IAR Publishing Volume 3, 2023. p. 42-52

ISSN 2787-8201; UDK 572 https://doi.org/10.54062/jb.3.1.6

Presence of Uto-Aztecan Premolar Trait (Disto-Sagittal Ridge) in a Zoque-Olmec sample from Mesoamerica

Carlos David, Rodriguez Flórez ^{1,2*}

¹ Ministerio de Ciencia, Tecnología e Investigación MinCiencias – Colombia

² Secretaria de Educación de Palmira, Valle del Cauca - Colombia

* Corresponding author: rodriguezflorezcarlosdavid@gmail.com

Received November 27th, 2023 Accepted for publication February 9th, 2024 Online First February 16th, 2024

Keywords: ASUDAS, UTO-Aztecan Premolar trait, Disto-sagittal Ridge, Premolar Morphology, Mesoamerican Classic Period.

Abstract

The presence of UAP in a Zoque-Olmec sample from the Early Classic Period (1.800 - 1.300 BP) is reported. This has been compared with the frequency of the same trait in other groups from the American continent.

Introduction

Dental features that relate to shape have been referred to as phenotypic expressions or epigenetic polymorphisms (Berry 1976). Initially, some of these features were considered to be rare variations of the normal dental form found in isolated populations. However, as more observations were accumulated, and the minimal but persistent occurrence of these features in different human groups was confirmed, it became possible to estimate their frequencies of occurrence across vast regions of the American continent, spanning at least 15,000 years of human history in this part of the world.

Since the mid-twentieth century, some researchers have developed sets of dental traits that are of comparative value in anthropology. In some cases, methodological proposals have been developed to standardize the observations, records, and analysis of these traits (Dahlberg 1945; Brothwell 1963; Morris 1965; Turner et al. 1991; Scott & Turner 1997; Scott 2008; Scott et al. 2016). One of the features that we have analyzed is called the Uto-Aztecan Premolar Trait or Disto-Sagittal Ridge (hereafter UAP). Currently, it is considered to be an exclusively human trait as it has not been reported in other species such as primates, apes, or Homo ancestors. It typically appears in some pre-Hispanic populations (Scott & Turner 2017) as well as in present-day living indigenous populations (Rodriguez Florez 2012). Few isolated cases of this same trait have been reported in Asia, Africa, and Europe (see Scott et al. 2022), but the majority of cases occur in the Americas.

As described in Scott and Irish (2017), the UAP can be recognized by observation of "the distal margin of the buccal cusp rotates away from the sagittal sulcus. If straight lines are placed along the major axis of the buccal cusp and on the midline between the two cusps, the angle of divergence varies from 6° to 11°. The Uto-Aztecan premolar is evident when this divergence is two to three times greater than normal (35–45°). The rotation is almost invariably accompanied by a pit between the distal marginal ridge of the buccal cusp and a crest from the essential ridge of the buccal cusp to the distal border." Following the above, the variable included in the ASUDAS (Arizona State University Dental Anthropology System) standard as Uto-Aztecan Premolar or Disto-Sagittal Ridge (Turner et al. 1991) has been converted into asymmetric binary variables for a given population (Sjøvold 1973; Harris & Sjøvold 2004). The presence of the UAP trait is counted as 1. This value takes into account sex (male, female, or indeterminate) as well as symmetry (right, left, or both). The reference plaque of ASUDAS exhibits one of the most common variants of the UAP trait in Pima Indians. However, numerous studies on the presence of the UAP trait have revealed additional variants beyond the ASUDAS Standard. Various UAP variants have been identified, including twisting of the buccal cusp distally without any pit or groove but with the presence of a sagittal sulcus (Kobori et al. 1980; Reyes et al. 2008), fossae without a sagittal sulcus (Scott et al. 2018), a strong, open groove dividing the buccal cusp into two (Johnson et al. 2011), a form with a sagittal ridge and an occlusal open pit (Delgado et al. 2010; Rodriguez Florez 2012), and an exaggerated proportion in the distal (a) and buccal (b) surfaces (Scott et al. 2016; Johnston & Sciulli 1996). Another possible variant of the UAP is manifested as a mirror expression on the mesio-buccal surface of the protocone in second

been reported in very few cases (see Scott et al. 2022, page 1097). Additionally, a very rare variant of UAP in first lower premolars has been reported in the literature (Morales 2016).

Morris (1981) can be employed to facilitate the determination of the presence of this trait. The Morris method for identifying the UAP trait consists of observing the angle of rotation of the protocone. The UAP can be determined by taking the buccal vs. lingual cusp angle and multiplying it by 2X to 6X, with angles ranging from the low 20s to 60 degrees (see Scott et al. 2022). This technique can be useful in identifying UAP in teeth with severe occlusal or interproximal wear.

Materials and Methods

During a postdoctoral research stay at the IIA-UNAM (Instituto de Investigaciones Antropologicas, Universidad Nacional Autonoma de Mexico), I had access to numerous bone collections that are preserved there. The observation of the collections was based on establishing a database containing all observations of the morphological features suggested in ASUDAS (Turner II et al. 1991). The entire array of additional morphological features, apart from UAP, observed in the referenced collections is not included in this report.

