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Abstract – The rapid advancement of network technologies and protocols has fueled the widespread endorsement of the Internet of 
Things (IoT) in numerous domains, including everyday life, healthcare, industries, agriculture, and more. However, this rapid growth has 
also given rise to numerous security concerns within IoT systems. Consequently, privacy and security have become paramount issues in 
the IoT framework. Due to the heterogeneous data produced by smart IoT devices, traditional intrusion detection system doesn't work 
well with IoT system. The massive volume of heterogeneous data has several irrelevant, redundant, and unnecessary features which lead 
to high computation time and low accuracy of IDS. Therefore, to tackle these challenges, this paper presents a novel metaheuristic-based 
IDS model for the IoT systems. The chaotic opposition-based Harris Hawk optimization (CO-IHHO) algorithm is used to perform the 
feature selection of data traffic. The chosen features are subsequently inputted into a machine learning (ML) classifier to detect network 
traffic intrusions. The performance of the CO-IHHO based IDS model is verified against the BoT-IoT dataset. Experimental findings reveal 
that CO-IHHO-DT achieves the maximal accuracy of 99.65% for multiclass classification and 100% for binary classification, and minimal 
computation time of 31.34 sec for multiclass classification and 133.54 sec for binary classification.

Keywords: IoT, IDS, feature selection, machine learning, HHO

1.  INTRODUCTION

The Internet of Things (IoT) is a collection of several 
interconnected embedded devices that can communi-
cate with each other through wireless or wired medi-
ums [1]. Within the IoT system, numerous smart sensors 
collaborate to create intelligent environments. The ad-
vancement in IoT systems makes spectacular develop-
ment in the everyday utilization of electronic services 
and appliances [2]. It has a profusion of applications 
and services in various domains including agriculture, 
healthcare, industry, military, smart homes, etc. How-
ever, the widespread adoption of IoT also makes these 
systems attractive targets for malicious actors aiming 
to carry out activities such as physical damage to devic-
es, denial of service (DoS) attacks, and theft of informa-
tion. Consequently, ensuring the security of IoT devices 
becomes paramount. [3]. Moreover, staying informed 
about contemporary vulnerabilities is essential to take 
appropriate measures for mitigation. 

An intrusion detection system provides a security 
mechanism for protecting the IoT system from several 
malicious activities by analysing data packets received  
and generating responses when necessary. An IDS for 
the IoT system has to deal with rigorous conditions of 
high-volume data processing, rapid response, memory 
constraints, and low processing. Therefore, typical IDS 
are not suitable for IoT systems.  The IDS are classified 
into major categories based on analysis strategy i.e. 
anomaly, signature [4], and hybrid. Signature IDS de-
tects attack by analysing network traffic and matching 
attack signatures with signatures already stored in a da-
tabase, generating an alarm if signatures are matched. 
While Anomaly-based IDS constructs user profiles by 
analyzing system usage patterns. Any deviation from 
established user behavior is treated as a potential in-
trusion. Hybrid combines the merits of both strategies.

The considerable volume of network traffic generat-
ed by IoT devices presents a significant challenge when 
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it comes to ensuring the security of IoT network traffic. 
Feature selection (FS) can resolve this issue by consid-
ering only the relevant and important features instead 
of all the features. It is an important technique that im-
proves the performance of IDS for the IoT framework. 
FS [5] is intermediate phase of IDS that choose subset 
from the original features set without irrelevance, and 
redundancy. It helps in reducing the volume of training 
data, improving the classification accuracy, and reduc-
ing computation time [6]. FS is typically divided into 
three primary approaches: filter, wrapper, and hybrid. 
In the filter approach, statistical measures such as cor-
relation and consistency are utilized for evaluation, and 
this process is conducted independently of any specific 
learning algorithm. In contrast, the wrapper approach 
entails the learning algorithm itself evaluating the fea-
ture subset, with the subset's efficiency determined by 
the error rate. While the wrapper approach is computa-
tionally more intensive, it often yields superior results 
compared to the filter approach because of its continu-
ous interaction with the learning algorithm [7]. The hy-
brid approach leverages the strengths of both the filter 
and wrapper approaches. 

Metaheuristic algorithms (MHA) are the wrapper ap-
proach of FS which gives a magnificent performance 
because of their global search capability. However, it is 
necessary to have equitable exploration and exploita-
tion phase of MHA to avoid local optima [8]. Extreme 
exploitation and inadequate exploration cause prema-
ture convergence while extreme exploration and inad-
equate exploitation cause a slower convergence rate. 
Exploration refers to generating a candidate solution 
that leads to wider coverage of search space while ex-
ploitation refers to finding a near-optimal solution by 
focusing on the local area of the search process.  

This paper introduces an IDS tailored for the IoT 
domian, employing a Metaheuristic Algorithm (MHA). 
The IDS model's feature selection process utilizes the 
proposed Chaotic Opposition-based Improved Harris 
Hawk Optimization (CO-IHHO) algorithm on the BoT-
IoT dataset. CO-IHHO is employed to identify the most 
pertinent features, optimizing computational efficien-
cy while upholding the accuracy of the IDS. Following 
feature selection, binary and multiclass classification 
tasks are carried out using machine learning (ML) clas-
sifiers. Consequently, the primary contributions of this 
paper encompass the following: 

•	 Improving the population diversity of original HHO 
by applying opposition-based learning in the be-
ginning of population selection of HHO. This helps 
in getting the best fitness solution in the early stag-
es and leads to improving convergence speed.

•	 The chaotic map technique is employed for gener-
ating random numbers used in HHO.

•	 Non-linear target energy escaping form is used 
to have an equitable exploration and exploitation 
phase.

•	 The paper conducts classification tasks utilizing 
two distinct ML classifiers and subsequently as-
sesses their performance. To address the issue of 
class imbalance, a sampling technique is employed 
as a resolution.

•	 The CEC-06 2019 Benchmark function is employed 
to evaluate the performance of proposed CO-IHHO.

The effectiveness of CO-IHHO is compared against 
seven other MHAs for the BoT-IoT dataset. The intru-
sion detection with CO-IHHO as FS algorithm achieves 
high accuracy with less computation time, compared 
to other MHAs used as FS algorithm. Further, the pro-
posed work is also attaining better accuracy compared 
to other recent work.

The remaining paper unfolds as follows:  section 2 
describes a contribution summary of the latest IDS for 
the IoT system followed by a preliminary discussion 
about the original HHO, OB learning, and chaotic map 
techniques. Afterward, the proposed IDS model is de-
scribed in section 3. Section 4 describes the proposed 
CO-IHHO algorithm in detail. Section 5 is dedicated to 
the implementation and analysis of results from the 
proposed work. Section 6 offers the paper’s conclusion. 

