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ABSTRACT 

In this article, I will review existing arguments for and against this philosophical pessimism about using 

deep learning models in science. Despite the remarkable results achieved by deep learning models 

networks in various scientific fields, some philosophers worry that because of their opacity, using these 

systems cannot improve our understanding of the phenomena studied. First, some terminological and 

conceptual clarification is provided. Then, I present a case for optimism, arguing that using opaque 

models does not hinder the possibility of gaining new understanding. After that, I present a critique of 

this argument. Finally, I present a case for pessimism, concluding that there are reasons to be pessimistic 

about the ability of deep learning models to provide us with new understanding of phenomena, studied 

by scientists. 
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INTRODUCTION 

In the last decade, artificial neural networks (ANNs) using deep learning (DL) achieved some 

remarkable results when used in for scientific research. AlphaFold a model developed by 

DeepMind learned to accurately predict possible novel protein structures [1]. DL models are 

used to successfully predict the presence of breast cancer [2] and the one-, two- and three-year 

risk of lung cancer [3] from images. DL has proven useful in helping researchers to identify 

the correlations between the structure and properties of materials in the field of materials 

science [4]. In neuroscience, such models perform much better than the previously existing 

ones to model neural single-unit and population responses in higher visual cortical areas [5]. 

The success of deep learning models is due in large part to their increased complexity [6]. 

Buckner [7] compares the difference between older, “shallow”, ANNs and DL models to the 

difference between a small team of engineers assembling a car and doing it on a mass-

production assembly line. Although the process is in principle the same, the assembly line is 

exponentially more efficient and reliable. The same goes for deeper neural networks. Bucker 

writes: “Similar gains in the efficiency and complexity of representational schemes and 

decision-making policies are afforded by additional depth in neural networks. Specifically, 

deeper networks can solve certain types of classification and decision problems exponentially 

more efficiently than shallower networks” [7; p.3]. 

But increased complexity also means that human users have less understanding of how these 

models work. As stated in a recent survey of literature on explainable artificial intelligence 

(XAI): “Though they appear powerful in terms of results and predictions, AI algorithms suffer 

from opacity,” meaning “that it is difficult to get insight into their internal mechanism of 

work” [8; p.52138]. Given this, some philosophers worry that despite their predictive accuracy, 

using these systems cannot improve our understanding of the phenomena studied. In other 

words, they ask whether the fact that we cannot understand highly complex models means that 

we cannot use them to gain new understanding of the phenomena they predict1. 

In this article, I will review existing arguments for and against this philosophical pessimism 

about using DL models in science. In what follows, I will first provide some clarification on 

the terms like artificial intelligence, neural networks, machine learning, the black box problem, 

explanation, and understanding. In section 3, I will review an argument, presented by 

Sullivan [9], that opaque ANNs can provide us with understanding. In section 4, I will present 

some critiques of her argument. In section 5, I will present a positive argument for pessimism 

about the ability of ANNs to provide us with understanding Finally, I will conclude by stating 

that the argument for pessimism is convincing, albeit with some qualifications. 

SETTING THE SCENE 

ARTIFICIAL NEURAL NETWORKS AND DEEP LEARNING 

In this section, I will present some terminological and conceptual clarifications that will be 

important for the discussion in the later parts of the article. Artificial neural networks or ANNs 

represent one approach in AI research [10]. Unlike AI systems based on deductive logic and 

probabilistic reasoning, artificial neural networks “are based on formalisms that can be broadly 

termed ‘neurocomputational’ ” [10]. The idea is that the structure of ANNs was inspired by the 

structure of organic neural networks, abstracted to the level of a mathematical formalism. 

ANNs are thus composed of what are called “neurons”, which are “simple, unintelligent units 

that are interconnected by weighted nodes” [11; p.42]. “Neurons” or units are usually layered 

into a multi-layer net, with each unit being connected to some or all units in the next layer. 

Each unit also has a so-called activation value. This value is calculated in two steps. First, the 
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input function calculates the weighted sum of all input values, i.e., the values of the weighted 

nodes connecting the unit to the previous layer. Then, the activation function converts this 

value into the activation level, i.e., the output, of the unit [10]. 

