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 Abstract: 
The fundamental natural period of oscillation is a critical 
parameter in evaluating the design base shear of 
buildings. Worldwide seismic design codes typically 
employ height-based empirical formulas to estimate this 
period for various building categories, without 
distinguishing between regular and irregular buildings. 
This study proposes a formula specifically for reinforced 
concrete (RC) moment-resisting frame (MRF) buildings 
with dominant re-entrant corner type plan irregularity. A 
total of 190 re-entrant corner dominant building models 
with different shapes (C-, L-, T-, and PLUS-type), 
heights, and floor configurations were prepared, and 
eigenvalue analysis (EVA) was conducted. The 
fundamental natural period of oscillation for each model 
was evaluated and compared with the height-based 
formulas from seismic design codes and the period–
height relationship proposed in existing literature. A 
nonlinear regression model, using a multi-variable 
power function, is proposed to estimate the fundamental 
natural period for these re-entrant corner dominant 
building models. This model considers the A/L ratio in 
both directions of the building, along with its height. Both 
unconstrained and constrained regression analyses 
were performed to derive a formula that best fits the 
fundamental natural period data. The study 
recommends that the unconstrained best-fit minus one 
standard deviation curve can conservatively define the 
fundamental natural period of oscillation for re-entrant 
corner dominant RC building models. The equation 
defining this curve has the potential to replace the 
existing seismic design code-based period-height 
formula. 
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1 Introduction 

Earthquake ground motion comprises different frequencies, and it causes buildings to oscillate 
depending on their mass and stiffness distribution across the height. It is well known from the 
fundamentals of the dynamics of structures that when these frequencies are close to or equal 
to the fundamental frequencies of the buildings, the dynamic response of the building is 
amplified which leads to damage to the buildings. Therefore, estimating the fundamental 
natural period of oscillation (natural frequencies) of a building is crucial. The fundamental 
natural period of oscillation of a building can be estimated via eigenvalue analysis (EVA) of the 
mass and stiffness properties of the building under free vibration. However, this type of an 
analysis is tedious and time-consuming for buildings with a large number of degrees of 
freedom, and it requires computer programming. Rational simplifying assumptions aid in 
significantly reducing the number of degrees of freedom to a great extent for buildings that are 
regular, symmetric, and have a uniform mass distribution. The degrees of freedom of buildings 
with various types of irregularities cannot be reduced to a certain extent to capture their 
dynamic response characteristics. 
Seismic design codes worldwide recommend using the fundamental EVA approach to 
determine the building's fundamental natural period of oscillation. However, they also propose 
an empirical formula for the natural period: (1) to provide a conservative estimate, ensuring 
higher lateral load estimation than exact analysis; (2) to offer a method easily accessible to 
designers for code-based lateral load estimation; (3) to accommodate a variety of building 
stocks; and (4) to simplify the procedure for estimating the fundamental natural period of 
oscillation. The seismic design code offers a generalized empirical formula, largely dependent 
on geometric parameters such as the building's height (h) or the height and base dimension 
(d). This formula can effectively estimate the fundamental natural period of oscillation for 
buildings that are symmetric, with uniform mass and stiffness distributions, and can be 
modelled as a single-degree-of-freedom system. However, for buildings with significant 
irregularities or complex geometries, which require 3D modelling, the fundamental natural 
period of oscillation may not be accurately estimated using this code-based formula. 
This study proposes a regression-analysis-based formula for the fundamental natural period 
of oscillation for RC buildings with dominant re-entrant corners in both X- and Y-directions. A 
total of 190 RC building models with re-entrant corners of different shapes, heights, and floor 
configurations were developed. EVA of these finite element (FE)-based models was performed 
to obtain the fundamental natural periods of oscillations. Unconstrained and constrained 
regression analyses were performed to propose a new nonlinear power function-based formula 
for the fundamental natural period of oscillation that includes a re-entrant corner descriptor, 
A/L in both the X- and Y- directions, along with the height of the building. 

2 Literature review  

Various analytical, numerical, and experimental studies have been conducted to propose a 
fundamental natural period for the oscillation formula using regression analysis. These studies 
provide a comparison between the fundamental natural period of oscillation estimated using 
the proposed period-height formula and that of the seismic design code-based formula to 
review the accuracy of the fundamental natural period of oscillation estimation of the latter. A 
brief summary of the literature review related to the fundamental natural period of oscillation 
estimation is presented in the following sections: (1) the proposed periodic height formula for 
irregular buildings and (2) the code-based fundamental natural period of oscillation formula. 

2.1 Proposed period-height formula for irregular buildings 

Goel and Chopra [1] measured the fundamental natural period of the oscillation of MRF 
buildings and compared them using a seismic design code-based formula. It was found that 
the code-based fundamental natural period of oscillations was shorter than the measured 
fundamental natural period of the oscillations of the MRF buildings. An improved fundamental 
natural period of the oscillation formula with a lower bound of 15,9 percentile value was 
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proposed for RC and steel MRF buildings. Asteris et al. [2] investigated the fundamental natural 
period of oscillation of buildings with masonry-infilled walls. The number of stories, span length, 
stiffness of the infill wall panels, location of soft stories, and soil-type parameters were 
assumed to significantly influence the fundamental natural period of oscillation of RC buildings. 
Masi and Vona [3] examined the fundamental natural period of the oscillation of RC-framed 
buildings in the elastic, yield, and highly damaged states. Building models were carefully 
considered to account for cracking, masonry infills, and elevation irregularities; however, other 
characteristics, such as stairs and plan irregularities, were not considered. A comparison of 
the fundamental natural period of oscillations obtained through EVA and the experiment 
showed a large difference between them. 
Ahmed et al. [4] proposed a new formula for irregularly braced steel-frame buildings based on 
176 prototype steel buildings with vertical, horizontal, and combined irregularities. It was 
observed that the bracing systems and building irregularities affected the fundamental natural 
period of oscillation of buildings with the same height. Loghmani et al. [5] stated that the 
fundamental natural period of the oscillation of a building, defined by its height or number of 
stories, is independent of whether the building is regular or irregular. A new formula for the 
fundamental natural period of oscillation was proposed for regular and irregular buildings using 
an artificial neural network. Crowley and Pinho [6] used a seismic-design-code-based 
fundamental natural period of the oscillation formula to conduct linear static and dynamic 
analyses of buildings. The modal response spectrum method yielded a realistic lateral load 
distribution owing to the higher contributory modes. The period-height relationship was 
obtained from models which used gross stiffness-based EVA in the form of the power 
expression suggested by Goel and Chopra [1]. The oldest empirical relationship in Equation 
(1) appeared in ATC3-06 and was derived based on Rayleigh’s method [7]. 