2. LITERATURE REVIEW

Researchers have developed several IDS for the IoT 
network using learning algorithms in recent years. This 
section summarizes the recent work done for the FS us-
ing MHAs, and other recent IDS for the IoT framework. 
Afterward, the original HHO, OB learning, and the cha-
otic map are discussed. 

The authors in [9] proposed IoT based IDS using deep 
learning framework. They use MHA spider monkey op-
timization (SMO) for optimal FS. Afterwards, they em-
ployed stacked-deep polynomial network for the clas-
sification of intrusive traffic in IoT system. They used L2 
regularization technique to avoid model overfitting. 
However, the proposed IDS is verified using NSL-KDD, 
which is an outdated dataset and doesn’t include latest 
attacks. The random forest (RF) based smart IoT-based 
IDS is proposed in [10]. They combine elements of grey 
wolf optimization and particle swarm optimization to 
enhance the FS process for intrusive traffic. Further-
more, RF is used to perform multiclass classification. 
They performed oversampling to handle imbalanced 
data. The model is evaluated against outdated datas-
ets including CICIDS-2017, KDDCup99, and NSL–KDD 
and attains accuracy above 99% for all three datasets. 
These datasets don't have IoT traces. The work in [11] 
proposed a hybridized MHA for the IoT system. The 
study combines the bird swarm algorithm with the go-
rilla troops optimizer to improve FS. The model's per-
formance is assessed on various datasets, including CI-
CIDS-2017, NSL-KDD, BoT-IoT, and UNSW-NB15, result-
ing in accuracies of 98.7%, 95.5%, 81.5%, and 81.5%, 
respectively. Authors in [12] proposed an smart botnet 
detection method for IoT system. They hybridized salp 
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swarm algorithm with an ant lion optimization algo-
rithm for the FS of the N-BaIoT dataset. This hybrid ap-
proach leveraged the global search capabilities of ALO 
and the local search capabilities of SSA to obtain the 
optimal solution. The classification is performed using 
the KNN classifier. In paper [13], a lightweight IDS tai-
lored for IoT systems was presented. This research in-
volved a fusion of the genetic algorithm (GA) and the 
GWO for the FS. Their model's performance was evalu-
ated against AWID dataset. Authors in [14] proposed 
MHA-based FS for the IoT system. They proposed three 
models based on simulated annealing and shuffled 
shepherd optimization algorithms i.e. SSO, SSO-SA1, 
and SSO-SA2 to perform FS. In SSA-SA1, SA is merged 
within SSO and in SSA-SA2, SA is used after SSO. Fea-
tures obtained from the proposed system are classified 
using the KNN classifier. Experimental result shows that 
SSO-SA2 is better in contrast to all other algorithms. 
Hamed et al. [15] proposed an IDS to protect the edge 
layer of the IoT system from malware. The optimal 
feature selection of a dataset with opcodes and byte-
codes is performed by using the GWO algorithm. They 
proposed a multi-kernel SVM approach for the clas-
sification of malware. The proposed approach is bet-
ter than deep-RNN and fuzzy-based IDS. The authors 
in [16] proposed an IoT-based IDS with a deep neural 
network (DNN) framework. They used filter-based mu-
tual information for feature selection. Features with a 
high MI score are selected as optimal features. The IoT 
traffic is classified as an anomaly or begins using DNN. 
The proposed system attains an accuracy of 99.01%. 
The authors in [17] proposed a hybrid IDS designed 
specifically for IoT framework. Their approach involved 
the use of an enhanced shuffled frog leaping algorithm 
as a wrapper for FS. Following this, they employed a 
Light Convolutional Neural Network with Gated Recur-
rent Neural Network (LCNNGRNN) for the classification 
of intrusive network traffic. The performance of their 
proposed model demonstrated its effectiveness when 
benchmarked against other methods, especially when 
evaluated on the NSL-KDD dataset. The work in [18] 
proposed a NIDS for the medical IoT system. They em-
ployed a butterfly optimization algorithm (BOA) to get 
the best features. Afterward, ANN is used to categorize 
the network traffic based on optimal features obtained 
using BOA. The proposed system attains an accuracy 
of 93.27% over the NSL-KDD dataset. The authors in 
[19] proposed GA based anomaly detection system for 
the fog based IoT framework. The FS is performed us-
ing wrapper based GA and classification is performed 
using deep brief network. Proposed system achieves 
99.73% accuracy and 0.06% false positive rate for the 
NSL-KDD dataset. However, existing IDS approaches 
performed well for the IoT framework still there are cer-
tain limitations, which includes:

Mostly datasets like UNSW-NB15, KDDcup99, CI-
CIDS-2017, NSL-KDD, etc. are used for performance 
evaluation of IDS for IoT framework. However, such da-
tasets become obscure and doesn’t have IoT traces. 

•	 Most of the proposed IDS used MHA for FS either 
incur high computation time or doesn’t include 
any information about computation time. Further-
more, detecting intrusive traffic with less computa-
tion time, and high accuracy is important concern.

•	 The FS using HHO might leads to premature con-
vergence and trapped in local optima. 

2.1.  HARRIS HAWk ALgORITHm (HHO)

The HHO algorithm is developed in 2019 by authors 
in [20]. HHO mimics the hunting behavior of Hawk birds 
required to catch the prey (rabbit). These birds perch in 
the air, search for prey, and then dive on it collectively. 
Each group of hawks contains two to seven members. 
The HHO algorithm includes two phases: exploration, 
which models hawks preaching behavior, and exploita-
tion, which models different attacking styles of hawks.