Such networks are “almost exclusively used for building learning systems” [10]. In other 

words, they are used to build systems that “adapt to the environment through learning, which 

takes place according to a chosen learning rule. Using the learning rule, the system gradually 

changes the strength of the connections between units” [11; p.45]. Artificial neural networks 

thus play an important role in the research field of machine learning that “building systems that 

improve their performance by solving tasks” [10]. It is important to notice here that some 

machine learning algorithms do not employ ANNs, meaning that machine learning is not a 

subfield of neurocomputational artificial intelligence. However, one of the biggest recent 

advances in the design of artificial neural networks has come in the form of the development 

of deep learning models, i.e., models with increased depth. 

BLACK BOX PROBLEM 

Let us now turn to the problem of opacity or the so-called black box problem. As already 

mentioned in the introduction, researchers in the field of XAI have pointed out that “predictive 

accuracy [of machine learning systems] has often been achieved through increased model 

complexity” [6; p.1]. This increased complexity, “combined with the fact that vast amounts of 

data are used to train and develop such complex systems,” has inherently reduced researchers’ 

ability to “explain the inner workings and mechanisms” of these systems. As a result, “the 

rationale behind decisions [of these systems] becomes quite hard to understand and, therefore, 

their predictions hard to interpret”. Therefore, they say that "there is clear trade-off between 

the performance of a machine learning model and its ability to produce explainable and 

interpretable predictions" [6, p. 1]. Adadi and Berrada [8] have reached a similar conclusion. 

They state that “there are algorithms that are more interpretable than others are, and there is 

often a trade-off between accuracy and interpretability: the most accurate AI/ML models 

usually are not very explainable (for example, deep neural nets, boosted trees, random forests, 

and support vector machines), and the most interpretable models usually are less accurate (for 

example, linear or logistic regression)” [8; p.52145]. 

Linardatos, Papastefanopoulos, and Kotsiantis [6] thus distinguish between “black-box” 

models, which have state-of-the-art performance but are opaque, and “white-box” or 

“glass-box” models, which are more easily interpretable, but not as powerful. Chirimuuta [12] 

also specifies which aspects of deep neural networks suffer from opaqueness. She argues that 

scientists know the activation values of the units, the learning rule, the depth of the network, 

and the connectivity between the layers. But they do not know exactly how an already trained 

network arrives at a prediction or classification. 

EXPLAINABILITY, INTERPRETABILITY, AND UNDERSTANDING 

The problem of opacity has encouraged researchers to search for ways of making ANNs and 

especially DL models more understandable to human users. But one salient feature of the 

literature on explainable AI is the imprecise or even interchangeable use of the concepts of 

explainability, intelligibility, and interpretability [13]. This is also recognized by the researchers 

themselves. For example, Linardatos, Papastefanopoulos, and Kotsiantis observe that there is 

“not a concrete mathematical definition of explainability and interpretability” [6; p.2]. 

Nevertheless, they make a conceptual distinction between these two terms. Interpretability, on 

the one hand, is understood in connection to the ability of researchers to intuitively understand 

the relationship between the inputs and outputs of a system. Explainability, on the other hand, 

is understood in relation to understanding the inner workings of a system. In contrast, Gilpin 
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et al. [14] define explainability as the possibility to provide a satisfactory answer to the “w-

questions” regarding the functioning of a system. They also make a difference between two 

levels of explanation, connected to two different questions scientists can ask about a system. A 

question about the relationship between inputs and outputs, i.e., “why does this particular input 

lead to that particular output?” And a question about the internal workings of a system, i.e., 

“what information does the network contain?” 

Definitions of these terms are similarly contested in philosophy. Nevertheless, I think there are 

at least two distinctions that are important for our discussion. First is a distinction between 

explainability and interpretability, i.e., between being able to provide an explanation of a given 

model and being able to understand it. Not everyone accepts this distinction. For example, 

Beisbart and Räz [15] argue that we should understand interpretability and explainability as 

synonyms. Nevertheless, there is a long tradition in the philosophy of science of separating the 

two terms [16] that I think should not be so easily dismissed. Thus, to examine this distinction 

in a bit more detail, I will present an argument, offered by Erasmus, Brunet, and Fisher [17], 

that the increased complexity of DL systems affects their understandability or interpretability 

but not their explainability. 