Figure 1. Presence of UAP trait on both upper first premolars (bilateral).

premolars. This variant is called "reversed UAP" and has Within these observations, the UAP was taken into

account, finding only one case that is described in this article. Table 1 displays all the collections observed directly by the author until encountering a case with UAP. The archaeological report analyzing the site indicates that it is a Zoque-Olmec population (1.800 – 1.300 BP) that existed during the Early Classic Period in the La Joya region of Mexico (Velasco 2009). For observation and recording, the ASUDAS plaque, a photo from the original publication by Johnston & Sciulli (1996), and descriptions on Scott and Irish (2017), and Scott et al. (2022) were used. Figure 1 illustrates the registered form and its possible variants. The variant recorded in this research is similar to the one presented in Scott et al. (2018).

Results

Out of all the samples observed, only one individual presented the UAP trait: Individual 1 from Burial 6, Area C1, Box 4 belonging to El Dorado – El Conchal Norte, Veracruz. Measurements of the skull (Buikstra & Ubelaker 1994) enabled us to determine that the individual was an adult woman (mastoid process, supraorbital margin, glabella and mental eminence below grade 3) aged between 20 and 30 years old (moderate exposure of dentin on the occlusal surface of front teeth and minimal dentin exposure on back teeth, including the upper second premolars, where UAP trait is observed). Figures 1 and 2 shows the presence of the trait on both sides of the maxilla in the case reported for El Dorado (bilateral). As mentioned earlier, the UAP variant found closely resembles the one reported by Scott (2018). It can be identified as a pit or groove on the distal surface of the buccal cusp of the premolar, clearly dividing this area into two, but without being connected by an additional enamel support or bridge over it on the occlusal surface. It resembles a fold or crease towards the distal side of the buccal cusp (protocone). It is noteworthy that the premolars indicated in this sample appear to be rotated towards the distal, and their anatomical position results in a greater contact facet and interproximal wear with their neighboring tooth (upper second premolar). This observation suggests that if the individual had lived longer, the process of interproximal wear would likely have made the observation of the trait difficult and inaccurate, or even in very advanced ages, it would be

impossible to record. The sole observed case of UAP corresponds to 1 individual out of the 16 available individuals rescued during excavations at this archaeological site. The calculated percentage (6.25%) facilitates the comparison of this sample with others reported for the Americas.

Figure 2. Detailed view of UAP in El Dorado, Veracruz. a. upper right first premolar with UAP in 48°, b. upper left first premolar with UAP in 49°.

Discussion and Conclusions

A geographic and cultural time comparison with a set of pre-Hispanic American population data available in the literature shows us how the frequency of occurrence of this trait in past populations can be considered uncommon. The percentage expressed in the El Dorado sample (6,25%) is similar to other samples previously reported such as Black Earth IL with 6,45% (Powell 1995), Lower Red River TX with 6,90% (Lee 1999), Azapa Valley 8 and 71 with 6,67% (Sutter 1997), Coahuila with 6,45% (Delgado et al. 2010), and North of Mexico with 6,67% (Scott et al. 2022). For Mexico we find some reports from the Formative or Pre-Classic period in Cuicuilco and Tehuacan (Delgado et al. 2010), and Monte Alban (Haydenblit 1996), Classic Period in the sample of El Pantano (Corduan 2007), and the Post-Classic or Late Period in the samples of Casas Grandes Chihuahua (Morris et al. 1978), Coahuila (Delgado et al. 2010) and different regions of Mexico without chronology yet (Scott et al. 2022) that express the

presence of UAP in different percentages with a variable range between 1.6% and 6.67%. Table 2 shows the set of published samples that have expressed the UAP trait to date. This relationship of proportions in different samples and periods of Mesoamerica can be included as a complementary indicator of influence and biological relationship associated with scenarios of regional cultural dispersion.

regions further south such as the Arizona-Sonora border, southern California, and New Mexico, Kobori et al. (1980) suggests that during the Middle Holocene (5000-3000 BP) there must have been an area of biological and cultural influence that allowed the spread of the UAP trait in this great geographical area. Despite these indicators, pedigree studies in Pima Indians suggest that the appearance of UAP in a population can also occur randomly and not by contact (Scott et al. 2018).

On population relationships between preceramic groups from the Great Basin in North America and

Table 1. Samples observed in the Collections of IIA-UNAM.