Exploration Phase: During this phase, hawks are dis-
tributed randomly in the search area, waiting for their 
prey to arrive. They detect and trace prey with their 
powerful eyes. These birds can wait for several hours 
for a prey to arrive. If d≥0.5, hawks use family member 
position for hunting, while if d<0.5, then hawks use 
random positions for hunting. Using the value of d, 
hawks position is updated using following equations:

(1)

where, d, rn1, rn2, rn3, and rn4 represents random 
numbers within range 0, and 1. d is used to toggle 
between two position-updating equations. LBU rep-
resents lower limit and UBU represents upper limit of 
search space. Target position is denoted by Atarget (k), 
and Arn denotes the randomly selected hawks. A(k) is 
the current hawks position, and Amean (k) signifies the 
average position computed based on the current pop-
ulation of hawks. This average position is determined 
through the following formula:

(2)

Escaping Energy (En): The shift from exploration to 
the exploitation phase is contingent upon the energy 
levels of the prey, and the act of evading often results 
in a depletion of their energy. The energy is a time-
varying variable defined by the equation:

(3)

(4)

where Einitial denotes initial prey escaping energy. k de-
notes current iteration. kmaxite denotes the maximum 
iteration number. Depending on the En value explora-
tion and exploitation phase happen. If En≥1 then the 
exploration part of HHO is executes while if En<1 then 
the exploitation part of HHO executes.
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Exploitation Phase: During this phase, hawks exploit 
prey using surprise dives. Based on escaping behavior 
of prey, the hawk selects their attacking strategy. The 
strategies include hard besiege (HB), hard besiege with 
progressive dive (HBPD), soft besiege (SB), and soft be-
siege with progressive dive (SBPD). Progressive dive 
strategies show the intelligent behavior of hawks. The 
strategy to be adopted by the hawks depends upon 
the value of escaping probability (pr), and escaping en-
ergy (En). If pr<0.5 then the prey escape successfully 
and if pr≥0.5 then the prey is unsuccessful in escaping 
before a surprise attack.

SB: Whenever the prey possesses sufficient energy to 
escape, the hawks employ a gentle encirclement strat-
egy, which gradually tires out the prey, enabling them 
to execute surprise attacks effectively. The SB is deter-
mined using the following equation:

(5)

where, A(k) is the current hawks position, En is energy 
level, Atarget (k) is target position, J is the jumping strength, 
which is determined using following equation:

(6)

where, rn5 is the random number. Further, ∆A(k) refers 
to the disparity between the current hawks position 
and its target position. It is determined using following 
equation:

(7)

HB: In this scenario, the prey lacks the necessary 
energy to escape from the hawks. The hard besiege is 
mathematically modeled as:

(8)

SBPD: In this method, the levy flight function (LFF) 
determines the zigzag maneuver of prey during an 
escape. The target has enough escaping power. There-
fore, hawks try to distract the target so that it changes 
its path.  This process continues until hawks perch their 
target. The hawk chooses their next favorable move us-
ing the equation:

(9)

If the hawks find that target is trying to mislead 
hawks and tries to escape, then LFF function is used to 
perform dive. The position is determined using follow-
ing equation:

(10)

where, X is random vector of size 1 X DM (Dimension). 
LFF is determined using the following equation:

(11)

where, β is constant with a value 1.5, e and f are random 
number, lies in interval 0 and 1. 

Therefore, in SBPD Hawks positon is determined us-
ing the following mathematical equation:

(12)

where, FF is the fitness function obtained using equa-
tion 24.  

HBPD: In this method, prey has insufficient escaping 
energy. Hence, hawks strive to minimize the distance be-
tween their mean location and the location of their prey, 
which is determined using the following equation:

(13)

where,

(14)

(15)

LFF is the levy flight function obtained from equa-
tion 11, Atarget (k) is the target position, and X defines 
a random vector of size 1× DM (dimension). Amean (k) is 
determined by equation 2.

The HHO is a population-based MHA that has several 
advantages and limitations as well.  The HHO is popu-
lar due to its simpler structure. It requires few param-
eter settings compared to other MHA [21], and ease of 
implementation. The HHO is flexible, scalable, and ro-
bust. It provides a good convergence speed. However, 
it doesn't have any theoretical analysis, and also lacks 
mathematical analysis. Moreover, the existence of ran-
dom variables in the different phases of HHO reduces 
its convergence speed and is stuck in local optima. 
Therefore, chaos theory is used to determine the value 
of these random variables used in HHO and helps to 
improve its performance.

2.2. CHAOTIC mApS

The term chaotic refers to “state of chaos”. The CM are 
functions that mathematically computes random values 
based on the seed value provided initially. From the last 
few decades, CM are widely adopted for optimizing MH 
algorithms due to their dynamic behaviour [22]. Search-
ing search space becomes faster using CM than random 
number generator. They generate random numbers that 
lies between certain range. The chaotic map has vari-
ous characteristic such as randomness, ergodicity, i.e. 
traverse all states without repetition, and highly sensi-
tive to initial value [23]. These attributes of Chaotic Maps 
(CM) assist Metaheuristic (MH) algorithms in enhancing 
convergence speed and steering clear of local optima. 
The exploration and exploitation phases of HHO involve 
multiple random numbers, which could potentially lead 
to HHO becoming trapped in local optima. Therefore, 
in this paper, these random numbers are determined 
by using a chaotic map “Chossat-Golubitsky” [24]. The 
equation of CG-CM is given by:

(16)
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2.3. OppOSITION BASED LEARNINg

The OB learning concept was initially introduced 
by the authors in [25] and has been applied in vari-
ous studies, including [26] and [27], to optimize Meta-
heuristic Algorithms (MHAs). Typically, many MHAs be-
gin with the selection of random numbers as their ini-
tial solutions. Therefore, in this paper, the OB learning 
technique is employed to enhance the population di-
versity of the original HHO algorithm. Instead of select-
ing the hawk's population randomly from search space, 
the OB learning method is used to select random hawk 
positions i.e. Arn (k). This approach navigates the search 
space in dual directions, taking into consideration both 
the original solution and its reverse counterpart. By do-
ing so, it offers a more comprehensive coverage of the 
search space [28]. The convergence speed of the MHA 
is slower in most cases. Therefore, OB learning resolves 
this problem by by taking into account both randomly 
generated solutions and their opposites [29]. The au-
thors in [30] shows that the opposite solution is more 
capable to reach global optima compared to the origi-
nal solution. 

Definition: In general, let x ∈ [l,u] be a real number. 
The opposite number (x̅) is evaluated using the follow-
ing equation:

where lbu is lower bound. ubu is upper bound. 

If x is a multi-dimensional vector then, all elements of 
x̅ is defined by:

x̅=(lbuw+ubuw-xw) where, w=1,2,3, 4, …..., d and d is 
the multi-dimension.

3. pROpOSED SYSTEm

With the growing security concerns surrounding 
IoT devices, the need for an efficient IDS that can ac-
curately detect intrusions while minimizing process-
ing time becomes crucial. The complete architecture 
of the suggested system is illustrated in Fig. 1. The IDS 
is organized into multiple stages, encompassing data 
collection, data pre-processing, feature selection us-
ing the CO-IHHO method, and the classification phase. 
The proposed IDS is verified using BoT-IoT [31] dataset. 
The data undergoes pre-processing to eliminate ambi-
guities and address missing values. Subsequently, CO-
IHHO is applied for feature selection on the pre-pro-
cessed data, followed by binary and multiclass classi-
fication of intrusive traffic. The section aims to provide 
a comprehensive overview of each of these phases 
within the IDS. 

