
352 Technical Gazette 31, 2(2024), 352-361

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20230511000622
Original scientific paper

FBF: A High-Efficient Query Mechanism for Keyword Search in Online Social Networks

Jinzhou HUANG, Yan TONG, Bo HANG, Degang XU, Feng WANG, Jing YU*

Abstract: The widespread adoption of online social networks has facilitated content sharing among users. However, privacy controls restrict users' access to only a limited
portion of the network, typically limited to direct connections or two-hop friends. Browsing relevant profiles and home pages has become a common practice for users, but
the vast amount of data involved often hampers their ability to efficiently retrieve the desired information. This paper presents an efficient keyword search model designed
to aid users in accessing the required information effectively. Leveraging advancements in Bloom filter technology, we propose a novel summary index called Friend-based
Bloom filter (FBF), which enables large-scale full-text retrieval while reducing inter-server communication costs and query latency. We conduct a comprehensive simulation
to evaluate our ranking model, and the results demonstrate the effectiveness of the FBF scheme. Specifically, our approach achieves a reduction of 92.4% in inter-server
communication costs and 78.7% in query latency, with a high-search precision condition resulting in a remarkable 98.3% improvement.

Keywords: friend-based Bloom filter; keyword search; online social network

1 INTRODUCTION

Distinct from web-based information sharing and
search engines, the characterristic for OSN is that most of
the users' behaviors are navigating the dynamics and
day-to-day life of the circle of friends [1]. One study found
that nearly 92% of Facebook users' behavior was based on
browsing their friends' profiles, while in traditional web
search users publish their data for sharing [4]. OSN users,
on the other hand, pay much more attention to the personal
privacy issues. Facebook, for example, limits the user
privacy control by providing a user with the privacy policy
setting with four options "everyone", "friends of friends",
"friends only" or "only me". One study shows that a
fraction of 63% of Facebook users set the policy to only
allow access by friends within a distance of two hops [5].
Based on an extensive topology trace we gathered from
Facebook, on average, a user has 3.1 × 104 two-hop friends,
and more than 40% of them have over 1.0 × 104
friends or friends of friends [6]. Since there may be a large
number of relevant datasheets, a simple exploration
operation cannot efficiently obtain the information for a
user's needs. The approach to large-scale social searching
is to gather relevant information together and construct a
globle search index [7]. Due to the aforementioned user
privacy concerns, it is difficult to construct a keyword
search for OSN. For this reason, a novel distributed
keyword search scheme for online social networks is
proposed in this paper. Facebook, for instance, uses
Cassandra [8] as a backend storage system, which is a key-
value distributed mechanism, for a variety of services, such
as inbox search. Cassandra, in particular, uses a ring
infrastructure and uniform hashes with the goal of
providing high scalability. A consistent hash function uses
a basic hash function such as SHA-1 to assign an m bit
identifier to the user ID and the certain server in the
Cassandra system. To accomplish this, a user's data is
placed on the first server with a hash value that either
equals or follows the ID of the user being hashed. Since
each server handles nodes on a DHT ring, it can only affect
its near neighbors on the ring, while the others do not.
However, existing OSNs struggle to provide
keyword-based content searching, and often use the key-
value mechanism of DHT to serve as a simple search for

content based on username [8]. The random partitioning
strategy of the hash function is essentially the same, e. g.,
users' friends are randomly assigned to servers via data
centers. For a user's two-hop friends, the simple query
processing usually consists of communication across a
network of data centers, leading to an increase in the
amount of data center communication overhead, which is
especially significant in high-load data center networks [9].
To solve this issue, we propose a novel keyword search
scheme through the use of a variant of Bloom filter [10],
which is also widely used in hash technology [11]. The
mechanism we used constructs a small summary index
with the related friends. A ranking model is proposed based
on the summary index to determine which server is more
likely to return the predicted result of a query, rather than
transmitting a query message to the whole network for
relevant answers. In this scheme, unnecessary server
accesses can be checked and filtered, only query messages
can be transferred to the top server, avoiding a large
number of unnecessary messages due to exhausting search,
and to significantly reduce the cost of communication
during query processing. Our model takes into account two
factors: 1) Using concise local summaries, for each user,
the TF × IDF score can be estimated for the accuracy of
responses to a particular query. 2) Using a novel Bloom
filter to support the temporal factor of users' data and a
ranking model for the top k responses for a certain query.
We denote the novel Bloom filter as Friend-based Bloom
Filter (FBF). FBF not only supports the representation of
dynamic ensembles, but it can also incorporate temporal
information into the summary index for time-intensive
classification. In order to evaluate the performance of the
design, we performed a simulation using the test collection
from the TREC WT10G [14], as well as query logs from
commercial search engines [15]. To summarize, the results
of our experiments show that our FBF scheme can achieve
high query quality, as well as significantly reduce
communication overheads. In summary, the main
contribution of this paper is two-fold.