Sample	Period	Ν
Naharon, (Quintana Roo)	Pre-Ceramics	1
El Pit 1, (Quintana Roo)	Pre-Ceramics	1
Muknal 1, (Quintana Roo)	Pre-Ceramics	1
El Templo, (Quintana Roo)	Pre-Ceramics	1
Chan Hol 1, (Quintana Roo)	Pre-Ceramics	1
Chan Hol 2, (Quintana Roo)	Pre-Ceramics	1
Mujer del Peñon III, (México DF)	Pre-Ceramics	1
Los Grifos, (Chiapas)	Pre-Ceramics	1
Cerro de las conchas, (Chiapas)	Pre-Ceramics	2
Cenote Canun, (Quintana Roo)	Pre-Classic	2
Barriales, (Veracruz)	Pre-Classic	7
Teteles de la Ermita, Maltrata (Veracruz)	Pre-Classic	1
Rancho Verde, Maltrata (Veracruz)	Pre-Classic	10
Rincón de Aquila, Maltrata (Veracruz)	Pre-Classic	6
Xochipala, (Guerrero)	Pre-Classic	4
Cueva Piñuela	Pre-Classic	1
Chiapa de Corzo, (Veracruz)	Pre-Classic	5
La Libertad, (Chiapas)	Pre-Classic	7
Tenam Rosario, (Chiapas)	Pre-Classic	2
Temamatla, (Cuenca Mex.)	Pre-Classic	2
Xico, (Cuenca Mex.)	Pre-Classic	3
Terremote, (Cuenca Mex.)	Pre-Classic	3
Chinkultic, (Chiapas)	Pre-Classic	1
Capacha, (Colima)	Pre-Classic	1
Teteles de Ocotitla, (Tlaxcala)	Pre-Classic	13
Tequexquinahuac, (Texcoco)	Pre-Classic	1
Piramide La Joya, (Veracruz)	Classic	44
Ixcoalco Cadereyta, (Veracruz)	Classic	2
Valle de Zapotitlan, (Puebla)	Classic	2
Cenote Calaveras, (Quintana Roo)	Classic	7

Cenote San Antonio, (Quintana Roo)	Classic	3
Xenote Sifa, (Quintana Roo)	Classic	1
Tantoc, (San Luis Potosí)	Classic	8
Aquila, (Veracruz)	Classic	1
Guadalcazar, (Veracruz)	Classic	3
La Campana, (Colima)	Classic	2
Aquiles Serdan, (Chiapas)	Classic	1
Tetitla (Teotihuacan)	Classic	5
Ocozocoautla (Chiapas)	Classic	1
La Ventanilla	Classic	12
Coneta, (Chiapas)	Classic	2
Reforma 1993, (México DF)	Classic	2
El Cerrito, (Chiapas)	Classic	14
Potrero-Mango, (Chiapas)	Classic	2
El Dorado, El Conchal Norte (Veracruz)	Classic	16
Ahuinahuac, (Mezcala)	Classic	12
Miramar, (Chiapas)	Classic	11
Mirador, (Chiapas)	Classic	8
Cuevas Bag – Cueva Colmena, (Chiapas)	Classic	1
Coapa, (Chiapas)	Classic	1
Barrio comerciantes, (Teotihuacan)	Classic	3
Maltrata, (Veracruz)	Post-Classic	33
Barra de Chachalacas, (Veracruz)	Post-Classic	15
Guajilar Co 59, (Chiapas)	Post-Classic	1
Pueblo Viejo de Teposcolula, (México DF)	Post-Classic	28
San Agustín	No data	2
La Nopalera (Guerrero)	No data	1
Tierra Blanca, (Tabasco)	No data	2
Jonuta, (Tabasco)	No data	2
Atasta, (Tabasco)	No data	1
Mazapa, (Estado de México)	No data	4
Tlalpizahuac (Estado de Mexico)	No data	1
Valparaiso, (Zacatecas)	No data	3
Huatusco, (Veracruz)	No data	2
Chultun, (Chiapas)	No data	1
Xchen Jical Jocosik, (Chiapas)	No data	1
San Francisco Mazapa, (Teotihuacan)	No data	2
Popolnah, (Yucatán)	No data	1
Subtotal México	68 samples	343

From a chronological point of view, it is evident how an Late Period is sustained. We can appreciate how 8 average of cases that increases considerably during the samples correspond to the Pre-ceramic Period, 10 to the Archaic Period, 12 to the Formative Period and 43 to the Late Period. An additional 14 samples do not report chronology yet, but this distribution may not change ample when they are included with precise chronologies. The Late Period in the Americas (last 1500 years before Spanish contact) was a scenario of permanent contact and exchange between societies from different regions of the continent, specially by the Pacific's and Caribbean coasts (Rodriguez Florez 2013, 2016). It is possible to observe that the presence of the UAP trait in America is prolonged at least 6000 years BP and it has always been an intermittent trait among archaeological samples (see Table 2). The distribution of the occurrence of the UAP in the reported groups corresponds to the population growth observed for the Late Period in Central and South America (Meggers & Evans 1983; Meggers 1992).

Table 2. List of American published samples with UAP present.