3.1. DATA COLLECTION

During this phase various logging tools are used 
for used for preparing dataset, created dataset can be 
used to train model for identifying intrusive traffic. In 
this paper, publicly available BoT-IoT dataset [31] is 

used as collected data, described briefly in later sec-
tion. It is feed as an input to data-processing phase of 
the IDS model.

3.2. pRE-pROCESSINg

From the review of the literature conducted above, it 
becomes apparent that the majority of the datasets uti-
lized for performance evaluation exhibit characteristics 
such as noise, missing values, irrelevant information, 
and redundancy. Additionally, it's worth noting that the 
data generated by IoT devices is inherently heteroge-
neous in nature.  Hence, it is necessary to handle these 
redundant and irrelevant data and further, alter the 
data into a uniform form. The pre-pressing phase helps 
in improving data quality and providing effective, and 
accurate result. The data from the data collection mod-
ule is provided as an input to the pre-processing phase. 
The pre-processing task includes, cleaning, transforma-
tion, standardization, and sampling. 

During cleaning, the quality of the collected data is 
improved by eliminating undesired, and redundant at-
tributes. Undesired attributes are those whose value 
doesn’t impact the performance of intrusion detection 
while redundant attributes value can be derived from 
other attribute value. Furthermore, attributes with 
missing values are also eliminated. In this paper, redun-
dant, and irrelevant attributes such as ‘ltime', 'daddr', 
'saddr', 'stime', 'flgs', 'state', 'proto', 'pkSeqID', 'sport', 
'dport', and 'seq' are eliminated.

During transformation and standardization, several 
ML classifiers takes only numerical value as processing 
input. Consequently, categorical values are converted 
into numerical values using a method called Label en-
coding. Furthermore, the data is standardized to ensure 
that data values fall within the range of [0,1]. Failure to 
standardize data can impact the performance of the 
IDS due to varying data value ranges. To achieve this, 
the Standard Scaler function is employed.

Sampling: The BoT-IoT dataset exhibits imbalanced 
data with a significantly higher number of intrusive 

Fig. 1. Proposed System Design
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traffic instances compared to normal instances. To ad-
dress this disparity, sampling techniques are applied to 
balance the instance counts between these two cate-
gories. Imbalanced dataset makes the classifier biased 
towards majority class (intrusive traffic, in this case) and 
reduces the possibility to detect minority class (normal 
instances). In this context, random sampling is utilized 
to mitigate the imbalanced nature of the BoT-IoT data-
set. After preprocessing, the FS is performed using CO-
IHHO, described in later section.

3.3. CLASSIFICATION pHASE

During this phase, the task involves identifying intru-
sive traffic, and it encompasses both binary and multi-
class classification. Binary classification distinguishes 
between normal and intrusive traffic, while multiclass 
classification goes further by identifying specific attack 
categories within the intrusive traffic, alongside normal 
traffic. To carry out these classification tasks, the selected 
features obtained from the feature selection phase are 
used as input for two machine learning classifiers: De-
cision Tree (DT) and K-Nearest Neighbor (KNN). Subse-
quently, an analysis of their performance is conducted. 
These ML algorithms offer several benefits, including 
interpretability, ability to handle mixed data types, resil-
ience to noise and irrelevant features, and ease of imple-
mentation. These advantages make them well-suited for 
tasks involving classification and detection.

4. FEATURE SELECTION USINg CO-IHHO

The fine-tuned is provided as an input to the FS phase. 
FS eliminates unwanted, and irrelevant features from da-
taset and extracts best features out of it [32]. The random 
number used in MHA has crucial effect on their perfor-
mance of determining global and local search capabil-
ity. HHO structure has several random parameters which 
prevent them in obtaining global optima. Therefore, 
CM techniques is embedded in the structure of HHO 
for determining random numbers. The hawks position 
in the exploration phase of HHO is determined either 
by family members or randomly selected population of 
hawks. Therefore, in this paper, OB learning technique is 
employed to intensify the population update of hawks 
instead of random population selection. Furthermore, 
the sine and cosine function are used to enhance the ca-
pability of hawk’s exploration. The exploitation phase of 
HHO is also enhance by introducing dynamic capability 
using S function, which is inspired by [33] , and introduc-
ing random parameters to the advanced dive phase. This 
helps the hawks to exploit local regions rigorously. Here, 
CO-IHHO is used for the FS task, which overcomes the 
drawback of original HHO. The algorithm 1 depicts the 
pseudocode of proposed CO-IHHO.

Algorithm 1. Chaotic Opposition based Improved 
HHO (CO-IHHO).
Input: N is population size, and kmaxite is maximum iterations
Output: Optimal Feature subset

 Assign the population s=1, 2,….,n
 While(k<=kmaxite)
 Initialize “Chossat-Golubitsky” chaotic map to 
 identify random numbers using equation 16
 Compute population of fittest hawks AOBL(k)
 Compute hawks mean position using equation (2)
 Compute escaping energy using equation 23
 if (|En| >=1.5)      *Exploration phase
 revise hawks positon using equation 17
 else if (|En| <1.5)      * Exploitation phase
 if (|En| ≥1 and pr ≥ 0.5)
 revise hawks position using equation  18  #SB
 if (|En| <1 and pr ≥ 0.5) 
 revise hawks position using equation  19  #HB
 else if (|En| ≥1 and pr <0.5)
 revise hawks position using equation  20  #SBPD
 else if (|En| <1 and pr <0.5)
 revise hawks position using equation  21  #HBPD 
 end if 
 return optimal selected features
 end while
 end

The CO-IHHO is the result of following enhancements 
made to original HHO-

Chaotic Map: The incorporation of a chaotic map to 
generate random numbers plays a pivotal role in both 
the exploration and exploitation phases of the HHO al-
gorithm. This deliberate inclusion serves as a safeguard 
against HHO becoming ensnared in local optima, leading 
to a substantial improvement in its convergence speed.

OB Learning: The OB learning is used for enhancing 
the population diversity of HHO. Instead of selecting 
hawks population randomly in equation (14), OB learn-
ing is used for selecting hawks population. OB Learning 
with CO-IHHO: 

•	 Hawks position A is initialized as as, where 
s=1,2,3,….,n

•	 Calculate opposite position of hawks as a̅s, where 
j=1,2,3,…,n.