In essence, Erasmus, Brunet, and Fisher [17] argue that (1) the possibility of explaining a given 

phenomenon P is independent of the complexity of P, while (2) the increased complexity of P 

hinders our ability to understand it. To argue for (1), they rely on the analysis of explanation 

which holds that it consists of three elements: (a) the explanandum, i.e., what we want to 

explain, (b) the explanans, i.e., with what we are explaining, and (c) the process of explanation.  

Different models of explanations differ in one or more of these elements. Erasmus, Brunet, and 

Fisher [17] present four such models which feature prominently in the literature. (I) The 

Deductive Nomological model, in which the explanans includes empirical content plus a law-

like preposition, and the process of explanation takes the form of deductive reasoning. (II) The 

Inductive Statistical model, in which the explanans includes a statistical law about the behavior 

of the variables, and the process of explanation takes the form of inductive or probabilistic 

reasoning. (III) The Causal Mechanical model with which scientists aim to show “how the 

explanandum fits into the causal structure of the world” [17; p.838] and thus involves giving 

information about the causal process and the causal interaction that leads to the emergence of 

the explanandum. (IV) The New Mechanist model, in which the explanans includes the entities 

and their activities that are responsible for the emergence of the explanandum2. 

Then they argue that under all four models of explanation, complexity and explainability are 

independent3. Let us take the Deductive Nomological explanation as an example. According 

to the above definition, it requires only that the explanans contains a law, and that the process 

of explanation takes the form of deductive reasoning. It does not matter how complex the two 

elements are. Thus, an explanation that contains a more complex explanans and requires more 

complex reasoning may be less desirable, but it is no less an explanation. This also holds, 

mutatis mutandis, for other models of explanation. Consequently, the fact that DL models are 

increasingly more complex should not, at least principally, affect our ability to explain them. 

What about understanding? Erasmus, Brunet, and Fisher [17] point out that authors who study 

understanding disagree about its exact nature. Nevertheless, they commonly observe that, while 

an explanation is necessary for understanding, it is not sufficient for it. So, to gain 

understanding of a phenomenon, some other conditions besides having an explanation must be 

met. There are several candidates for these additional conditions in the literature, but, as 

Erasmus et al. argue, they all have in common that they are some “subjective features of the 

individual who is trying to understand the phenomenon in question” [17; p.848]. One such 

condition is the criterion of intelligibility. It states that a theory T is intelligible to a scientist in 
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context C if the scientist is able to recognize the qualitatively distinct consequences of T 

without doing the exact calculations [18]. Given this, it is obvious that the increased complexity 

of an explanation or a phenomenon makes it less intelligible and thus less understandable. 

Thus, it can be concluded that complexity affects the ability to understand a phenomenon. 

The other distinction that I think is important is a distinction between understanding the models 

themselves and the understanding provided by the models. There is an intuitive distinction 

between having a grasp on how a model works and learning something about the target 

phenomenon by using the model. This distinction also captures the essence of the disagreement 

between pessimists and optimists about using DL in science. The optimists, like Sullivan [9], 

argue that we do not need to understand the models themselves for them to provide us with at 

least some understanding of the target phenomena. The pessimists, like Chirimuuta [12] or Räz 

and Beisbart [19], on the other hand, argue that one is a necessary condition for the other. 

A CASE FOR OPTIMISM 

At face value, there seems to be an intuitive connection between our ability to understand a 

given model and the possibility that this model provides us with understanding of the target 

phenomenon. But not all philosophers agree with this line of reasoning. In this section, I will 

thus present Sullivan’s [9] argument that model complexity does not necessarily prohibit 

understanding. 