Country	Sample	Period	n		k	%	Reference
United States	Buckeye Knoll, TX	Preceramics		28	1	3.57	Johnson et al. (2011)
United States	Windover	Preceramics		48	5	10.42	Powell, (1995)
	Chuchipuy, La Herradura, Punta	La Herradura, Punta					
Chile	Teatinos	Preceramics		79	1	1.27	Delgado et al. (2010)
United States	Morhiss	Preceramics		24	2	8.33	Taylor, (2012)
United States	Anderson, TN	Preceramics		18	1	5.56	Powell, (1995)
United States	Black Earth, IL	Preceramics		31	2	6.45	Powell, (1995)
United States	Harris Creek at Tick Island, FL	Preceramics		57	5	8.77	Powell, (1995)
United States	Pt. Pines early	Preceramics		38	1	2.63	Delgado et al. (2010)
Chile	Azapa Chinchorro	Archaic		26	2	7.69	Sutter, (1997)
Brazil	Corondo - Minas Gerais	Archaic		34	1	2.94	Delgado et al. (2010)
United States	Cedar Park Mound	Archaic		3	1	33.33	Taylor, (2012)
United States	Eva, FL	Archaic		14	1	7.14	Powell, (1995)
United States	Bird Island	Archaic		12	2	16.67	Powell, (1995)
United States	California	Archaic		91	1	1.10	Delgado et al. (2010)
United States	Ohio Valley - Hopewell	Archaic		41	1	2.44	Johnston & Sciulli, (1996)
United States	Southwest - Mimbres	Archaic		241	2	0.83	LeBlanc et al. (2008)
United States	McClamory	Archaic		14	4	28.57	Sassaman, et al. (2015)
United States	Bering sinkhole	Archaic		4	2	50.00	Taylor, (2012)
United States	Silo	Formative		8	1	12.50	Taylor, (2012)
United States	Ernest Witte 2	Formative		41	1	2.44	Taylor, (2012)
Mexico	Cuicuilco & Tehuacan	Formative		59	1	1.69	Delgado et al. (2010)
Mexico	Monte Alban	Formative		50	1	2.00	Haydenblit, (1996)
Guatemala	Uaxactun	Formative		7	1	14.29	Scherer, (2004)
Guatemala	Barton Ramie	Formative		17	1	5.88	Scherer, (2004)
Venezuela	Las Locas	Formative		25	1	4.00	Reyes et al. (2008)
Ecuador	Cotocollao	Formative		27	1	3.70	Delgado et al. (2010)
Ecuador	Ayalán	Formative		74	1	1.35	Delgado et al. (2010)
Ecuador	Tumaco-La Tolita	Formative		76	1	1.32	Rodriguez-Florez & Morales, (2013)
Ecuador	Tumaco-La Tolita (Tola de la Balsa)	Formative		41	1	2.44	Morales, (2016)
Mexico	El Pantano	Formative		44	2	4.55	Corduan, (2007)
United States	Southwest - NA 10806 Arizona	Late		14	1	7.14	Morris et al. (1978)
United States	Wupatki Pueblo	Late		40	2	5.00	Morris et al. (1978)
United States	Clements	Late		4	1	25.00	Taylor, (2012)
United States	Hunt Farm	Late		4	1	25.00	Taylor, (2012)
United States	Sanders	Late		26	1	3.85	Taylor, (2012)
United States	Parcell	Late		2	1	50.00	Taylor, (2012)
United States	Upper Red River, TX	Late		26	1	3.85	Lee, (1999)
United States	Belle Glade Mound	Late		32	1	3.13	Benitez, (2019)
United States	Highland Beach Mound	Late		21	1	4.76	Benitez, (2019)
United States	Lower Red River, TX	Late		29	2	6.90	Lee, (1999)
Mexico	El Dorado - Veracruz	Late		16	1	6.25	This research
Mexico	Casas Grandes Chihuahua	Late		94	1	1.06	Morris et al. (1978)