𝑇 = 𝛼𝐻𝛽 (1) 

where T denotes fundamental natural period of oscillation, α and β are coefficients, α depends 
on structure type, and H height of the building (in m). 
Table 1 lists the period-height relationship proposed by various researchers for the 
fundamental natural period of building stocks [8]. Two forms of expressions are proposed: (1) 
a power expression and (2) number of stories for the fundamental natural period estimation. 

Table 1. Period–height relationship for fundamental natural period proposed by 
researchers 

Authors  
Fundamental 
natural period 

formula proposed 

Building description 

Goel and Chopra (1997) [1] 
T= 0,023H0,9   RC MRF (Ht. 300 ft.) 

Chopra and Goel (2000) [9] 

Guler et al. (2008) [10] T= 0,026H0,9 RC MRF mid-rise (Ht. up to 30 m) 

Hong and Hwang (2000) [11] T= 0,029H0,804 RC MRF mid-rise (Ht. up to 80 m) 

Crowley and Pinho (2004) [12] T= 0,1H  RC MRF (Ht.- 2 m to 28 m) 

Crowley and Pinho (2006) [13] T= 0,055H RC MRF Cracked infill (Ht.- 2 m to 24 m) 

Verderame et al. [14] evaluated the period–height relationship for building models in the 
transverse and longitudinal directions subjected to gravity load design. Design acceleration of 
0,05 g; 0,07 g, and 0,10 g were considered for period–height relation evaluation. The constants 
for the period–height relation given in Eq. (1); α and β were calibrated with the periods 
measured on some buildings during the 1971 San Fernando earthquake. The value of β that 
appeared in ATC3-06 (ATC, 1978) is 0,75, where α is 0,06. The said relationship is computed 
via Rayleigh method with seismic design assumptions; (i) horizontal forces are linearly 
distributed along the height, (ii) mass distribution is constant along the height, (iii) deformed 



Suthar, J. and Purohit, S. 
Fundamental period equations for plan irregular moment-resisting 

frame buildings 

 

ACAE | 2024, Vol. 15, Issue No. 28 

 

Page | 18  

 

shape is linear, and (iv) base shear is proportional to 1/Tγ . By satisfying these conditions, the 
period can be expressed as: 

𝑇 = 𝛼𝐻
1
(2−𝑇𝛾)⁄

 (2) 

The value of γ is 2/3 as per US code (UBC 1997) [14]. The coefficients of the power law 
formulation in Eq. (1) were evaluated using ordinary least-squares regression. The effective 
mass and translational stiffness were correlated with the plan extension of the building, and 
these variables were expected to have predictive power with respect to the period. An 
expression, including the plan area, is considered as: 

𝑇 = 𝛼𝐻𝛽𝑆𝛾 (3) 

where S denotes product of the two principal plan dimensions of the building: Lx and Ly. 
Relationships in the transverse and longitudinal directions were obtained using least-squares 
regression. It was concluded that by adding the building typology parameter S, the standard 
error was reduced by 60 % when compared with the formulation which only accounts for the 
height of the building. 
Hadzima-Nyarko et al. [15] proposed new expressions for the fundamental period of regular 
RC frames by considering the direction of the structures and by performing nonlinear 
regression analysis using a genetic algorithm on 600 different models of RC-framed structures. 
There is a scope for further improvement in the period height equation provided by seismic 
design codes, which depend on building height or the number of stories, as height alone is 
inadequate for explaining period variability. The authors proposed seven expressions for 
estimating the elastic period which, in addition to the number of floors, considered the number 
of bays parallel to the considered direction, the ratio between the number of bays in the 
longitudinal and transverse directions, and the product between the number of bays in the 
longitudinal and transverse directions. The expressions for the fundamental natural period of 
oscillation are defined as: 

𝑇 = 𝐶1𝑁
𝐶2 (4) 

𝑇 = 𝐶1𝑁
𝐶2 ∙ 𝐵𝐶3 (5) 

𝑇 = 𝐶1𝑁
𝐶2 + 𝐶3𝐵

𝐶4 (6) 

𝑇 = 𝐶1𝑁
𝐶2 (

𝐵𝑥
𝐵𝑦
)

𝑘𝐶3

 (7) 

𝑇 = 𝐶1𝑁
𝐶2 + 𝐶3  (

𝐵𝑥
𝐵𝑦
)

𝑘𝐶4

 (8) 

𝑇 = 𝐶1𝑁
𝐶2(𝐵𝑥𝐵𝑦)

𝐶3
 (9) 

𝑇 = 𝐶1𝑁
𝐶2 + 𝐶3(𝐵𝑥𝐵𝑦)