Her argument can be presented in two parts. First, she argues that having an understanding of 

a given model is not sufficient for gaining new understanding using this model. Consider, for 

example, the controversial Schelling’s model of segregation. This model is simple and 

completely transparent. As she describes it: “It is a simulation that consists of a grid with two 

types of actors, A and B, where both types act on one simple preference—that at least 30 % of 

their neighbours are the same type. The simulation follows a simple algorithm: if more than 

70 % of the actors adjacent to a particular actor are of a different kind, move that actor to the 

closest unoccupied space” [9]. The equilibrium result of this model is a segregated board which 

suggests that simple personal preferences, and not systemic discrimination, can cause 

segregation. But as Sullivan [9] points out, this model does not explain how segregation 

actually happens, but only how it can possibly happen4. Thus, although Schelling’s model 

provides us with an intelligible explanation of the target phenomenon, it does not provide an 

understanding of it. 

What is missing, according to Sullivan [9], is empirical evidence showing that the model 

accurately represents a real situation. She describes the process of obtaining that evidence as 

reducing the “link uncertainty”, that is, reducing the uncertainty that we can link the behaviour 

of the model to the behaviour of the target phenomenon. If this is so, having an intelligible 

explanation is not sufficient for understanding; we need to also consider the empirical evidence 

connecting the model to the real world. In other words, “the focus should not be unduly placed 

on how the model works, but instead consider the explanatory question we ask of the model, 

the role that the algorithm or model plays in the explanation, and the amount, quality, and kind 

of scientific evidence needed in order to connect the model to the target phenomenon.” 

In the second part of her argument, Sullivan [9] argues that understanding a given model is also 

not necessary for gaining any understanding by using this model. The main point here is that 

“black boxiness” is not a discrete property but that it comes in degrees. She argues that the 

issue of opacity is an issue of implementation – different parts of the implementation of a given 

model can be opaque to its builders. But this in principle does not impact the potential of models 

to provide understanding of phenomena. Consider the following example. Imagine I try to 

recreate Schelling’s simulation on my computer. I might have some knowledge of a 
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programming language, let us say Python, but maybe I am not all that skilled at programming. 

So, I start building the simulation. I quickly notice that I do not know how to program the 

function that will tell me whether, for a given actor, at least 30 % of the surrounding actors are 

of the same type. I go online and, luckily, I find a library containing a function that does exactly 

that. The documentation says that the function takes a 2-dimensional array (representing the 

grid with the actors) and the indexes of a given actor as arguments and returns True if at least 

30 % of the surrounding actors are of the same type as the given actor and False if this is not 

the case. Thus, I do not understand how the function works, but I know what it does. Happy 

with my finding, I import the library and implement the function. The simulation works and 

although one of its main components of it remains opaque to me, I can still plausibly claim that 

I understand the model as a whole. 

These kinds of implementational black boxes are ubiquitous in science. It thus seems 

reasonable to conclude that they do not hinder understanding. But what about if a given model 

is opaque at the highest level of implementation, meaning that we only know the inputs and 

outputs of the system but nothing about what it does and how? Sullivan [9] concedes this kind 

of opacity would indeed hinder understanding. But she argues that DL models are not opaque 

in this way. First, as I already mentioned above, we know quite a lot about how DL models 

work. In addition, Sullivan mentions methods such as salience maps that can help us 

understand, for example, which features of the input data are the most relevant in the decision-

making process of the model. She concludes that “it should be clear from the above discussion 

that DNNs [deep neural networks] are not black boxed at the highest level either during the 

modelling process, or in the resulting model” [9]. 

In the last part of her paper, Sullivan [9] gives some examples of the explanatory value of DL 

models. She argues that such models can provide us with how-possibly explanations. One 

example she uses is Deep Patient, a DL model that can accurately predict future health 

complications based solely on the medical records of patients. Sullivan [9] argues that Deep 

Patient can provide how-possibly explanations: it shows that it is possible to diagnose patents 

based only on their medical records. In addition, using salience maps we can determine which 

parts of the records were especially important for the model’s decisions. This way the model 

could “point to possible correlations that are worthy of future scientific and empirical 

research” [9]. Given all this, Sullivan [9] argues that we should focus more on testing these 

correlations and thus reducing the link uncertainty between the model and the real-world 

phenomena. “The stronger the link, the greater possible understanding the model can provide” [9]. 