•	 Choose the n fittest hawks from (as ∪ a̅s) which repre-
sent the new initial population of hawks i.e. AOBL (k).

Exploration Phase (En≥1.5): CO-IHHO enhances the 
exploration capability of HHO by using sine and cosine 
functions in updating the position of Hawks. Inertia 
weight (w) is also introduced. The Hawks position is cal-
culated as:

(17)

where,  and  
where p=6, rd1, rd2, rd3, and rd4 are the random vari-
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ables computed using CM. UBU is upper search space 
limit. LBU is the upper search space limit. Harris hawks 
population mean position i.e. Amean (k) is calculated using 
equation 2, and Atarget (k) is target positon. Also, k is cur-
rent iteration. rd1, rd2, rd3, and rd4 are random number 
determined using CM. kmaxite is maximum iteration.

Exploitation Phase (En<1.5): The CO-IHHO enhances 
the exploitation capability of HHO by adding dynamic ca-
pability using value of S and random number. Depending 
upon the value of En and p (random number), the hawks 
position is updated using the following equations: 

SB: This phase executes when |En| >=1 and p >= 0.5. 
The position is determined using

(18)

where, rd5 is random number determined using CM. 
∆A(k) is obtained using equation 7. En is escaping en-
ergy obtained using equation 23. Jumping strength is 
obtained using equation 6. Atarget (k) is target positon. 
A(k) is current position.

HB: This phase executes when (|En| >=1 and p >= 0.5). 
The position is determined using:

(19)

where, ∆A(k) is obtained using equation 7. Atarget (k) is 
target position.

SBPD: This phase executes when (|En| >=1 and p 
<0.5). The position is determined using

(20)

where, B and C are obtained using equation 9 and 
equation 10, respectively. FF is the fitness function. rd6, 
rd7, rd8, and rd9 are random number between 0 and 
1, determined using CM. A(k) is current hawks position.

HBPD: This phase executes when (|En| <1 and p <0.5). 
The position is determined using:

(21)

where,

(22)

rd10, rd11, rd12, and rd13 are random number de-
termined using CM between [0,1]. FF is fitness function. 
A(k) is current hawks position. B' and C' are obtained 
using equation 14 and equation 15 respectively.

Escaping Energy: The CO-IHHO modifies the escaping 
energy equation, shifting it from a linear to a non-linear 
form in order to achieve a more balanced exploration 
and exploitation phase. This transformation is precisely 
defined by the following equation:

(23)

where, Eo=0.75, and rd0 is random number lying be-
tween (0,1).

5. ImpLEmENTATION AND RESULT ANALYSIS

This section describes the experimental setup, and 
CEC-06 2019 benchmark function to evaluate the per-
formance of proposed CO-IHHO. Furthermore, dataset 
used for model evaluation, and performance metrics 
considered for evaluating the model are described. 
Afterward, a comparison with other MHAs and recent 
IoT-based IDS is done. 

5.1. ExpERImENTAL SETUp

The experiment conducted in this paper is imple-
mented using Python 3.2 on Mac OS Catalina with 8 GB 
RAM. For an accurate comparison, each implemented 
algorithm is given a standard situation. The number of 
iterations i.e. 50, and the population used by all algo-
rithms is the same. Table 1 presents the parameter set-
ting of each MHA used as FS.

Table 1. Parameter Setting.

S. No. method parameter Setting

1. CO-IHHO
Threshold= 0.5 

β = 1.5 
EO=0.75

2. ISSA Maximum iteration for local search 
algorithm (maxLt) = 10

3. ISCA Elites number (Ne) = 10 
α= 2

4. TMGWO Mutation Probability (Mp) = 0.5

5. SSA Threshold = 0.5

6. GWO Threshold = 0.5

7. HHO Threshold = 0.5 
β= 1.5

8. WOA b = 1 (constant)

9. Chossat-Golubitsky

a = -1.0 
b = 0.1 
c = 1.52 
d = -0.8 
x = 0.1 
y = 0.1

5.2. BENCHmARk CEC-06 2019 EVALUATION

The proposed CO-IHHO algorithm’s performance is 
assessed using the CEC-06 2019 benchmark functions, 
which consist of 10 single-objective optimization prob-
lems [34]. These functions, labeled CEC F01 to CEC F10, 
present diverse challenges with shifted and rotated 
configurations for some functions. The dimensions of 
CEC F1, CEC F2, and CEC F3 are 9, 16, and 18, respec-
tively, while the rest are 10-dimensional. The evalua-
tion involves running all MHAs, including the original 
HHO, proposed CO-IHHO, SSA, GWO, WOA, and PSO 
[35], for 100 iterations on each function. Table 2 pro-
vides the names and ranges of the CEC-06 benchmark 
functions, while Table 3 displays the evaluation results 
for the minimization function.
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The effectiveness of exploration and exploitation 
phases is evaluated using function assessment. The 
competitive outcomes indicate that CO-IHHO main-
tains a balanced trade-off between exploitation and 
exploration, outperforming other algorithms in terms 
of best value, average value, and standard deviation for 
CEC F1, CEC F2, CEC F3, CEC F6, CEC F7, CEC F8, and 
CEC F10. The results reveal that CO-IHHO consistently 
outperforms other MHAs in various instances. The per-
formance of PSO is better for CEC F4 as compared to 
other algorithms, and GWO performs better for CEC 
F5. The original HHO shows superior performance for 
best value and average value in CEC F9, however, the 
convergence of CO-IHHO is better compared to origi-
nal HHO for CEC F9, as shown in Fig. 10. It is notewor-
thy that PSO achieves zero standard deviation for CEC 
F9, indicating no further improvement can be made 
with this algorithm. Fig. 2 demonstrates that CO-IHHO 
exhibits better convergence compared to the HHO al-
gorithm for CEC F1. Similarly, Fig. 3 demonstrates that 
CO-IHHO achieves better convergence in comparison 
to the original HHO for CEC F2. Moreover, Fig. 4, Fig. 5, 
and Fig. 6 illustrate the convergence behaviour of CO-
IHHO and HHO for CEC F3, CEC F4, and CEC F5 bench-
mark functions, respectively. Notably, Fig. 7, Fig. 8, and 
Fig. 9, provide evidence that CO-IHHO consistently 
outperforms HHO for CEC F6, CEC F7, and CEC F8, re-
spectively. In the case of CEC F10, as shown in Fig. 11, 
the CO-IHHO demonstrates better results compared to 
the performance of original HHO. These results suggest 
that CO-IHHO performs well in terms of convergence, 
best value, average value and standard deviation for 
most of the tested functions, outperforming the HHO 
and other MHAs in many cases.