(1) We propose an efficient summary index by using
the Friend-based Bloom filter (FBF), and construct a novel
ranking model for top k responses of a query to avoid
unnecessary access to a large number of servers.

Jinzhou HUANG et al.: FBF: A High-Efficient Query Mechanism for Keyword Search in Online Social Networks

Tehnički vjesnik 31, 2(2024), 352-361 353

(2) To evaluate our model, we performed a simulation
to demonstrate that our design is effective.

2 LITERATURE REVIEW

An OSN search engine should implement
keyword-based content search as well as enforcing access
control [16]. Using Key-Value stores, legacy OSN systems
provide a name based lookup service. Facebook, for
example, has the "friends search" service based on user
names and the "inbox search" service that allows users to
search by using names as the queries [8]. Orkut users are
able to add additional restrictions to assist the user in
filtering results with serval coefficients [17]. By
integrating social networking with public web search to
supplement search results, the complementary search
attempts to compensate for the dissatisfying user
experiences of OSN searching [18]. Although the
complementary search provides users with more results
from public Web, the increasing large scale data
accumulated inside social networks remains unsearchable.
More recently, keyword searching in the key-value model
has attracted a great deal of research attention due to its
widespread use in web search services. Distinct from the
traditional entity-relationship model, the key-value model
stores the entity as key-value pairs. It keeps each entity in
a eqle, and it also partitions tables to many servers in order
to achieve a fast response. In OSN's search for keywords is
more difficult [19], the information recency plays
important non-user ranking roles [20]. In order to address
content extraction in OSNs, this paper proposes a novel
ranking model that takes into account two major factors:
content relevance and data recency. We design a summary
index by extending Bloom filter techniques in order to
realize the ranking model. Microblogging is another kind
of OSN, and the microblogging content search has also
attracted many communities to research [21]. It focuses on
novelty and popularity of contents, such as Twitter, which
is both a news media and a social network, without
considering access control policy [24]. So, the
microblogging search is very different from the OSN
search we are considering. On the basis of the Key-Value
model, Arash et al. [26] proposed the KSTORE scheme to
rank the relevance of tables with a certain query, which
mainly considers the structure information of tables and
summarizes this structure information by using entropy
theory for future query evaluation. Therefore, the
Microblogging content search is very different from the
OSN keyword search discussed in this article. Another
style of OSN search service is the question/answer (Q/A)
over OSNs [27]. Horowitz et al. [28] designed Aardvark,
where users can ask questions via IM, email, text or voice.
Aardvark then sends the question to anyone who might be
able to answer it on the extended social network. While
their experimental results showed that half of the questions
were answered for the first time in 10 minutes, this
efficiency may not be enough for online users. Another
problem with Aardvark is that it maintains a centralized
index for query routing. Unlike Aardvark, our design
solves the problem of searching for content in the growing
trove of data accumulated on the social networks.

3 RESEARCH METHODOLOGY

This section presents the design of the keyword search
scheme on OSNs. This section first provides a brief
overview of the design, and then focuses on the design of
the summary index by taking advantage of Friend-based
Bloom filters. Next, we introduce the ranking model to
select top-k servers and eventually rank the results.

3.1 Solution Outline

Within the system, each user of the OSN maintains a
simple summary index of which friends that can be
contacted. In particular, each user caches an index table for
summaring the content of friends. Such a summary index
contains a Friend based Bloom filter. The FBF summarizes
a set of terms extracted from the corpus along with the
temporal information extracted. The FBF is a variant of the
Dynamic Bloom filter [29]. Upon arrival of a query
process, we first perform a local search through the user's
summary index table and filter out those friends who do
not have the answers based on their FBF scores. In this
scheme, the matched documents of relevant friends are
retrieved and the FBF-based summary index forms the
heart of the design.