Pessimism about the use of DL models in science is thus unwarranted. 

A CASE AGAINST OPTIMISM 

In the previous section, I summarized Sullivan’s case for optimism about using DL models in 

science. In this section, I will present some arguments against her case. First, I will present Räz 

and Beisbart’s [19] argument that Sullivan’s thesis is tangible only under a very weak notion 

of understanding. Then, I will use Boge’s [20] distinction between two levels of opacity in DL 

to argue that DL models are not implementational black boxes.  

Räz and Beisbart [19] examine three key epistemic insights that Sullivan [9] claims are offered 

by DL models, and they assess whether these insights indeed enhance understanding. These 

three insights are: predictive success, how-possibly explanations, and playing a heuristic role 

in guiding future scientific research. They argue that all of these are necessary conditions for 

understanding “but that they do not lead to a high degree of explanatory understanding, because 

they are too far from actual explanations” [19]. As I showed previously, understanding can be 

analysed as an intelligible explanation. But under Sullivan’s [9] account, DL models provide 
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as neither with actual explanation nor are they highly intelligible to us. In the best case, we 

have a how-possibly explanation and some degree of intelligibility which rests on the 

possibility to examine the models with post hoc techniques such as salience maps. 

In addition, Räz and Beisbart [19] question whether DL models provide us with how-possibly 

explanations in the same way as more traditional simulations. As we saw, Schelling’s model 

shows one possible way how segregation could happen. Can we say something similar about 

the Deep Patient model Sullivan mentions? Sullivan writes: “The model can also be used to 

explain how it is possible to predict schizophrenia (or any of the other seventy-seventy medical 

problems) through past medical records alone. Simply having a highly predictive model, and 

knowing the high-level emerging properties of the model, uncovers that it is possible to use a 

machine learning representation for disease prediction” [9]. But as Räz and Beisbart [19] point 

out, there seems to be a fundamental disanalogy between the cases. Instead of providing a how-

possibly explanation of the target phenomenon, i.e., the relation between schizophrenia (or any 

of the other problems) and existing medical history, Deep Patient answers “a question about 

the possibility of predictive modeling itself” [19]. In other words, it answers a methodological 

rather than substantive question. 

Another problematic aspect of Sullivan’s argument is her assertion DL models are opaque in 

essentially the same way as other kinds of models used in science. This ignores one important 

distinction in the XAI literature mentioned above. Namely, the distinction between answering 

the question “Why does this particular input lead to that particular output?” in contrast to 

answering the question “What information does the network contain?” [14].  

This distinction is further explicated by Boge [20]. He begins his exposition of the two aspects 

of opacity by defining opacity. He uses Humphreys’s definition of epistemic opacity which 

states that: “a process is epistemically opaque relative to a cognitive agent X at time t just in 

case X does not know at t all of the epistemically relevant elements of the process” [21; p.618]. 

Boge [20] then distinguishes between two aspects of the opacity of deep neural networks. First, 

he describes h-opacity. This kind of opacity concerns the workings of a system: a system is 

h-opaque if it is the process of its operation that is not intelligible to its human users. This is 

the kind of opacity that results from the complexity of deep neural networks and hinders the 

understanding of the connection between input and output data. But as Boge [20] notes, this 

type of opacity is not qualitatively different from, say, the opacity of other complex 

computational simulations, e.g., climate simulations. In other words, this is what Sullivan calls 

an implementational black box. But Boge [20] identifies another aspect of opacity that is 

specific to deep neural networks. He calls is w-opacity. W-opacity concerns the 

representational content of the system (what was learned). According to Boge, in DL models, 

not only the process that takes a neural network from an input to an output, but also the 

properties of the input data that guide this process are opaque. 

This distinction is important from the point of view of gaining understanding via DL models. 