Fig. 2. Convergence curve for CEC F1

Fig. 3. Convergence curve for CEC F2

Fig. 4. Convergence curve for CEC F3

Fig. 5. Convergence curve for CEC F4

Fig. 6. Convergence curve for CEC F5

Fig. 7. Convergence curve for CEC F6

Fig. 8. Convergence curve for CEC F7
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Fig. 9. Convergence curve for CEC F8

Fig. 10. Convergence curve for CEC F9

Fig. 11. Convergence curve for CEC F10

Table 2. CEC-06 2019 Benchmark Functions

S. No. Function Name Range

F1. Storn’s Chebyshev Polynomial Fitting 
Problem [–8192,8192]

F2. Inverse Hilbert Matrix Problem [–16384,16384]

F3. Lennard–Jones Minimum Energy Cluster [–4,4]

F4. Rastrigin’s Function [–100,100]

F5. Griewanck’s Function [–100,100]

F6. Weierstrass Function [–100,100]

F7. Modifed Schwefel’Schafers Functions [–100,100]

F8. Expanded Schafer’s F6 Function [–100,100]

F9. Happy Cat Function [–100,100]

F10. Ackley Function [–100,100]

Function metric HHO CO-IHHO SSA gWO WOA pSO

F1

Bt. 5.6458408963 
636614e+57

4.050347176 
1952476e+57

6.180403739 
291002e+64

4.405029997 
8216904e+57

9.425512550 
977296e+64

5.55378945 
8284711e+57

Avg. 1.8001192737 
876405e+59

1.449694038 
9680123e+58

2.66903878 
5340499e+65

4.405049361 
695653e+57

2.433135768 
798515e+65

5.55379419 
7713616e+57

Sd. 4.829127865 
299456e+59

1.353562095 
4277987e+57

9.80178069 
2383188e+64

1.679703863 
5079378e+58

9.085970285 
252852e+64

6.70361779 
8945432e+57

F2

Bt. 3.9916671 
51716069

3.9973917 
809429644

3.9973753 
40600083

3.9951018 
016288677

3.0854374 
139651153

3.2763628 
543348684

Avg. 3.99952455 
08433546

3.999797 
00315296

3.9999312 
267444482

3.9993981 
76739008

3.9693092 
439720545

3.7681114 
29602772

Sd. 0.001525954 
7174125503

0.00053572 
37019455018

0.000888591 
7717980132

0.000968825 
4637632288

0.16413144 
511627908

1.4020140 
157900978

F3

Bt. -1.06258406 
64408444

-0.5581271 
752712231

-2.3814881 
067413767

-0.8097890 
269036659

-5.975875268 
3271024e-18

-3.99152881 
15300274

Avg. -0.021219745 
050436466

-0.55812 71 
752712231

-1.84750543 
29449694

-0.729051427 
8242319

-9.032367865 
749103e-08

-2.63740153 
32542218

Sd. 0.6594785 
017613516 0.0 0.25801905 

44014521
0.05075578 
2735039646

3.92214594 
5550951e-07

0.8153980 
301270428

F4

Bt. 4.4268217 
33805227

1.00974297 
73793607

7.957355181 
876517e+55

3387003.90 
6655918

82.90815 
749102207

3.91957374 
33495026e-08

Avg. 4.4800847 
56471913

1.2561787 
419150254

1.156520407 
7536015e+56

3387003.90 
66559565

160.52086 
235529387

3.9606395 
51880973e-08

Sd. 0.03837515 
684925129

0.04593711 
910053741

2.811800251 
441804e+55

1.999977733 
5956407e-08

77.405704 
03960551

1.823048010 
1262743e-10

F5

Bt. 0.7918726 
025294613

0.08753646 
705113927

6.4556002 
50692994

2.009503674 
5715333e-14

1.321126972 
4866526e-05

0.6175348 
701316968

Avg. 0.7918726 
032381472

0.5274561 
64202598

9.1630051 
76576055

3.809119686 
3376806e-13

0.06835713 
316697926

0.617557 
7735425246

Sd. 1.33732948 
4646872e-10

0.2868547 
368291001

1.48168001 
13561526

6.14194083 
8294567e-13

0.08538731 
723710603

1.57485623 
32045633e-05

Table 3. Evaluation Result for CEC-06 2019 Benchmark Functions.
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F6

Bt. 33.150370 
660918725

19.99998 
0926513693

28.695110 
52244359

20.5198762 
60083844

19.999980 
926513675

19.99998 
0926513746

Avg. 39.33966 
281894489

19.99998 
092651373

39.621649 
84271977

27.878543 
87037633

27.942487 
589997018

19.99998 
0926513743

Sd. 2.559311 
914314841

1.486206 
760386614

3.3426729 
300780225

5.4533643 
67130319

11.793876 
127713025

3.55271367 
8800501e-15

F7

Bt. 1266.8341 
381373614

9.9507944 
87333901

31142.4287 
94015377

10636.4259 
13333696

9.498185 
76031255

72.58942 
85819002

Avg. 1267.116 
2811961126

9.962486 
072328463

68873.145 
57159516

10636.425 
9133337

16112.375 
314667242

73.003582 
99789353

Sd. 0.17258945 
10405593

0.002321930 
3880354495

19268.516 
53842171

3.637978807 
091713e-12

22475.7060 
53732516

0.6543264 
666468622

F8

Bt. 7.1694108 
77512084

2.2699551 
600740326

6.7234936 
74627376

15.493013 
232370153

12.678902 
550412865

3.9108997 
237343455

Avg. 7.1694108 
77515147

4.5774542 
11793856

8.3200261 
5763271

26.963196 
056684094

24.673701 
286726512

6.291320 
842737323

Sd. 9.8337508 
2019743212

1.6065586 
525065239

1.8309652 
794532914

5.8955512 
06415807

6.3829279 
60600941

1.735756 
3057153931

F9

Bt. -1.169939433 
4559265e+66

-4.334776244 
689166e+69 -2.5e+76 -2.5e+76 -5.7704303 

10355887e+72 -2.5e+76

Avg. -9.3301679 
53480409e+64

-4.33483332 
6484094e+68

-5.515302187 
0255146e+75

-1.9985345611 
38153e+76

-5.02659225 
28784734e+73 -2.5e+76

Sd. 2.862540782 
266106e+65

1.30043097 
07285165e+69

9.13560888 
6381215e+75

3.078090653 
543935e+75

1.935246513 
4230854e+74 0.0

F10

Bt. 20.52698 
445657453

19.99993 
579171894

19.999999 
993888967

21.423167 
174440493

20.050742 
57169523

19.999999 
993888967

Avg. 21.060908 
317329346

19.999996 
789276956

19.99999 
999388897

21.453085 
896275244

21.1843797 
83145335

19.9999 
9999388897

Sd. 0.22800868 
237094374

0.01531973 
776709719

3.5527136 
78800501

0.2596558 
779276892

0.32581475 
455351727

3.5527136 
78800501

*Sd=Standard Deviation (minimum), Bt. = Best value (minimum), and Avg. = Average Value (minimum).

