003
http://dx.doi.org/10.1016/j.neunet.2012.09.018
http://promise.site.uottawa.ca/SERepository
https://doi.org/10.3233/IDT-230251
https://doi.org/10.1109/ACCESS.2019.2945858
http://jmlr.org/papers/v18/16-305.html