3.2 FBF Based Summary Index

As discussed above, the issue of privacy complicates
the construction of a centralized index for social search.
Rather, the scheme maintains a local summary index of a
small portion of the users. For a given user, it is easy to
summarize the contents of friends and to compute the index
of all friend sets in advance. The use of this summary index
means that when a query arrives, it forwards the query only
to friends who might respond to a certain query, thus
avoiding a large amount of bandwidth overhead caused by
unnessary accesses. Then, the goal of user index design
should satisfy serval aspects: 1) It should be space-efficient
due to the large size of the OSN population. A succinct
summary index can be loaded into memory when needed,
thus the lookups and scans can be implemented without
touching the disk. 2) It should have enough space to
support the dynmic appending because the content of users
can be appended over time. 3) It suggests that the summary
should contain item recency information because of a great
deal of interesting information recency information for
social behaviors [19]. It is well known that Bloom filter [6]
is a random data structure for the concise representation of
an ensemble, which is used extensively in online social
networks [32]. A standard Bloom filter (SBF) is basically
a vector, which makes it easy to test membership. We
referred to the schema as the schema Dynamic Bloom
Filter (DBF). In the first stage, a DBF has a single active
SBF. When the number of elements inserted in to SBF goes
up to n0, which causes the SBF's false positive rate to be
greater than the acceptable threshold ε, the SBF is named
full and a new SBF is appended to the DBF. When the DBF
adapts to a new item, it inserts it into the newly appended
active SBF. The false-positive rate of DBF is the
probability that at least one SBF has been falsely paired.
The false positive rate can be calculated as follows:

Jinzhou HUANG et al.: FBF: A High-Efficient Query Mechanism for Keyword Search in Online Social Networks

354 Technical Gazette 31, 2(2024), 352-361

   0

0

1 1 1
l

n n

n nDBFf f f
      (1)

where nl = n − 0n n   .

Figure 1 Data structure of TCBF component

DBFs can support the representation of dynamic

ensembles, but they cannot reveal element recency which
is a significant factor in OSN data. To address this issue,
we propose FBF, which extends DBFs by embedding
element recency information. Distinct from the DBF, we
insert the time attribute into the counting Bloom filters
[36]. We refer to this variant of the Bloom filter as the
Time-based counting Bloom filter (TCBF), which
combines two components as one cell, where each cell in
the hash space consists of a counter along with a timer.
Fig. 1 shows an example, a TCBF consists of m cells, The
counter keeps the hitting times of the cell, while the timer
keeps track of the last hitting time. Therefore, the counter
part of FBF is the same as the DBF. Thus, we use the same
parameters discussed in the DBF [16]. Therefore, the false
positive rate is 0.0098, the number of cells is 1280, the bits
of the counter is 4, and the number of hash functions is 7.
In addition, the hash functions are uniform and
independent such as SHA-1. Then, we will discuss the
timer of FBF, which is distinct from the DBF. A timer
reflects the insertion or update time of an element. At the
design level, a representation of the timestamp at a fine
granularity takes on the order of tens of bits. Distinct from
many traditional web-based applications, OSN users are
more interested in the recent updates of their friends
[19]. We use five bits in this design to represent the
approximately one-month time window. Real-world
systems can use different numbers of bits to represent
different time window sizes at different granularities. The
FBF provides a set of user operations consisting of
insertion, deletion, and membership tests, as well as the
operation of the system, such as mergence. The use of FBF
allows non-stop stemmed terms from a user's content to be
represented in a space-efficient manner. All users maintain
the FBF of each of their two-hop friends, at the first time
step, each user transmits only his/her FBF to his/her
neighbors, and then notify changes between the updated
filter and the old filter.