Guatemala	Aguateca	Late	10	1	10.00	Scherer, (2004)
Colombia	Soacha - Portoalegre	Late	57	1	1.75	Delgado et al. (2010)
Ecuador	Cotacachi	Late	41	1	2.44	Rodriguez-Florez & Morales. (2013)
Chile	Azana 140	Late	57	1	1 75	Sutter (1997)
Chile	Azapa 71	Late	45	- 3	6.67	Sutter (1997)
Chile	Azana 8	Late	15	1	6.67	Sutter (1997)
United States	Chally & Kayonta	Late	50	1	1 60	Dolgado ot al (2010)
United States		Late	24	1	1.09	Delgado et al. (2010)
United States	Chavez Pass	Late	24	T	4.17	Delgado et al. (2010)
United States		Late	128	1	0.78	Delgado et al. (2010)
United States	Grasshopper	Late	124	5	4.03	Delgado et al. (2010)
United States	Arkansas	Late	97	4	4.12	Delgado et al. (2010)
United States	Alabama	Late	159	3	1.89	Delgado et al. (2010)
United States	Ohio Valley - Proctorville	Late	35	1	2.86	Johnston & Sciulli, (1996)
United States	Ohio Valley - Buffalo	Late	176	3	1.70	Johnston & Sciulli, (1996)
United States	Southwest - Awatovi	Late	21	2	9.52	Morris et al. (1978)
United States	Gran Quivara - New Mexico	Late	71	2	2.82	Morris et al. (1978)
Mexico	Coahuila	Late	31	2	6.45	Delgado et al. (2010)
United States	Pima Indians	Late	2400	18	0.75	Delgado et al. (2010)
United States	Papago Indians	Late	190	3	1.58	Kobori et al. (1980)
United States	Panago Indians	Late	200	2	1 00	Morris (1965)
United States	Honi Indians - ASI I	Late	166	2	1 20	Delgado et al. (2010)
United States	Hopi Towa Arizona	Lato	162	1	0.62	Keberi et al. (1980)
		Late	102	2	1.02	Roboli et al. (1980)
United States	Navajo - Keam s Canyon	Late	159	3	1.89	Delgado et al. (2010)
United States	Navajo - Tuba City	Late	158	6	3.80	Delgado et al. (2010)
United States	Navajo - Ramaj	Late	94	1	1.06	Delgado et al. (2010)
United States	Yuma Indians	Late	56	2	3.57	Delgado et al. (2010)
United States	Yuman Indians	Late	100	2	2.00	Delgado et al. (2010)
United States	Lower Red River, TX	Late	6	1	16.67	Lee, (1999)
United States	Bannock	Late	1	1	100.00	Kobori et al. (1980)
Colombia	Kamentsa (living)	Late	56	1	1.79	Rodriguez-Florez, (2012)
Chile	Queilen, Cucao, Achao (Chiloe)	Late	201	3	1.49	Rivera, (2012)
North						Turner II unpublished (Scott et al.
America	Artic	?	703	1	0.14	2022)
North						Turner II unpublished (Scott et al.
America	Northwest	?	171	1	0.58	2022)
North		•	-/-	-	0.00	Turner II unpublished (Scott et al
America	Arkansas	2	105	Л	3 81	2022)
North	Arkansus	•	105	7	5.01	Turner II unnublished (Scott et al
Amorica	Southwost Apacazi	2	674	л	0 50	2022)
America	Southwest Anasazi	f	074	4	0.59	ZUZZ) Turner II unnublished (Seett et al.
North	Counthrough 7 and	2	112	2	4 77	
America	Southwest Zuni	ſ	113	2	1.//	2022)
North		-		_		lurner II unpublished (Scott et al.
America	Southwest Mogollon	?	221	7	3.17	2022)
North						Turner II unpublished (Scott et al.
America	Southwest Sinagua	?	27	2	7.41	2022)
						Turner II unpublished (Scott et al.
Mesoamerica	Mesoamerica	?	233	4	1.72	2022)
						C. Ragsdale unpublished (Scott et al.
Mesoamerica	North of Mexico	?	75	5	6.67	2022)
						C. Ragsdale unpublished (Scott et al.
Mesoamerica	West Mexico	?	66	3	4.55	2022)
				-		C Ragsdale unpublished (Scott et al.
Mesoamerica	Central Mexico	2	185	4	2 16	2022)
Wiesbameriea		•	105	Ŧ	2.10	C Ragsdale unnublished (Scott et al.
Macaamarica	Southorn / Culf Coast	r	16	h	4 25	
westamenta	Southerny Guil Coast	ľ	40	2	4.30	2022) Turnor II unnublished (Seatt at al
Drozil	Prosil	n	400		0.04	rumer il unpublished (Scott et al.
BLAZII	Brazil	f	164	1	0.61	
		2		~	4.00	i urner II unpublished (Scott et al.
Ecuador	Ecuador	?	101	2	1.98	2022)
TOTAL	97 samples		9563	183	1.91%	24 references

About the evolutionary origin of the UAP trait is still not fully clear. This type of rare morphological features in human dentition may be the result of an adaptive response in the enlargement of the enamel areas in the crowns, in response to severe masticatory forces during the Pleistocene and early Holocene times (Mizoguchi 1985; Trinkaus 1987; Scott & Turner II 1988; Rodriguez Florez et al. 2006). Morris et al. (1978) proposes its appearance as the result of a single mutation, with hereditary potential at some point in Preceramic times (Scott & Turner 1997; Scott et al. 2018). The UAP trait appears relatively selectively neutral because it does not affect occlusion or make a tooth more caries susceptible, therefore the nature of selective pressures is not clear (Morris et al. 1980; Rodriguez Florez, 2013). Some pedigree analyses in Pima Indians demonstrate that UAP is heritable, is not X-linked, and follows a polygenic model of inheritance, possibly autosomal recessive (Morris et al. 1978; Scott & Turner 1997; Delgado et al. 2010). Pedigree studies conducted on other similar traits such as Carabelli's trait in upper molars, and the Shovel-Shape trait in upper incisors suggest a similar anthropological nature and value (traits that constitute the ASUDAS system). It is believed

that these are heritable and selectively neutral morphological expressions, generated by random evolutionary processes such as founder effects and genetic drift on a global scale within modern human groups, at least over the last 40,000 years (Scott and Turner II, 1997). Despite the strong genetic control of this type of trait, their bilateral or unilateral expression can be affected by geographic isolation and environmental forces (Lauc et al. 2003; Rodriguez Florez 2012; Rodriguez Florez & Colantonio 2008).