H-opacity only hinders the understanding of the computational model itself, as it prevents 

researchers from seeing how it gets from input to output data. In contrast to this, w-opacity 

reduces the potential of deep neural networks to bring new understanding of the target 

phenomena. Even in the case where promising results would suggest that a DL model 

“discovered” an important feature of input data that was previously missed by researchers, 

w-opacity would make this discovery incomprehensible to scientists. It could happen, for 

example, that the Deep Patient model would discover an important new correlation between 

some aspect of a given patient’s medical history and risk for schizophrenia. But since this 

model is w opaque, scientists must depend on methods, such as salience maps5, to try to extract 

this information. This, together with the above argument about the weak reading of understanding, 

in my view, defeats Sullivan’s argument for optimism about using DL in science. 
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A CASE FOR PESSIMISM 

In In this final section, I will present Chirimuuta’s [12] case for pessimism about using DL in 

science. In her paper, she focuses on using ANNs in computational neuroscience, but I think 

that with some qualifications, her main points can be generalized to other areas of scientific 

research. 

Chirimuuta defines computational neuroscience as “a tradition of research that builds 

mathematical models of neurons’ response profiles, aiming both at predictive accuracy and at 

theoretical understanding of the computations performed by classes of neurons” [12; p.771]. It 

is based on the assumption that information about the external world is “encoded” in the 

electrical and chemical signals of the neurons. Researchers in the field thus attempt to solve 

the so-called “decoding problem”, i.e., to find a mathematical function that could successfully 

link neuron spikes to outside information. Specifically, according to Chirimuuta [12], they try 

to devise a theory of how neurons encode information about the outside world and then write 

a program, called an encoder, that performs the translation operation between the stimuli and 

the neural activity. 

Thus, as Chirimuuta [12] points out, computational neuroscience pursues two separate 

epistemic goals. On the one hand, it aims at accurately predicting the relations between neural 

activity and external stimuli (e.g., to predict how neurons will fire if we show a picture of a 

square to a primate). On the other hand, it tries to understand how this translation takes place. 

Chirimuuta [12] thus argues that in the past, when even very simple linear models have proved 

surprisingly accurate in certain contexts, there has been a convergence between these two goals. 

However, with the development of deep neural networks, which are much more accurate but 

w-opaque, these two goals started to diverge.  

Chirimuuta [12] presents two examples of such divergence, one from modeling the functioning 

of the motor cortex and another from modelling the visual perception system. I will limit my 

presentation to the former, i.e., to her comparison between two studies that tried to model motor 

cortex activity, Georgopoulos et al. [22] and Sussillo et al. [23]. In both experiments, 

researchers measured the activity of individual neurons in non-human primates while the 

primates were performing given tasks. Georgopoulos et al. [22] present an experiment in which 

a monkey was surrounded by eight buttons, with the ninth button in front of her. In the 

experiment, first, the button in front of the monkey lit up. After the monkey held it for one 

second, one of the other eight buttons lit up, and the monkey had to press it with the same hand. 

Meanwhile, the scientists measured the activity of a population of neurons in her motor cortex 

and tried to establish a correlation between this activity and the direction of her arm movement. 

They did this by simply converting the activity of a neuron into a vector in three-dimensional 

space according to a formula they devised, and then summing the vectors of the individual 

neuronal cells to obtain one vector that represented the whole neuron population. They found 

out that the direction of this vector quite closely matched the direction of arm movement. 

Because of the fairly simple math they used, their model was completely intelligible. In 

addition, the researchers themselves determined which information about the neural activity is 

important and should be used to calculate the movement vector. The accuracy achieved by the 

model can thus be seen as a partial confirmation that these features of neural activity are indeed 

important for directing arm movement. 