𝐶4
 (10) 

where N denotes number of stories, B number of bays in the building parallel to the considered 
direction, Bx number of bays in the longitudinal direction, By number of bays in the transversal 
direction, k constant with a value of 1 when the period in the longitudinal direction is to be 
determined and k is –1 when the period in the transversal direction is to be determined, and 
C1, C2, C3 and C4 are unknown parameters that should be determined. 
Amanat and Hoque [16] demonstrated a practical way to evaluate the fundamental natural 
period of RC frames using rational approaches, such as modal analysis, and eliminated the 
necessity of imposing code limits. Three parameters that influenced the period were identified: 
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(i) span length, (ii) number of spans, and (iii) number of in-filled panels. Including these 
parameters, the fundamental natural period of the proposed oscillation formula is as follows: 

𝑇 = 𝛼1𝛼2𝛼3𝐶𝑡𝐻
3
4⁄  (11) 

where α1 denotes modification factor for span length, α2 modification factor for number of spans 
and α3 modification factor for amount of infill, Ct numerical co-efficient, and H height of the 
building above the base. 
An empirical formula to obtain the fundamental period of oscillation for multistorey RC frame 
buildings considering the total height (H), total breadth (B), total mass (total weight W), and 
number of bays of the building frames as shown in Eq. (12) was proposed to perform a multiple 
regression analysis on a dataset of EVA to modify the fundamental period–height formulae 
commonly used by seismic design codes [17]. 

𝑇 = 0,879
𝐻0,43𝑚0,65𝑊0,18

𝐵
 (12) 

Subsequently, parameter, the total load on the frame, was eliminated from Eq. (12), assuming 
that to some extent, it is a function of the frame’s global dimension. Another equation was 
proposed by performing multiple regression analysis with parameters: total height, total 
breadth, and number of bays of the frame of the building, as shown in Eq. (13). The results 
obtained using this formula are similar to those obtained using Eq. (12). 

𝑇 =
0,475𝐻0,547𝑚0,103

𝐵0,271
 (13) 

To obtain a simple relationship involving the two main global parameters of frame, height, and 
breadth, a nonlinear regression analysis was performed to derive Eq. (14) [17]. Each 
expression, Eq. (12), Eq. (13), and Eq. (14) show good agreement between the predicted and 
actual values of the fundamental period of the building oscillation. 

𝑇 =
0,428𝐻0,545

𝐵0,185
 (14) 

A simple height-based formula provided by Eq. (15) showed low agreement with finite element 
results when compared with the previous three formulas. 

𝑇 = 0,28𝐻0,54 (15) 

An ambient vibration measurement was performed on 24 newly constructed residential 
detached RC buildings in Turkey [18]. A new empirical period–height relationship was 
obtained, as shown in Eq. (16). The obtained equation can be used for the force-based design 
of infilled RC-frame buildings. 

𝑇 = 0,0195𝐻 (16) 

The fundamental natural periods of oscillation of irregular eccentrically braced tall steel frame 
structures were obtained for vertical geometric irregularities and combined irregularities [19]. 
The three-variable power model expressed in Eq. (17) is developed. 

𝑇=0,042(𝐻)0,85 (
𝐻𝑎𝑣
𝐻
)
0,6

(
𝐷𝑎𝑣
𝐷
)
0,35

 (17) 

An empirical fundamental natural period of the oscillation formula of 3D RC buildings was 
proposed for bare and infill frames, considering the height, length, infill panels, and concrete 
shear walls. The formula was modified by ignoring the influences of the infill, concrete shear 
walls, soil flexibility, and building length, as shown in Eq. (18) [20]. Specifically, Hav and Dav are 
the average values of the height and dimension of the braced frame in the direction parallel to 
the applied force for the irregular structure, where D denotes the dimension of the structure in 
the direction of the applied force. 
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𝑇=0,073(𝐻)0,745 (18) 

Ambient vibration testing was performed on 28 tall RC buildings situated in the Indian cities of 
Hyderabad and Mumbai, with heights ranging from 50 to 150 m. The fundamental natural 
periods of the oscillation values obtained from the test were compared with the seismic design 
code-based results.  A new empirical expression for tall RC buildings has been proposed [21]. 
An improved formula for the fundamental natural period of oscillation of RC MRF buildings was 
proposed based on a regression analysis of the data available from the motions recorded 
during eight earthquakes in California. It was also concluded that the fundamental natural 
period of the oscillation formula of the US and Egyptian codes should be modified as a function 
of the number of stories (n) [22]. Using the shear wall displacement, a closed-form period of 
the oscillation solution based on Rayleigh’s method is proposed to determine the fundamental 
natural period of the oscillation. It was also observed that the code-based formula is inadequate 
for estimating the fundamental period of a shear wall building [23]. 
A simplified formula for the fundamental natural period of oscillation was proposed for 
masonry-infilled reinforced concrete frames. This formula is based on a simple concept of 
engineering mechanics [24]. The effects of the number of stories, number of spans, span 
length, stiffness of the infill wall panels, and percentage of openings with the infill panel on the 
fundamental natural period of oscillation were studied, and a formula for the fundamental 
natural period of oscillation was proposed using regression analysis [25]. The compilation of 
expressions for the fundamental natural period of oscillation for masonry-infilled RC frames 
from the seismic standards of different countries is provided with classification [26]. An 
advanced machine-learning algorithm was applied to masonry-infilled RC frames, and the 
corresponding fundamental natural period of oscillation was obtained. A comparison was also 
made between the values of the fundamental natural period of oscillation obtained through the 
algorithm and those provided in the literature [27]. 