Another aspect to consider is methodological. The ASUDAS plaque shows only one variant of the trait (Pima Indians), but Johnston & Sciulli (1996) and other authors mentioned above show other variants also considered UAP. If we consider these variants, together with the mesiobuccal opening angle measurement technique initially proposed by Morris (1981), it is possible that the frequencies of UAP occurrence increase increases or appears as a new biological indicator in some samples. Table 3 shows an example of the inclusion of some unpublished samples taking all these arguments into account.

Table 3. Additional unpublished samples with possible UAP occurrence.

Country	Period	Sample	Ν	ASUDAS	Johnston & Sciulli, 1996	Morris 1981	К (%)
Colombia	Preceramics	Aguazuque	83	Negative	Positive	Positive (33°)	1 (1,2)
Colombia	Late	El Copey	122	Negative	Positive	Negative	1 (0,82)
Mexico	Classic	Cenote Calaveras	6	Negative	Positive	Positive (30°)	1 (16,6)

Acknowledgements

I would like to express my gratitude to the individuals who made the registration of the collections, their study, and subsequent comparison possible. I am particularly grateful to Dr. Carlos Serrano for his unwavering assistance and encouragement during the investigation of these collections, and Dr. Richard Scott (U. Nevada, Reno) by sending reference materials, opinions and guides on this topic. I would also like to extend my thanks to Dr. Janick Daneels and Dr. Abigail Meza from IIA-UNAM for their assistance in accessing the observed collections and providing valuable context. I would like to express my gratitude to Drs. Eira Mendoza and Ivonne Reyes for their work in recovering and restoring the samples from El Conchal Norte described in this study. I want to thank the anonymous reviewers for helping to improve the final draft. I would also like to acknowledge to Secretaria de Educacion – Palmira (Colombia) for the support in the Postdoctoral Leave (2022-2023).

This work is dedicated to the memory of my Argentine doctoral mentors; teachers, colleagues, and friends who helped enrich my academic and scientific path with dialogues, advice, reviews, and teachings: Héctor Mario Pucciarelli († 2018), Alberto Marcellino († 2021), and José Alberto Cocilovo († 2022)

References

Benitez D. (2019). Affinity of two South Florida populations through nonmetric dental analysis, Master Thesis Dissertation, Florida Atlantic University. <u>http://fau.digital.flvc.org/islandora/object/fau%3A41905/datastre</u> <u>am/OBJ/view/AFFINITY OF TWO SOUTH FLORIDA POPULATIONS</u> <u>THROUGH NONMETRIC DENTAL ANALYSIS.pdf</u>

Berry A.C. (1976). The anthropological value of minor variants of the dental crown. American journal of physical anthropology, 45(2), 257–268. <u>https://doi.org/10.1002/ajpa.1330450211</u>

Brothwell D.R. (1963). Dental Anthropology. New York: Pergamon Press.

Burnett, S.E. (1998). Maxillary premolar accessory ridges (MxPAR): worldwide occurrence and utility in population differentiation (Doctoral dissertation, Arizona State University)

Corduan N.S. (2007). Whence these farmers? El Pantano bioarchaeology and the advent of agriculture in West Mexico. Master Thesis Dissertation, University of Alaska Fairbanks. https://scholarworks.alaska.edu/handle/11122/5558

Dahlberg A.A. (1945). The changing dentition of man. Journal of theAmericanDentalAssociation,32,676–90.https://doi.org/10.14219/jada.archive.1945.0112

Delgado M.E., Scott G.R., Turner C.G. (2010). The Uto-Aztecan premolar among North and South Amerindians: Geographic variation and genetics. American journal of physical anthropology, 143(4), 570–578. <u>https://doi.org/10.1002/ajpa.21351</u>

Haydenblit R. (1996). Dental variation among four prehispanic Mexican populations. American journal of physical anthropology, 100(2), 225–246. <u>https://doi.org/10.1002/(SICI)1096-</u> 8644(199606)100:2<225::AID-AJPA5>3.0.CO;2-W

Johnson K.M., Stojanowski C.M., Miyar K.O., Doran G.H., Ricklis R.A. (2011). New evidence on the spatiotemporal distribution and evolution of the Uto-Aztecan premolar. American journal of physical anthropology, 146(3), 474–480. https://doi.org/10.1002/ajpa.21593

Johnston C.A., Sciulli P. W. (1996). Technical note: Uto-Aztecan premolars in Ohio valley populations. American journal of physical anthropology, 100(2), 293–294. https://doi.org/10.1002/(SICI)1096-8644(199606)100:2<293::AID-AJPA8>3.0.CO;2-Y

Kobori L.S., Miller R.J., Steens C., Galliher M., Brooks S.T., Morris D.H. (1980). Great Basin Occurrence of a Southwestern Dental Trait: The Uto-Aztecan Premolar. Nevada Historical Society Quarterly Vol. XXIII (4): 236-45. <u>http://epubs.nsla.nv.gov/statepubs/epubs/210777-1980-4Winter.pdf</u>

Lahr M.M. (1995), Patterns of modern human diversification: Implications for Amerindian origins. Am. J. Phys. Anthropol., 38: 163-198. https://doi.org/10.1002/ajpa.1330380609 Lauc T., Rudan P., Rudan I., Campbell H. (2003). Effect of inbreeding and endogamy on occlusal traits in human isolates. Journal of orthodontics, 30(4), 301–297. https://doi.org/10.1093/ortho/30.4.301

Lee C. (1999). Origins and interactions of the Caddo: a study in dental and cranial nonmetric traits. M.A. Thesis, Arizona State University, Tempe, AZ.