3.3 FBF Ranking Model

The efficient summary of the FBF allows our keyword
search scheme to handle a query in three steps. In the first
step, the summary index is detected to find a set of friends
that may have the keywords. In the second step, the score
of friends with the most relevant responses is calculated. In
the third step, severs hosting friends are ranked with the

most relevant responses. In order to reduce the inter-server
communication cost, our scheme can gain high query
efficiency without unnecessary query throughout the entire
network. Thus, the key point of our scheme is how to
calculate the score of friends with relevant answers from a
query. Therefore, we design a ranking model with two
factors, content relevance and temporal recency.

Content Relevance, our design is based on adapting a
traditional content relevent algorithm via the vector space
model [37] with a variant of the TF × IDF schemes [38].
Typically, both the query and document are modeled as a
vector with terms. Thus, the relevance between a query and
a document can be calculated as the similarity of two
vectors by using the cosine of the angle.The term frequency
inverse document frequency (TF × IDF) scheme is one of
the best known methods to assign term weights to
a document [38]. Specifically, the TF factor is the term
frequency which appeared in a document, and the IDF
factor is the term frequency of the document that appeared
in the corpus. To approximate the TF × IDF scheme by
using the FBF in our design, we introduce a measure called
inverse friend frequency (IFF) to replace the IDF.
Therefore, to compare the TF × IDF schemes in the IR
techniques, the IDF factor is the term frequency of the
document that appeared in the corpus, and the IFF is the
term frequency of the document that appeared in the
FBF-based summary index. Then, IFF is calculated as
follows:

,
log 1

N f

Nt f
IFF

 
  

 
 (2)

where |Nf| refers to the number of friends of a user with
FBF, |Nt,f| refers to the number of term t that appeared in
the FBF of friends. Similarly with IDF, a keyword
occurring in all the friends is unnecessary for
differentiating the keywords. Unlike the IDF, the IFF can
be calculated by using a user's index locally without the
need to calculate across out the entire network. With the
help of the FBF, it is straightforward to calculate the
parameters |Nf| and |Nt,f| conveniently.

Content Recency, as recent research by Chen and
Kwak [19] shows that OSN users are more interested in
recent updates from their friends, we consider the recency
of paired content in the ranking model. So that membership
queries can be performed against the FBF for a clause. If a
query is matched, we can also get its timer, which can be
computed as follows:

log 1 tT
TT

TTL
   
 

 (3)

where TT denotes content recency in a query, Tt denotes
the timer of term t, TTL denotes the max number of the
timer. To give an example, we set the timer using 5 bits, so
that the TTL of the FBF is 31, and the larger the timer, the
greater the value of the timer. Then, using IFF, we arrive
at a ranking of the relevance of content between friends of
a user that can be calculated as follows:

Jinzhou HUANG et al.: FBF: A High-Efficient Query Mechanism for Keyword Search in Online Social Networks

Tehnički vjesnik 31, 2(2024), 352-361 355

 , log 1 log 1t

t q t FBF t

T F
R q f

TTL F  

          
    

 (4)

Ranking servers, due to the Key-Value-based data

management, friends' data can be stored on servers on both
coasts of the United States. The data of friends may be
distributed in many servers across the world. In another
word, a server may contain several candidate friends, so it
should summarize all the candidate friends, then determine
which server to contact with. Thus, ranked servers may be
presented as follows:

   ,

f S

R S R q f


  (5)

3.4 Details of Friend Based Bloom Filter

We primarily illustrate the main operations for Friend-
based Bloom filters, and illustrate how to construct the
summary index for each user by leveraging FBF.

3.4.1 Operations of FBF

With an initial value of s, and an initial TCBF that is
active. In the FBF insert operation, items are inserted in an
active TCBF only and may append a new TCBF as an
active TCBF when all of the ones that were previously
active are full. In order to implement a FBF, we should first
initialize serveral parameters: the upper bound of the FBF
false probability, the largest number of TCBFs, the size of
FBF, the capacity of FBF, and the number of hash
functions, the bits of a counter and a timer. We note that
the approaches used to initialise these parameters follow
our earlier design of DBF [1].