2.2 Code-based fundamental natural period of oscillation formula 

Seismic design codes provide a simplified empirical formula to estimate the fundamental 
period of oscillation (T) based on the overall height of buildings, as provided in Eq. (1). In Eq. 
(2), γ is considered as 2/3 as established in US code (UBC, 1997) [28]. 

𝑇 = 𝛼𝐻0.75 (19) 

The value of numerical coefficient (α) is specified by seismic design codes. The period-height 
relationship suggested by the seismic design codes and guidelines is listed in Table 2, where 
N denotes number of storeys. 

Table 2. Code-based fundamental natural period of oscillation formula 

Name of country code/guideline 
Fundamental natural period of 

oscillation formula 

ATC3-06 (ATC, 1978) [6] T= 0,06H0,75 

Taiwan and Venezuela [29] T= 0,07H0,75 

Cuba; Israel Standard and Korea [29]  T= 0,073H0,75 

India [28]; Eurocode 8; Italian Technical Code; UBC [2]; Algeria; 
Philippines; Switzerland [29]; Canada [30] and Nepal [31] 

T= 0,075H0,75 

FEMA450-2003 [2] and Bangladesh [32] T= 0,075H0,75 

USA [29] T= 0,10N 

Costa Rica [2] T= 0,08N 

 
It is evident from the literature review that the fundamental natural period of the oscillation 
formula proposed by various researchers as well as that recommended by seismic design 
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codes is mostly a function of the height of the building and does not account for the distinction 
between regular and irregular buildings. A research gap exists in proposing a fundamental 
natural period of the oscillation formula for plan irregular buildings for a realistic distribution of 
lateral forces on buildings. 

3 Re-entrant dominant plan irregular building models 

Irregular buildings are broadly classified into two categories: (1) plan irregularities and (2) 
vertical irregularities. Buildings with plan irregularities, such as asymmetry, re-entrant corners, 
and nonparallel lateral force-resisting systems, are commonly used in the field. Of these, RC 
buildings with re-entrant corners are widely constructed for reasons such as natural ventilation 
and illumination, limited land availability, rapid urbanisation, and aesthetics. In this study, 190 
RC building models with MRF and re-entrant corner-type plan irregularities were developed. 
Of these, 164 models had plan dimensions of 50 × 50 m with heights varying from 3 m to 30 
m, comprising single-storey to ten-storey buildings.  
The remaining 26 building models had plan dimensions of 2 × 20 m with a height of 9 m, 
representing 3-storey RC building stocks. Building models have re-entrant corner-type plan 
irregularities defined by plan irregularity descriptors (PIDs) [33] in the form of projections of the 
building on the overall plan dimension, A/L, in both directions. This type of a PID is most 
commonly used in various seismic design codes to identify re-entrant-type plan irregularities. 
Figure 1 shows the plan layout and elevation of C-, L-, T-, and PLUS-shaped building models 
resulting from the bidirectional re-entrant corners considered in this study. 
 

 

  
 

(a) Plan 
3-D view of a three-storey 

building 
3-D view of a ten-storey 

building 

   

(b) Plan 
3-D view of a three-storey 

building 
3-D view of a ten-storey 

building 

   

(c)      Plan 
3-D view of a three-storey 

building 
3-D view of a ten-storey 

building 

 

 

 

(d)     Plan 
3-D view of a three-storey 

building 
3-D view of a ten-storey 

building 

Figure 1. Plan Layout and 3-D view of RC Building Models (a) C- shaped; (b) L- shaped; 
(c) T- shaped, and (d) PLUS- shaped  
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Figure 1. Plan layout and 3-D view of RC building models: (a) C- shaped; (b) L- shaped; 
(c) T- shaped, and (d) PLUS- shaped 

Table 3. Data set of fundamental period of oscillation of building models for 20 × 20 m 
plan dimensions 

Building type 
& height  

(m) 

(
𝑨𝒙
𝑳
,
𝑨𝒚

𝑩
) No. of 

models 
Fundamental period of oscillation (sec) 

C-shaped; 
9 m 

(0,50;0,25) 
0,781 

(0,5;0,5) 
 0,809 

(0,25;0,50) 
 0,817 

(0,25;0,25) 
 0,837 

4 

L-shaped; 
9 m 

(0,5;0,5) 
 0,819 

(0,583;0,350) 
 0,81 

(0,417;0,41) 
 0,807 

(0,350;0,583) 
0,810 

17 

(0,75;0,25) 
 0,828 

(0,75;0,50) 
 0,752 

(0,75;0,75) 
 0,759 

(0,563;0,45) 
 0,786 

(0,25;0,25) 
 0,842 

(0,25;0,50)  
0,835 

(0,333;0,333) 
 0,828 

(0,375;0,375) 
 0,824 

(0,5;0,5) 
 0,738 

(0,39;0,39) 
 0,780 

(0,42;0,42) 
 0,806 

(0,36;0,36) 
 0,799 

(0,33;0,33) 
 1,096 

-- -- -- 

T-shaped; 
9 m 

(0,25;0,75) 
 0,785 

(0,25;0,50) 
 0,819 

(0,25;0,25) 
 0,835 

(0,50;0,25) 
 0,828 

4 

PLUS-shaped;  
9 m 

(0,25;0,25) 
 0,819 

-- -- -- 1 

 
Building models were developed in the FE-based commercially available software ETABS 
(V18) [34] and were designed for gravity loading: Dead Load (DL) and Live Load (LL) of                
3 kN/m2 at typical floors; 1,5 kN/m2 at the roof, and a Floor Finish (FF) load of 1 kN/m2. The 
seismic parameters considered for the study were seismic zone-v (Peak Ground Acceleration-
PGA-0,36 g), response reduction factor of 5, Special Moment-Resisting Frame (SMRF), 
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3-D view of a ten-storey 

building 

 