Meggers B. (1992). Prehistoria Sudamericana. Fundacion Taraxacum, Washington.

Meggers B., Evans C. (1977). Lowlands of South America and Antilles. In J. Jennings (Ed.), Ancient Native Americans (pp. 543-591). CA: San Francisco: W. H. Freeman and Company.

Mizoguchi Y. (1985). Shovelling: a statistical analysisi of its morphology. Tokyo: University of Tokyo Press. <u>http://umdb.um.u-tokyo.ac.jp/DKankoub/Bulletin/no26/no26000.html</u>

Morales P. (2016). Evidencias Morfológicas Bioantropológicas, Paleopatológicas Dentales y Estado de Bienestar de las Poblaciones del Antiguo Ecuador (10000 a.C.-1500 d.C.). Tesis de Doctorado. Universidad de alicante, Espana. Pp:294. https://rua.ua.es/dspace/bitstream/10045/62290/1/tesis pablo_ morales males.pdf

Morris D.H. (1965). The Anthropological utility of dental morphology. Doctoral Thesis Dissertation. Arizona State University.

Morris D.H., Huges S.G., Dahlberg A.A. (1978). The Uto-Aztecan Premolar: the anthropology of a dental trait. In: Butler P, Joysey KA, Editors. Development, function, and evolution of teeth. London: Academic Press. Pp: 69-79.

Morris, D. H. (1981). Maxillary first premolar angular differences between North American Indians and non-North American Indians. American Journal of Physical Anthropology, 54, 431–433. https://doi.org/10.1002/ajpa.1330540317

Nichol C.R. (1989). Complex segregation analysis of dental morphological variants. American journal of physical anthropology, 78(1), 37–59. <u>https://doi.org/10.1002/ajpa.1330780106</u>

Powell J.F. (1995). Dental variation and biological affinity among Middle Holocene human populations in North America. Doctoral Dissertation. Texas A&M University, College Station, TX. https://oaktrust.library.tamu.edu/handle/1969.1/158157

Reyes G., Padilla A., Palacios M., Bonomie J., Jordana X., García C. (2008). Posible presencia del rasgo dental premolar "Uto-Azteca" en un cráneo de época prehispánica (siglos II a.C.,siglo IV d.C.), cementerio de "Las Locas", Quibor (Estado Lara, Venezuela). Boletín Antropológico, vol. 26, núm. 72: 53-85. https://www.redalyc.org/pdf/712/71217212004.pdf

Rivera M.J. (2012). Estudio comparativo de la frecuencia de rasgos morfologicos dentales entre una poblacion pre-actual del archipielago de Chiloe y la poblacion de aborigenes Chonos. Tesis de Pregrado, Facultad de Odontologia, Universidad de Chile. Santiago de Chile. <u>https://repositorio.uchile.cl/handle/2250/111739</u>

Rodríguez-Flórez C.D. (2012). Occurrence of the Uto-Aztecan premolar trait in a contemporary Colombian Amerindian population. Homo: internationale Zeitschrift fur die vergleichende Forschung am Menschen, 63(5), 396–403. https://doi.org/10.1016/j.jchb.2012.07.001

Rodríguez-Flórez C.D. (2013). A review of the Uto-Aztecan premolar trait in South America and its presence in Colombia. Revista Facultad De Odontología Universidad De Antioquia, 25(1), 147–157. https://doi.org/10.17533/udea.rfo.11094

Rodriguez-Florez C.D. (2016). The Sinodont and Sundadont Dental Patterns and their Contribution to the Understanding of the pre-Hispanic Settlement of the Southern United States, Central America, and the Caribbean Islands (Spanish). Instituto de Investigaciones Antropológicas IIA. Editorial Universidad Nacional Autonoma de México UNAM, Mexico D.F. https://www.iia.unam.mx/publicacion/los-patrones-dentalessinodonte-y-sundadonte-y-su-aporte-en-la-comprension-del

Rodríguez-Flórez C.D., Colantonio S.E. (2008). The importance of bilateral asymmetry analysis on human archaeological Pre-Conquest populations (the case of six Colombian Pre-Conquest populations). Anthropologie (Brno) 46, 1: 19-23. http://puvodni.mzm.cz/Anthropologie/article.php?ID=151

Rodriguez-Florez C.D., Morales P. (2013). Evidencia de ocho cúspides (octocnulido) en el Holoceno Tardío de la población prehispánica de Ecuador (Evidence of eighth cusp (octoconulid) in a Late Holocene pre-Hispanic population from Ecuador). Memorias V Reunión de la Asociación de Paleopatología en Sur América / Proceedings Paleophatology Asociation Meeting in South America V. 14, 15 y 16 de agosto de 2013, Universidad del Magdalena, Santa Marta -Colombia. Pp: 15. https://doi.org/10.5281/zenodo.7922200