5.3. DATASET DESCRIpTION

The proposed IDS performance is evaluated using the 
BoT-IoT dataset [31]. This realistic dataset was developed 
in Cyber Range Lab of UNSW in 2018, and published in 
2019 for the IoT environment [34]. It includes both intru-
sive traffic with different attack categories and normal 
traffic. The intrusive traffic dataset comprises four primary 
categories: data exfiltration, DoS, reconnaissance, and 
DDoS. A summary of the dataset in Table 4 indicates that 
it is predominantly composed of over 99% intrusive traffic 
instances, with less than 1% representing normal traffic 
instances. Moreover, to improve the performance of ML 
classifiers additional attributes are also added. The BoT-IoT 
realistic testbed includes a network platform, which in-
cludes attacking and normal virtual machines, simulated 
IoT services, which include five IoT devices simulated us-
ing the Red-Node tool, feature extraction using the Agrus 
tool, and forensic analytics using ML algorithms. The five 
IoT devices used for simulation include a smart thermo-
stat, smart door, smart fridge, smart lights, and weather 
station. This dataset has about 72 million labeled records 
in 74 .csv files with 46 features, out of which 14 are ad-
ditionally generated from the original feature set. In the 
process of assessing the performance of the proposed IDS 
model, a subset amounting to 5% of the entire dataset is 
taken into account, which corresponds to four .csv files.

Table 4. Dataset Instances.

S.No. Category Instances

1. DDoS 1926624

2. Normal 477

3. Information Theft 79

4. Reconnaissance 91082

5. DoS 1650260

5.4. EVALUATION mETRIC

The evaluation of performance utilizes the following 
metrics.

Fitness function: The FF is determined using follow-
ing equation:

(24)

where α=0.99 and β2=1-α 

Max_Fea = maximum number of features, SelFea = se-
lected features length, and er = 1-Accuracy

Accuracy: This metric defines the identification of 
data instances from complete traffic data correctly. It is 
mathematically defined as:

(25)
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Precision (P): This metric defines the correctly identi-
fies data instances as positive. It is mathematically de-
fined as:

(26)

Recall (R): This metric defines the correctly identifies 
data traffic instances. It is defined mathematically as:

(27)

F-Score: This metric is calculated as the harmonic 
mean of recall and precision. Mathematically, it is de-
fined as:

(28)

Time: The time defines the overall time taken by the 
algorithm for identifying intrusion. 

Features Selected: This indicates the length of fea-
tures selected by MHA from overall features.

where,

•	 True Positive (TpS): Data traffic instances correctly 
classified as positive  

•	 False Positive (FpS): Data traffic instances misclassi-
fied as positive 

•	 False Negative (FnS): Number of data traffic in-
stances misclassified as negative 

•	 True Negative (TnS): Data traffic instances correctly 
classified as negative 

5.5. RESULT DISCUSSION AND pERFORmANCE 
 ANALYSIS

Comparison with Other MHA: The result obtained by 
the proposed work is compared against other wrapper-
based MHAs such as ISSA [37], ISCA [38], TMGWO [39], 
SSA [40], GWO [41], HHO [20], and WOA [42] for FS of 
the intrusive network traffic for the IoT system. Further-
more, the performance of two ML classifiers: DT, and 
KNN with the FS methods are compared for identifying 
intrusive traffic.

Binary Classification: Fig. 12 depicts that CO-IHHO 
achieves the highest accuracy of 100% using the DT 
classifier, while ISCA and GWO achieve an accuracy of 
99.98% for the BoT-IoT dataset. With KNN as a classifier, 
CO-IHHO achieves an accuracy of 99.97% while ISSA 
and SSA achieve an accuracy of 99.95%. Furthermore, 
Fig. 13 shows that CO-IHHO, ISCA, GWO, and HHO select 
the lowest number of features i.e. 3 with the DT classi-
fier while ISCA and GWO select the minimum feature 
length i.e. 2 with KNN classifier for the BoT-IoT dataset. 

Fig. 14 depicts that the computation time of CO-IHHO 
is lowest with both classifiers DT, and KNN in contrast 
to all other MHA used for FS task. Moreover, TMGWO 
takes the highest computation time with DT, and KNN 
classifiers compared to all other MHA used for FS tasks. 

The convergence curve of CO-IHHO-DT and HHO-DT 
is shown in Fig. 21 for the BoT-IoT dataset. While the 
convergence curve of CO-IHHO-KNN and HHO-KNN is 
shown in Fig. 23. It has been observed that CO-IHHO 
converges better than HHO for both classifiers.

The overall performance of CO-IHHO-DT is better 
compared to CO-IHHO-KNN for the accuracy, features 
selected, and computation time. Furthermore, for bina-
ry classification, the performance of CO-IHHO is better 
among all other MHA used for FS task.

Multiclass Classification: CO-IHHO achieves the high-
est accuracy of 99.65%, and 98.1% for DT, and KNN clas-
sifiers, respectively as depicted in Fig.15. Similarly, Fig. 
17, Fig. 18, and Fig. 19. depict that CO-IHHO achieves 
the highest precision, recall, and F-score each of 100% 
and 98% with DT and KNN classifier, respectively for 
the BoT-IoT dataset. As seen in Fig. 16, CO-IHHO with 
DT classifier selects the minimum number of features 
i.e. 8. While SSA with DT classifier selects the maximum 
length of features i.e. 15. Moreover, CO-IHHO with KNN 
classifier selects the minimum length of features i.e. 5. 
While HHO selects the maximum length of the feature 
i.e. 22.