Algorithm 1: Pseudocode for item insertion

Data: x is the element to be inseted into the FBF
Function: insert(x)
TTL = initial.timer()
ActiveTCBF = GetActiveTCBF()
if ActiveTCBF is null then
 ActiveTCBF = CreateTCBF(m,k)
 Add ActiveTCBF to the FBF
 s = s+1
else
 for i=1 to k do
 ActiveTCBF.counter[hashi(x)] ++
 ActiveTCBF.timer[hashi(x)] =TTL
GetActiveTCBF()
 for j=1 to s do
 if TCBFj.nr < n0 then
 Return TCBFj

/* Loop all hash functions k

The process details of the item insertion operation are

shown in Algorithm 1. The FBF should start with the TTL,
which records the base time at which the FBF is created. It
then initializes the timer window to record the time of each
object. If there is an item x to be inserted into the FBF, then
the FBF must first discover an active TCBF. If no TCBFs
are active, it should create a new one as an active TCBF
and increments s by 1. If an active TCBF is found, it inserts

x into the active TCBF, and increments the value of nr by
one for the active TCBF, let nr be the number of elements
in TCBF active. Then the counter for increments of
hashi(x) by one, and the timer for the hashi(x) is set to the
value TTL. Algorithm 1 shows the process details of the
element insertion operation. The FBF must begin with the
TTL, which records the basic time at which the FBF is
generated. The timer window is then initialized to record
each object's time. Thus, if there is an element x to be
inserted into FBF, FBF first needs to discover an active
TCBF. If there are no active TCBFs, it must create a new
one as the active TCBF and increments by 1. When an
active TCBF is found, it inserts x into the active TCBF, and
increments the value of nr by one in the case of the active
TCBF, let nr be the number of items in the active TCBF.
The counter for increments of hashi(x) by one is then
incremented, and the timer for hashi(x) is set to the TTL
value.

Algorithm 2: Pseudocode for item query

Data: x is the object key for which membership is queried
Function: query(x)
timer(x) = 0
for i = s to 1 do
 counter = 0
 timer = TTL
 for j = 1 to k do
 if TCBFi.counter[hashj(x)] = = 0 then
 break
 else
 counter ++
 if (timer>TCBFi.timer[hashj(x)])
 timer = TCBFi.timer[hashj(x)]
 if counter = k then
 timer(x) = timer
 return true
return false
/* Loop all hash functions k

It is convenient to represent a set X as FBF by
repeatedly invoking the insertion operation. After the
realization of the FBF, we can query with respect to the
FBF instead of X. This process is sketched in Algorithm 2.
If all the counter[hashi(x)] of an item x are set to 1 ≤ i ≤ k
in a TCBF, then the item x is a member of the X. Not only
can we justify item x if in FBF, but can also obtain the
temporal value of x by query operation if the x element is
in the FBF. In all the counter[hashi(x)], some may be
updated by other items, so after examining all the
counter[hashi(x)], we record the lowest as the timer of item
x, and the time value of the item x is
time(x) = timer(x) − (current_time - TTL)/timer_window.
Otherwise, FBF checks another TCBF, and so on. That is,
x is a member of X if it does not occur in all TCBFs. The
FBF supports the delete operation as well. When an x item
is removed from the set X, the corresponding FBF is
required to run Algorithm 3 started with x as an input. First,
it must check to see if the x item is in the FBF, if there is
only one TCBF that needs to be checked containing the
element x, the value of counter[hashi(x)] for 1 ≤ i ≤ k is
decremented by 1. When multiple TCBFs contain the x,
item, it is hard to distinguish which is the correct one to
remove. The delete operation is denied.

Jinzhou HUANG et al.: FBF: A High-Efficient Query Mechanism for Keyword Search in Online Social Networks

356 Technical Gazette 31, 2(2024), 352-361

Algorithm 3: Pseudocode for item deletion

Data: x is the object key to be deleted
Function: delete(x)
del = 0
counter = 0
for i = s to 1 do
 if TCBF[i].query(x) then
 del = i
 counter++
 if counter > 1 then /* there are same items with different time
 break
If counter == 1 then
 for j = 1 to k do
 TCBF[del].counter[hashj(x)] --
 if (TCBF[del].counter[hashj(x)])
 TCBF[del].timer[hashj(x)] = 0
 TCBF[del].nr--
 return true
else
 return false

Furthermore, any two TCBFs that are active must be

combined together if the sum nr is no more than the
capacity of a TCBF, which is Described in Algorithm 4.
The merge operation implements in two steps: 1)
Implement the addition operation between the bit vectors
of the counter. 2) Set the timer to larger value.