 

 

(d)     Plan 
3-D view of a three-storey 
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Figure 1. Plan Layout and 3-D view of RC Building Models (a) C- shaped; (b) L- shaped; 
(c) T- shaped, and (d) PLUS- shaped  
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medium stiff soil, and a damping coefficient of 0,05. Details of the RC building models with re-
entrant-type plan irregularities on the shape, A/L ratios, height of the model, fundamental 
natural period of oscillation evaluated using eigenvalue analysis and number of the models are 
summarized in Table 3 for building models of plan dimension 20 × 20 m and total height of 9 
m. Where, Ax/L denotes ratio of the length of the projection to the overall plan dimension in 
direction X, and Ay/B denotes ratio of the length of the projection to the overall plan dimension 
in direction Y. 
Table 4 reports details of RC building models on similar lines as that mentioned in Table 3 for 
building models of plan dimension 50 × 50 m and total height of 30 m. Table 4 comprises of 
large data set of fundamental periods of oscillation for RC building models with variety of                                  
Ax/L and Ay/B ratios of re-entrant corner. 

Table 4. Data set of fundamental period of oscillation of building models for 50 × 50 m 
plan dimensions 

In order to have comprehensive data set inclusive of varying height, 18 building models of plan 
dimension 50 × 50 m with height of the model varying from 3 to 27 m were developed for C- 

Building type & 
height  

(m) 

𝑨𝒚

𝑩
 

𝑨𝒙
𝑳

 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 No. of 
models Fundamental period of oscillation (sec) 

C-shaped;  
30 m 

0,2 1,458 1,457 1,457 1,456 1,455 1,454 1,454 1,453 

24 0,4 1,457 1,455 1,453 1,451 1,449 1,447 1,445 1,443 

0,6 1,456 1,453 1,449 1,445 1,441 1,437 1,432 1,429 

L-shaped;  
30 m 

0,2 1,458 1,457 1,456 1,455 1,453 1,452 1,451 1,450 

32 
0,4 1,457 1,455 1,452 1,449 1,447 1,444 1,442 1,440 

0,6 1,456 1,452 1,448 1,444 1,440 1,436 1,433 1,432 

0,8 1,455 1,450 1,445 1,440 1,435 1,437 1,430 1,432 

PLUS-shaped;  
30 m 

0,2 1,455 1,454 1,452 1,450 1,448 1,446 1,444 1,443 

32 
0,4 1,453 1,466 1,446 1,442 1,438 1,435 1,432 1,431 

0,6 1,451 1,446 1,441 1,435 1,429 1,423 1,421 1,423 

0,8 1,448 1,443 1,437 1,431 1,426 1,423 1,426 1,439 

 

𝐴𝑦

𝐵
 

𝐴𝑥
𝐿

 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 
 

Fundamental period of oscillation (sec) 

T-shaped; 
30 m 

0,1 1,458 1,457 1,455 1,454 1,453 1,452 1,451 1,45 

32 
0,2 1,457 1,454 1,452 1,449 1,446 1,444 1,441 1,44 

0,3 1,455 1,452 1,448 1,443 1,438 1,434 1,43 1,429 

0,4 1,454 1,449 1,443 1,436 1,416 1,408 1,414 1,418 

 
    
𝐴𝑥
𝐿

 

𝐴𝑦

𝐵
 

0,11 0,12 0,13 0,14 0,15 0,16 0,17 0,18 0,19 
 

Fundamental period of oscillation (sec) 

L-shaped; 
30 m 

0,1 1,458 1,457 1,388 1,392 1,42 1,45 1,449 1,448 1,459 9 

 (
𝑨𝒙
𝑳
,
𝑨𝒚

𝑩
) 0,11 0,12 0,13 0,14 0,15 0,16 0,17 0,18 0,19  

L-shaped;  
30 m 

 1,456 1,453 1,382 1,393 1,331 1,455 1,453 1,451 1,46 9 

 
(
𝑨𝒙
𝑳
,
𝑨𝒚

𝑩
) 

 
Fundamental period of oscillation  

(sec) 

L-shaped; 
30 m 

(0,1;0,1) 
1,458 

(0,3;0,3) 
 1,454 

(0,5;0,5) 
 1,443 

(0,7;0,7) 
 1,43 

4 

PLUS-shaped;  
30 m 

(0,1;0,1) 
 1,456 

(0,2;0,2) 
 1,449 

(0,3;0,3) 
1,431 

(0,4;0,4) 
 1,379 

4 
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and L-shaped re-entrant corner RC building. Table 5 shows details of RC building models on 
shape, A/L ratio, height of the model, fundamental natural period and number of models. 

Table 5. Data set of fundamental period of oscillation of building models for 50 × 50 m 
plan dimension with varying height of the buildings 

Building models were prepared without considering masonry-infilled walls because they are 
treated as non-structural elements for the analysis and design of buildings. Additionally, there 
are very limited guidelines available for the modelling of masonry infill in the Indian seismic 
design code, except for the latest revision of the seismic design code, which recommends that 
the infilled wall should be modelled as a diagonal strut member.  The sizes of the beams and 
columns designed using the Indian code IS 456:2000 [35] for the various building models are 
listed in Table 6. 