Furthermore, Fig. 20 depicts the CO-IHHO taking the 
lowest computation time i.e. 31.34 sec. and 42.87 sec. 
using DT, and KNN classifiers, respectively for the BoT-
IoT dataset. TMGWO takes the maximum computation 
time among all other MHA with DT, and KNN classifier. 
Convergence curve of CO-IHHO-DT and HHO-DT is 
shown in Fig. 22. Convergence curve of CO-IHHO-KNN 
and HHO-KNN for the BoT-IoT dataset is shown in Fig. 
24. It has been observed that CO-IHHO converges bet-
ter than HHO for both classifiers.

The overall performance of CO-IHHO-DT is better 
compared to CO-IHHO-KNN in terms of number of fea-
tures selected, accuracy, F-score, precision, computa-
tion time, and recall. Furthermore, for multiclass classi-
fication, the performance of CO-IHHO is better among 
all other MHA used for FS task.

Comparison with other recent work: The presented 
research is also benchmarked against other recent 
studies that share similarities. These recent investiga-
tions employ the BoT-IoT dataset as the basis for evalu-
ating their performance.

Binary Classification: Table 5 depicts the accuracy 
comparison of CO-IHHO-DT with other recent work for 
the binary classification.  It has been observed that the 
accuracy of the proposed CO-IHHO-DT is higher com-
pared to the other similar approaches such as BD-PSO-V 
[43], DNN [44], BGWO-NB [45], AQUa [46], and RSA [47].

Multiclass Classification: Table 6 shows the accu-
racy comparison of CO-IHHO-DT with other similar ap-
proaches for the multiclass classification. The proposed 
CO-IHHO-DT attains the maximum accuracy of 99.65% 
compared to other approaches such as GbFS [48], AQUa 
[44], and RSA [47].
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Fig. 12. Binary classification accuracy for BoT-IoT 
dataset

Fig. 13. Binary classification features selected for 
BoT-IoT dataset

Fig. 14. Binary classification computation time for 
BoT-IoT dataset

Fig. 15. Multiclass classification accuracy for BoT-IoT 
dataset

Fig. 16. Multiclass classification features selected 
for BoT-IoT dataset

Fig. 17. Multiclass classification precision for BoT-
IoT dataset

Fig. 18. Multiclass classification recall for BoT-IoT 
dataset

Fig. 19. Multiclass classification F-Score for BoT-IoT 
dataset

Fig. 20. Multiclass classification computation time 
for BoT-IoT dataset

Fig. 21. Binary convergence curve with DT for BoT-
IoT dataset
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Fig. 22. Multiclass convergence curve with DT for 
BoT-IoT dataset

Fig. 23. Binary convergence curve with KNN for 
BoT-IoT dataset

Fig. 24. Multiclass convergence curve with KNN for 
BoT-IoT dataset

Table 5. Binary classification

S.No. method Accuracy

1. BD-PSO-V [46] 99.91%

2. DNN [47] 99.01%

3. BGWO-NB [48] 99.15%

4. CO-IHHO-DT (Proposed) 100%

5. AQUa [44] 99.99%

6. RSA [45] 99.99%

Table 6. Multiclass classification

S. No. method Accuracy

1. GbFS [48] 98.90%

2. CO-IHHO-DT (Proposed) 99.65%

3. AQUa [46] 98.90%

4. RSA [47] 98.92%

5.6. REAL WORLD AppLICATIONS

The feature selection using CO-IHHO for IoT based IDS 
finds application in many real world scenarios, such as:

Smart Homes: Enhancing the security of smart 
homes by selecting relevant features for intrusion de-
tection in IoT devices such as smart cameras, door sen-
sors, and environmental sensors.

Industrial IoT (IIoT): Securing industrial processes 
and critical infrastructure by optimizing feature sets for 
intrusion detection in sensors, controllers, and commu-
nication networks.

Healthcare IoT: Protecting patient data and medical 
devices by employing MHA to select features for intru-
sion detection in healthcare IoT systems.

Supply Chain management: Securing IoT-enabled 
supply chain systems by optimizing features for intru-
sion detection in RFID tags, sensors, and communica-
tion networks.

Energy management: Improving the security of en-
ergy grids and IoT-enabled smart energy systems by se-
lecting features for intrusion detection in smart meters, 
sensors, and communication networks.

Environmental monitoring: Securing environmen-
tal monitoring systems by optimizing features for intru-
sion detection in sensors deployed for climate moni-
toring, pollution detection, and wildlife tracking.

Banking and Finance: Protecting IoT-enabled finan-
cial services and ATMs by optimizing intrusion detection 
features in devices connected to banking networks.

Telecommunications: Protecting IoT devices and 
networks within the telecommunications sector by op-
timizing intrusion detection features in routers, switch-
es, and communication equipment.

military and Defence: Securing military IoT systems 
by optimizing features for intrusion detection in sur-
veillance equipment, communication networks, and 
unmanned aerial vehicles (UAVs).

6. CONCLUSION 

With the advancement in IoT technology, the every-
day utilization of smart IoT devices is increasing briskly. 
These smart IoT equipment are connected to the inter-
net usually via a wireless network, which makes them 
vulnerable to several attacks. Hence, security is one of 
the major issues with the IoT framework. As a result, 
this paper introduces a metaheuristic-based Intrusion 
Detection System (IDS) designed for the IoT framework. 
The feature selection process for network traffic data 
is accomplished using CO-IHHO, which is an enriched 
version of the metaheuristic harris hawk optimization 
algorithm. CO-IHHO achieves a better convergence 
rate compared to HHO. Furthermore, the result of 
CO-IHHO is classified using two ML classifiers: DT and 
KNN. The experimental result shows that CO-IHHO-DT 
achieves better accuracy compared to CO-IHHO-KNN. 
The performance of the proposed system is assessed 
by conducting a comparative analysis with various 
MHAs used as FS methods. These MHAs include ISSA, 
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ISCA, TMGWO, SSA, GWO, HHO, and WOA. The result 
shows that the performance of CO-IHHO-DT attains 
maximum accuracy of 100%, and minimal computa-
tion time for binary classification. CO-IHHO-DT attains 
the highest accuracy of 99.65% among all other MHA 
used for FS task of multiclass classification of intrusive 
traffic. The proposed IDS model is further subjected 
to comparison with other contemporary approaches. 
The outcomes indicate that CO-IHHO-DT consistently 
achieves superior accuracy in both binary and multi-
class classification scenarios when compared to these 
alternatives. The performance of CO-IHHO is further 
evaluated using CEC-06 2019 benchmark function. In 
the future, we can utilize deep learning techniques to 
achieve more refined classification results while ad-
dressing real-world applications.
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