The experiment reported by Sussillo et al. [23] is a bit different. They also had non-human 

primates, this time two, implanted with electrodes that measured the activity of individual 

neurons in their motor cortex. But the monkeys did not press buttons; rather, they had to move 

a cursor on a screen from a central position to a marked position in one of the corners of the 

screen. Each monkey performed three series of experiments. First, they moved the cursor by 
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moving their hand. Then, they moved the cursor using a brain-machine interface (BMI) that 

used an encoder, based on a mathematical model, similar to the one described in the previous 

example. In the last series, they used a BMI that encoded information using a trained neural 

network. Each monkey performed each of the three experiments hundreds of times. The 

researchers found that using this ANN-based encoder significantly improved the monkeys’ 

performance vis-à-vis the older model. This suggests that the BMI with an ANN was more 

successful in translating between neuronal activation and information about the outside world. 

We can thus assume that the ANN either has approximated the mathematical function linking 

neuronal activation and external stimuli more accurately or it has “discovered” new features of 

the input data that play an important role in the translation. But the ANN used was both h-

opaque and w-opaque so despite its improved performance, it did not provide scientists with a 

better understanding of how the motor cortex works. 

It should now be clear what Chirimuuta [12] is getting at when she says that the use of complex 

ANNs creates a divergence between the goals of predictive accuracy and understanding of 

neurological processes. It should be noted again that researchers can use post hoc methods such 

as salience maps to extract at least some information from the models [9, 24, 25]. Nevertheless, 

there is a clear sense in which the opacity of DL models used affects the ability of scientists to 

gain new understanding black boxes.  

CONCLUSION 

Some philosophers worry that because of their opacity, deep learning systems cannot improve 

our understanding of the phenomena studied. In this article, I tried to establish whether there 

are good reasons for this philosophical pessimism about using deep learning models in 

scientific research. First, I clarified the main concepts used in the article. Next, I presented a 

case for optimism about using DL in science, as found in Sullivan [9]. After that, I presented a 

critique of her arguments, relying mostly on Räz and Beibart’s [19] and Boge’s [20] discussion 

of the opacity of DL models. Finally, I summarized a case for pessimism, as presented in 

Chirmuuta [12]. The article concludes that despite the predictive success of DL models, there 

are reasons to be pessimistic about the ability of DL models to provide us with new 

understanding of phenomena, studied by scientists. 

REMARKS 
1There is also a huge body of literature on the ethical issues of using opaque technologies in 

decision-making processes. These issues are especially pronounced in domains where such 

decisions affect individuals’ well-being, e.g., in medicine or the justice system. For a review 

of this literature, cf. Mittelstadt et al. [26]; Jobin, Ienca, and Vayena [27]. I will not consider 

this problem here. 
2Woodward and Ross [28] present a slightly different typology. In particular, they add 

Salmon’s statistical relevance model and pragmatic models of explanation. 
3Prasetya [29] points out that Erasmus, Brunet, and Fisher [17] left out one important model of 

explanation, i.e., the unificationist model of explanation, which consists in providing a pattern 

of inference that can be used to describe and thus explain many different phenomena. 

Prasetya [29] argues, pace the general thesis in Erasmus, Brunet, and Fisher [17], that this 

kind of explanation is sensitive to the complexity of both the explanandum and the explanans. 

In a response, Erasmus and Brunet argue that the unificationist model of explanation is 

dissimilar to the other four models in that it is “about whether a theory is ‘explanatory,’ while 

the other familiar accounts of explanation are about whether a given act/argument is an 

explanation” [30; p.42]. Since in the original paper, they admit that a more complex 
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explanation might be less desirable or less “explanatory”, Prasetya’s [29] point about the 

unificationist model does not defeat their general thesis. 
4For a more detailed discussion on the distinction between how-possibly and how-actually 

explanations, cf. Reutlinger, Hangleiter, and Hartmann [31]. 
5It is questionable how reliable such methods actually are. Räz and Beibart for example write: 

“Saliency maps can indeed be useful. However, there is no guarantee that if a saliency map 

looks fine, the model is fine. Saliency maps are heuristic tools; they do not provide general 

understanding of a model” [19]. This is supported by literature in XAI: Linardatos et al. for 

example write that “one of the issues with saliency maps is that concepts in an image, such as 

the ‘human’ concept or the ‘animal’ concept, cannot be expressed as pixels and are not in the 

input features either and therefore cannot be captured by saliency maps” [6; p.9]. 
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