The average time complexity of an FBF is: The
addition of an element requires O(k) operations, querying
an item needs O(k × s) operations, member deletion needs
O(k × s) operations, where k is the number of hash
functions. The FBF is used as a compact summary for three
important benefits as follows: 1)The FBF is a relatively
efficient summarization mechanism dealing with the
dynamic ensemble with no upper bound. 2)The FBF can
combine together independently, so that users can trade off
accuracy for storage by combining a portion of its friends'
FBFs. The ability to trade accuracy independently for
memory cost is especially useful for users operating on
memory-constrained devices. 3)The FBF builds a new
TCBF as an active TCBF only when all the active TCBF
has become full, thus, we can query through the TCBFs of
FBF inversely to find out which element is newly inserted
compare to the old TCBFs with the timer.

3.4.2 Summary Index Dissemination Using FBF

As mentioned above, each user keeps an index table of
two hop friends. This section presents how to maintain a
summary index.

Privacy Issue, such as Facebook can limit access
control by choosing between the four options "everyone",
"friends of friends", "friends only" or "only me". Most

respondents in a survey have only allowed access for
friends (63%). However, there are still a large number
(34%) for a user to surf in the online social network [5].
Such privacy-relevant systems [40] allow a user to control
who has access to her data. Thus, instead of pulling the
FBF from the summary of text documents from close
friends, in our design, a user's FBF is pushed to the allowed
friends.

Redundancy Issue, assuming that a user's access
control is based on two hop friends, she first sends her FBF
to her one hop friends, then its one-hop friends forward this
FBF to all their one-hop friends except the FBF sender. As
can be seen in Fig. 2, A1 has two friends at a hop of A2 and
A3; A2 and A3 are one-hop friends of each other. After A1
has passed the message to A2 and A3, if none of the A2s or
A3s know that the other is receiving the same message from
A1, they will pass the message back and forth between
them. A transmission pair between A2 and A3 is not needed.
Similarly, B1 has two friends at a hop of B2 and B3, and both
B2 and B3 have a common single-hop friend B4, such that
B4 is B1's two-hop friend. B4 can receive the same message
twice, one of which is from B2, while the other is from B3.
The message transmitted over the A2A3 and B3B4 logical
link is useless in these cases. Redundant messages are pure
overheads, increasing network traffic. So it must avoid the
transmission of redundant messages.

Figure 2 Unnecessary transmit on logic link A2A3 and B3B4

Summary Index Dissemination, OSNs provide a

globally unique ID for each user. When a message is sent
from a user, it carries the user ID and privacy control
initialized with TTL hops, meaning that you allow TTL-hop
friends access to your data. During a hop traversal, the
message travels with its TTL value decremented by 1. That
is, the message is stopped to broadcast because it is
redundant or use up the TTL.

Figure 3 Message Dissemination with the trail tree

In order to avoid the redundant message, we use the

path-based broadcast algorithm. We mark each link to only
one hop's friends as a path. When one of the friends gets
the message and it is not the first time they've received the
same message, they send back a small invalidating trail link

Jinzhou HUANG et al.: FBF: A High-Efficient Query Mechanism for Keyword Search in Online Social Networks

Tehnički vjesnik 31, 2(2024), 352-361 357

message. Thus, it will generate a spanning tree of paths
covering all allowed friends rooted at the source user. Any
link transmitting redundant message is excluded from the
tree. The main stages of message dissemination are: 1) A
small probe message traverses friends to build a spanning
tree of paths. 2) The FBF message broadcasts through
friends following the path tree. An example pathway tree
is shown in Fig. 3. The source-user is User A. Solid lines
are trail links, while the dashes are the redundant
transmission links excluded from the trail tree. Since we
only transmit the set of users' FBFs at the first time, if users
update their FBFs, we will only send the changes between
the updated filter and the old one [42].

4 RESULTS AND DISCUSSION

We introduce the collected Facebook trace for online
social network simulation. Then, we describe the data sets
used for the evaluation of the design. Finally, we describe
the setup of the simulator.