Table 6. Details of beam and column sizes for building models 

Numbers of 
storeys 

Size of columns 
Size of 
beams 

1 350 x 350 mm 300 x 300 
mm 2 400 x 400 mm 

3 to 6 450 x 450 mm 

300 x 450 
mm 

7 450 x 450 mm (1-3 storeys); 400 x 400 mm (4-7 storeys) 

8 500 x 500 mm (1-3 storeys); 400 x 400 mm (4-8 storeys) 

9 
550 x 550 mm (1-3 storeys); 450 x 450 mm (4-6 storeys); 400 x 400 

mm (7-9 storeys) 

The building models were developed as a space frame comprising beams, columns, and slab 
(diaphragm) elements. Beams and columns were modelled as line elements with their 
sectional properties, whereas slabs were modelled as area elements with uniform thickness. 
The slab is defined as membrane element as membrane element with rigid diaphragm 
transfers lateral forces to vertical load resisting systems. As mentioned earlier, the masonry 
infill was not included in the model. The model has a fixed boundary condition at the base and 
is assigned gravity and lateral loads with the design inputs specified in Table 7. The material 
model was linear because a linear static analysis was performed. 
The well-established literature and seismic design codes of various countries, including the 
Indian seismic design code, recommend that irregular buildings should be analysed using 3-D 
modelling with a flexible diaphragm. In this study, 3-D building models were analysed using 
EVA to evaluate the fundamental natural period of oscillation and the associated mode shape. 
All building models were found to have the first and second modes of vibration as translational 
modes in the principal direction, followed by the rotational mode of vibration. The fundamental 
natural period of oscillation, corresponding to the first translational modes of vibration, is 
considered to propose a new fundamental natural period of oscillation formula. As per the 
formula, the lowest and largest mass participation produces the maximum seismic force on the 
building models. 
 
 

Building 
Type 

   (
𝑨𝒙
𝑳
,
𝑨𝒚

𝑩
) 

3 m 6 m 9 m 12 m 15 m 18 m 21 m 24 m 27 m 
No. of 

models Fundamental period of oscillation  
(sec) 

C-shaped (0,4;0,5) 0,240 0,425 0,451 0,611 0,773 0,936 1,122 1,246 1,339 9 

L-shaped (0,5;0,5) 0,242 0,426 0,451 0,611 0,772 0,935 1,071 1,243 1,335 9 
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Table 7. Design inputs of RC building models 

Gravity Loading Definition 

Impose load (Live load) 
3 kN/m2 for a Typical floor 

1,5 kN/m2 for Roof floor 

Floor finish 1 kN/m2 

Seismic Loading Definition 

Seismic zone factor 0,36 (∵ seismic zone-v) 

Importance factor 1,2 

Response reduction factor 5 (∵ Special Moment-Resisting Frame) 

Soil type Medium stiff 

Damping 5 % of critical damping 

Fundamental natural period of 
oscillation estimation 

Code-based formula; Programme calculated 

Seismic Analysis Method 

Equivalent Static Method (ESM) --- 

Response Spectrum Method (RSM) 

Numbers of participating modes Up to mass participation ≥ 90% 

Participating modes 

[{∅𝑖𝑘}𝑥   {∅𝑖𝑘}𝑦  {∅𝑖𝑘}𝜃] at the floor 𝑖 in mode 𝑘 

Where, 𝑥, 𝑦 = Translational degrees of freedom 
                   𝜃 = Rotational degree of freedom 

Material Definition 

Concrete 𝑓𝑐𝑘 = 25 MPa for 𝑀25 grade 

Steel 𝑓𝑦 = 415 MPa for HYSD 

Material model Linear 

4 Evaluation of code-based and proposed period–height relationship 

The fundamental natural period of oscillation of the RC building models was calculated using 
the seismic design codes of different countries, including the Indian seismic design code. 
Figure 2 (a) shows the fundamental natural period of oscillation of building models from EVA 
as discrete data points with a graph legend of the present study (EVA), while those obtained 
from the seismic design code-based formula for the bare-frame building are shown in the form 
of a trendline for better visualisation and comparison. It is evident that all seismic design codes 
yield a lower fundamental natural period of oscillation for re-entrant corner-type plan irregular 
buildings. However, they became substantially conservative as the height of the building 
increases beyond 15 m. This is due to the fact that building models become flexible with height 
due to mass and stiffness distribution, which cannot be captured by the code-based formula 
as it depends only on the height of the building model. Additionally, the code-based formula 
for the fundamental natural period of oscillation estimation does not differentiate between 
regular and irregular building models, whereas the latter type of building model has different 
dynamic properties, and thereby, different fundamental natural periods of oscillation and 
associated mode shapes. The Costa Rican seismic design code yields the most conservative 
estimate of the fundamental natural period of oscillation for re-entrant irregular corner-type 
buildings. Various researchers proposed a period–height relationship for building stocks, 
realising that the seismic design code-based formula for the fundamental natural period of 
oscillations cannot have generalised applicability to buildings with different configurations, 
structural systems, damage states, and frames with masonry walls because the dynamic 
properties of each building varies. 
Figure 2 (b) shows a graphical representation of Table 1 when compared to the values 
obtained using the period–height formula proposed by various researchers. It is evident that 
the period–height relationships proposed by Chopra and Goel (2000) [9] and Crowley and 
Pinho (2006) [13] agree well with the original fundamental natural period of the oscillation 
dataset. Other period–height relationships yield an underestimation of the fundamental natural 
period of oscillation, leading to higher seismic forces on the building models. It can be observed 
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that the period–height relationship proposed by Crowley and Pinho (2004) [12] highly 
overestimates the fundamental natural period of oscillation, while the proposed relationship by 
Hong & Hwang (2000) [11] and Guler et al. (2006) [10] substantially underestimate the 
fundamental natural period of oscillation. 