Rodriguez-Florez C.D, Fonseca G.M., Villalba M.T. (2006). Brief Communication: Occurrence of an Eighth Cusp on Primary Second Mandibular Molars of a Contemporary Argentinean Child. Dental Anthropology 2006;19(3):83-85.

https://doi.org/10.26575/daj.v19i3.126

Sassaman K.E., Krigbaum J.S., Mahar G.J., Palmiotto A. (2015). Archaeological investigations at McClamory Key (8lv288), Levy County, Florida. Technical Report 22, Laboratory of Southeastern Archaeology, Department of Anthropology, University of Florida, Gainesville, FL 32611. <u>https://lsa.anthro.ufl.edu/wpcontent/uploads/sites/57/LSATechReport22.pdf</u>

Scherer A.K. (2004). Dental analysis of classic period populationvariability in the Maya area. PhD dissertation, Texas A&MUniversity,CollegeStation,TX.https://oaktrust.library.tamu.edu/handle/1969.1/1420

Scott G.R. (2008). Dental Morphology. In A. Katzenburg and S. Saunders (eds.), Biological Anthropology of the Human Skeleton (2nd edn). New York: Wiley-Liss, pp. 265–298.

https://handoutset.com/wp-content/uploads/2022/06/Biological-Anthropology-of-the-Human-Skeleton-M.-Anne-Katzenberg-Shelley-R.-Saunders-.pdf

Scott G.R., Turner II C.G. (1988). Dental anthropology. AnnualReviews in Anthropology. Vol.17: 99-126.http://www.references.260mb.com/Dental/Scot1988.pdf

Scott G.R., Turner II C.G. (1997). The Anthropology of Modern Human Teeth: Dental Morphology and its Variation in Recent Human Populations (Cambridge Studies in Biological and Evolutionary Anthropology). Cambridge: Cambridge University Press. <u>https://doi:10.1017/CB09781316529843</u>

Scott G.R., Irish J.D. (2017). Uto-Aztecan Premolar. In: Human Tooth Crown and Root Morphology: The Arizona State University Dental Anthropology System. Cambridge: Cambridge University Press: 77-82. <u>https://doi:10.1017/9781316156629.014</u>

Scott G.R., Maier C., Heim K. (2016). Identifying and Recording Key Morphological (Nonmetric) Crown and Root Traits. A Companion to Dental Anthropology, 245–264. https://doi:10.1002/9781118845486.ch17

Scott G.R., Turner II C.G., Townsend G., Martinón-Torres M. (2018). The Anthropology of Modern Human Teeth: Dental Morphology and its Variation in Recent and Fossil Homo sapiens (2nd ed., Cambridge Studies in Biological and Evolutionary Anthropology). Cambridge: Cambridge University Press. <u>https://doi:10.1017/9781316795859</u>

Scott G.R., Dern L.L., Evinger S., O'Rourke D.H., Hoffecker J.F. (2022). Multiple occurrences of the rare Uto-Aztecan premolar variant in Hungary point to ancient ties between populations of western Eurasia and the Americas. International Journal of Osteoarchaeology, 32(5), 1096– 1104. https://doi.org/10.1002/oa.3135

Sjøvold T. (1973). The Occurrence of Minor Non-Metrical Variants in the Skeleton and Their Quantitative Treatment for Population Comparison. HOMO 24: 204-233. https://www.researchgate.net/publication/284399842 The Occur rence of Minor Non-

<u>Metrical Variants in the Skeleton and Their Quantitative Treat</u> <u>ment for Population Comparison</u>

Sutter R.C. (1997). Dental variation and biocultural affinities among prehistoric populations from the coastal valleys of Moquegua, Peru, and Azapa, Chile. Doctoral Dissertation, University of Missouri, Columbia, MO.

Standards for data collection from human skeletal remains. Edited by Jane E. Buikstra and Douglas H. Ubelaker. 272 pp. Fayetteville: Arkansas Archeological Survey Research Series No. 44, 1994.

Trinkaus E. (1987). The Neanderthal face: evolutionary and functional perspectives. On a recent hominid face. Journal of Human Evolution, 16, 429-443. <u>https://doi.org/10.1016/0047-2484(87)90071-6</u>

Turner C.G., Nichol C.R., Scott G.R. (1991). Scoring procedures for
key morphological traits of the permanent dentition: The Arizona
State University dental anthropology system. Advances in Dental
Anthropology, Pp: 13-31.
https://doi.org/10.1002/ajhb.1310030624

Taylor M.S. (2012). Brief communication: the Uto-Aztecan premolar in early hunter-gatherers from South-Central North America.

American journal of physical anthropology, 149(2), 318–322. https://doi.org/10.1002/ajpa.22125

Velasco J.E. (2009). Estudio biocultural en los restos óseos del Clásico (200-700 d.C.) en el centro de Veracruz. Tesis de Pregrado. Escuela Nacional de Antropología e Historia INAH, México.