 

Figure 2. Comparison of EVA-based fundamental natural period of oscillation data set 
with: a) data set of seismic design code formula, and b) data set of period–height 

relationship proposed by researchers 

 

5 Proposed fundamental natural period of oscillation formula for re-entrant dominant 
RC buildings 

In this section, a new fundamental natural period formula is proposed for re-entrant corner-
dominant plan irregular RC building stocks to improve the height-based time–period 
relationships proposed by various researchers and seismic design codes, as discussed in 
Section 4. The proposed time period formula includes the PlD and A/L ratio in both directions, 
in addition to the height of the building stock. Given that the fundamental natural period of 
oscillation of the building stock is assumed to be influenced by more than one parameter 
(height), a nonlinear regression model in the form of a multiple-variable power equation is 
proposed, as shown in Eq. (20). 

𝑇 = 𝛼(ℎ)𝛽 (
𝐴𝑥
𝐿
)
𝛾

(
𝐴𝑦

𝐵
)
𝛿

 (20) 

where, T denotes fundamental natural period of oscillation (sec); h height (m) of the building; 
α, β, γ and δ multiple regression variables; Ax & Ay denote projection of building in X- and Y-
directions, respectively and L & B are overall plan dimension of building in X- and Y- directions, 
respectively. 
Referring to Fig. 2(a), it is sufficient to realise that the nonlinear model proposed by Eq. (20) 
can be fitted well with the original fundamental natural period of the oscillation data on 
linearization of the nonlinear regression model. Eq. (20) can be rewritten as follows: 

𝑦 = 𝛼 + 𝛽𝑥1 + 𝛾𝑥2 + 𝛿𝑥3 (21) 

In which, y=log(T), α=log(α), x1=log(h), x2=log(Ax/L) and x3=log(Ay/B). 
Multiple linear regression was used to determine regression variables, α, β, γ, and δ, by 
minimising the squared error, resulting in the formulation of the matrix form as follows: 

 

  

 
a)    b)  

Figure 2. Comparison of EVA-based Fundamental Natural Period of Oscillation Data 
Set With a) Data Set of Seismic Design Code Formula and b) Data Set of Period–Height 

Relationship Proposed by Researchers 
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[
 
 
 
 

𝑛 ∑ 𝑥1𝑖
∑𝑥1𝑖 ∑𝑥1

2
𝑖

∑𝑥2𝑖 ∑𝑥3𝑖
∑𝑥1𝑖 𝑥2𝑖 ∑𝑥1𝑖 𝑥3𝑖

∑𝑥2𝑖 ∑𝑥1𝑖 𝑥2𝑖
∑𝑥3𝑖 ∑𝑥1𝑖 𝑥3𝑖

∑𝑥2
2
𝑖

∑𝑥2𝑖 𝑥3𝑖

∑𝑥2𝑖 𝑥3𝑖 ∑𝑥3
2
𝑖 ]
 
 
 
 

{

𝛼
𝛽
𝛾
𝛿

}=

{
 

 
∑𝑦𝑖
∑𝑥1𝑖𝑦𝑖
∑𝑥2𝑖𝑦𝑖
∑𝑥3𝑖𝑦𝑖}

 

 
 (22) 

Eq. (22), which contains simultaneous linear equations, was solved using the Gauss 
elimination method. The standard error of the estimation of the computed fundamental natural 
period of the oscillation dataset is as follows: 

𝑆𝑒 = √
∑ [𝑦𝑖 − (𝛼 + 𝛽𝑥1𝑖 + 𝛾𝑥2𝑖 + 𝛿𝑥3𝑖)]

2𝑛
𝑖=1

(𝑛 − 4)
 (23) 

where, yi=log(Ti) = computed fundamental natural period of oscillation value;  
[log(α)+(β·log(hi))+(γ·log(Ax/L)i)+(δ·log(Ay/B)i)] denotes computed value of the i-th data; n is 

total numbers of computed fundamental natural period data points. Furthermore, Se represents 
the scatter in the data and converges to standard deviation for large values of n data points, 
n, from the best-fit equation. The regression variables determined using the solution to Eq. 
(22) and is substituted into Eq. (20) yields the unconstrained best-fit equation. 

𝑇 = 0,186(ℎ)0,6 (
𝐴𝑥
𝐿
)
−0,01

(
𝐴𝑦

𝐵
)
0,001

 (24) 

However, the code-based fundamental natural period of the oscillation formula should provide 
lower values in order to remain conservative. Therefore, the best-fit line, determined using Eq. 
(24) should be reduced by Se without changing the slope. Furthermore, αL, the lower value of 
α, can be determined as: 

𝑙𝑜𝑔(𝛼𝐿) = 𝑙𝑜𝑔(𝛼) - 𝑆𝑒 (25) 

As discussed earlier, as Se approaches standard deviation for large numbers of data, n and y 
is lognormal, αL is minus one standard deviation or 15,9 percentile value. This implies that 15,9 
% of calculated fundamental natural period of oscillation fall below the curve defined by αL, i.e., 
best-fit-1σ curve. A total of ten numbers of building models have fundamental natural period 
of oscillation lower than best-fit-1σ curve amounting to 5,26 % re-entrant corner dominant 
building models. The maximum variation in the fundamental natural oscillation period of these 
building models, compared to the best-fit 1σ curve, is relatively small (approximately 2.93%). 
This observation holds for models with an A/L ratio of either (0,5;0,4) or (0,5;0,5), representing 
building models that are common among the widespread building stocks analysed in the study. 
The codes also specify the upper limit of the fundamental natural period of oscillation obtained 
through rational analysis. This was achieved by raising the best-fit line using Se without 
changing its slope. Thus, αU, the upper value of α, can be obtained as: 

𝑙𝑜𝑔(𝛼𝑈) = 𝑙𝑜𝑔(𝛼) + 𝑆𝑒 (26) 

Eq. (26) corresponds to best-fit+1σ curve for the original fundamental natural period of 
oscillation data. Newly proposed fundamental natural period of oscillation formula is compared 
with height-based seismic design code formula of various countries which use the value of 
0,75; 1,00 and 0,90; respectively, for regression variable, β, by performing nonlinear 
constrained regression analysis. Table 8 summarises the results of the unconstrained and 
constrained regression analyses performed to propose the fundamental natural period of the 
oscillation formula along with the standard error of the estimate (Se), standard deviation (SD), 
co-efficient of variance (CoV), co-efficient of determination (r2), and correlation coefficient (r). 
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Table 8. Fundamental natural period of oscillation formula with unconstrained and 
constrained regression analysis 

Type of 
Regression 

Proposed Formula  

 
Best-fit  

(𝑆𝑒; SD; CoV in %;  𝑟2 and 𝑟)* 
Best-fit−1𝜎 Best-fit+1𝜎 

Unconstrained T=0,186(h)0,6 (
Ax

L
)

-0,01

(
Ay

B
)

0,001

 

(0,069; 0,3; 23,07; 0,95; 0,97) 

T=0,159(h)0,6 (
Ax

L
)

-0,01

(
Ay

B
)

0,001

 T=0,218(h)0,6 (
Ax

L
)

-0,01

(
Ay

B
)

0,001

 

Constrained 
with β = 0,75 

T=0,116(h)0,75 (
Ax

L
)

-0,01

(
Ay

B
)

0,001

 

(0,102; 0,36; 26,99; 0,92; 0,96) 

T=0,092(h)0,75 (
Ax

L
)

-0,01

(
Ay

B
)

0,001

 T=0,147(h)0,75 (
Ax

L
)

-0,01

(
Ay

B
)

0,001

 

Constrained 
with β = 0,90 

T=0,072(h)0,9 (
Ax

L
)

-0,01

(
Ay

B
)

0,001

 

(0,153; 0,41; 30,37; 0,86; 0,93) 

T=0,051(h)0,9 (
Ax

L
)

-0,01

(
Ay

B
)

0,001

 T=0,103(h)0,9 (
Ax

L
)

-0,01

(
Ay

B
)

0,001

 

Constrained 
with β = 1,00 

T=0,053h (
Ax

L
)

-0,01

(
Ay

B
)

0,001

 

(0,19; 0,44; 32,35; 0,82; 0,91) 

T=0,034h (
Ax

L
)

-0,01

(
Ay

B
)

0,001

 T=0,082h (
Ax

L
)

-0,01

(
Ay

B
)

0,001

 

It is clearly observed from Table 8 that the value of Se is substantially high for                                     
β=0,75;1,00; and 0,90; used by seismic design code of various countries. Consequently, the 
value of β=0,60 suggests that the fundamental natural period of oscillation formulas in seismic 
design codes do not accurately estimate the fundamental natural period of oscillation for 
building models with dominant re-entrant corner plan irregularities. Therefore, fundamental 
natural period of oscillation estimation for re-entrant dominant plan irregular building models 
can be best represented by unconstrained best-fit-1σ curve. 
Figure 3 shows a comparison of the fundamental natural period of the oscillation obtained from 
the proposed new fundamental natural period of the oscillation formula with the original 
fundamental natural period of the oscillation data and seismic design code-based formula. It 
has been observed that unconstrained best-fit curve fits well with original fundamental natural 
period of oscillation data set. The seismic-design-code-based formula yielded a highly 
conservative estimation of the fundamental natural oscillation period.  

 

Figure 3. Comparison of fundamental natural period of oscillation values of proposed 
formulas 

Figure 4 shows original fundamental natural period of oscillation data set with lower and upper 
bound represented by best-fit-1σ curve and best-fit+1σ curve, respectively, obtained through 
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regression analysis. It is evident that best-fit-1σ curve effectively and conservatively represents 
fundamental natural period of oscillation for re-entrant corner dominant plan irregular building 
models. Inclusion of additional parameters, Ax/L and Ay/B, governed by regression analysis 
variables, γ and δ, enhances the fit of the best-fit-1σ curve with the original data set of the 
fundamental natural period of oscillation, especially as the building height increases. This is 
due to the –ve value of regression variable, γ, and +ve value of regression variable, δ. 
 

 

Figure 4. Regression analysis of fundamental natural period of oscillation data 

 

6 Conclusions 

The fundamental natural period of building oscillations is crucial in the seismic analysis and 
design of RC buildings. Currently, there is a significant need to revise the seismic design code-
based formula for this period. The existing formula primarily considers building height and fails 
to adequately address irregular RC buildings, particularly those with re-entrant corner-type 
plan irregularities. To address this, 190 models of such irregular RC buildings, featuring various 
shapes (C, L, T, and PLUS), heights, and floor configurations, were developed for analysis. An 
Eigenvalue Analysis (EVA) was conducted to evaluate their fundamental natural periods of 
oscillation. These findings were then compared with the periods obtained from the seismic 
design codes of various countries, as well as with the period-height formula proposed in 
existing literature. A set of proposed formulas for the fundamental natural period of oscillation 
includes parameters specific to the re-entrant corners of RC buildings, alongside building 
height. These equations represent the EVA-based dataset accurately, with the unconstrained 
equation showing the best agreement and least statistical error indices. Seismic design code-
based formulas tend to yield highly conservative estimates of the fundamental natural period, 
especially for taller buildings. The newly proposed formula, derived from unconstrained 
regression analysis and best-fit-1σ, aligns well with the EVA data. It performs favourably 
compared to the period-height formulas from various countries' seismic guidelines and existing 
literature. These fundamental period formulas could be further refined by incorporating other 
types of plan and vertical irregularities, allowing for a more comprehensive approach in seismic 
analysis and design. 
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