4.1 Facebook Trace Collection

In particular, we adopt the BFS sampling algorithm,
which discovers all users within a certain distance of the
starting point. While it is likely that BFS will densely cover
only a certain partial region of the graph, it can give a
complete view of users' neighbors. We crawl a dataset
containing 2 M users of Facebook. According to the trace
analysis results, nearly 50% of the users have more than
100 friends. When extended to two hops, a Facebook user's
average number of friends in two hops is 3.1 × 104, where
more than 40% of users have more than 1.0 × 104 friends
in two hops.

4.2 Simulator Setups

As a baseline, we develop a custom java simulator to
benchmark our extraction against an algorithm with
exhaustive recovery. To better represent the OSN system
in the real world, we consider the tracking of real data and
the characteristics of the underlying data center. To model
the underlying data center, we use the fat tree network,
which is a commonly used architecture in large-scale data
centers [43]. As an evaluation, we tune 30000 servers using
the fat tree architecture. The number of servers is initially
set to 1000 and is modified to assess performance with
increasing network size. Next, we randomly partition the
collection of Facebook traces across these servers using
Cassandra's system. Next, we randomly assigned 100
documents from WT10G [14] to each user and assigned
each document a factor of time. Each user then maintains a
FBF of friends within two hops. Upon the arrival of a
query, we first perform a local search of the user's FBF and
filter the accesses to unnessary based on the ranking
algorithm outlined in section 3. To reduce the
communication cost, the scheme retrieves matched
documents by communicating with servers that host query
anwsers.

Metrics, for the measurement of a certain query, we
should consider both the system communication cost and
the search accuracy of a query in a search process.
Therefore, the evaluation needs to consider two types of

metrics: one is the communication cost and the other is the
search accuracy of results. To measure the communication
cost, we use two metrics, traffic and latency. Traffic of
online social network impacts heavily on the underlying
network. By traffic, we mean the network resource used for
text-document retrieval on servers, which is primarily a
function of the consumed bandwidth of the network [15].
Specifically, during the search process, a query message is
transmitted from server to server, in reality the message can
traverse underlying the data centers. The traffic TC can be
calculated as follows:

1

i

i

N

i

L
TC M

B
  (6)

where |M| represents the message size of queries and
answers, Li represents the length of links and Bi represents
the bandwidth for the ith hop in the overlay network. In this
setting, traffic is the bandwidth cost of collecting all
candidate results for a given query. Note that the latency of
a lookup operation is the sum of the latencies of all hops in
the date center network from servers to servers. Since local
operations are routinely extremely fast, we ignore time
spent on local operations. In order to measure search
precision, we use two accepted metrics, recall and
precision, which are broadly defined in keyword search.
We assess the algorithm's performance by comparing its
recall and precision achieved.

4.3 Experimental Results and Discussion

We consider the results of two aspects described in
subsection 4.2, and use the FBF scheme to represent our
method described in this work, while the Cassandra
scheme represents the exhaustive search mentioned in
section 1 that is used in the real-world social networks as a
baseline for the expriments.

4.3.1 Results of Communication Cost

For the results, it considers first the communication
cost as defined in subsection 4.2. In this subsection, the
traffic and latency of a query can be seen from the
experimental results.

Fig. 4a and Fig. 4b show a graphical representation of
the query traffic, which shows the average traffic of queries
and the CDF distribution of traffic, respectively. It can be
seen that 41% of the queries using the Cassandra scheme
as a baseline have a traffic count of less than 2.7 × 107, and
more than 95.7% of the queries have less than 2.3 × 107
traffic by using the FBF scheme. In what follows, when we
report results from our scheme named FBF for brief. Using
Cassandra search, we find that the average query log traffic
is 4.97 × 107, while the average amount of traffic using the
FBF is only 3.8 × 106 reducing the traffic significantly by
92.4%. Therefore, we can see from the results that the
communication traffic is highly reduced by using the FBF
scheme compared to the Cassandra scheme.

Jinzhou HUANG et al.: FBF: A High-Efficient Query Mechanism for Keyword Search in Online Social Networks

358 Technical Gazette 31, 2(2024), 352-361

(a) Average traffic of queries

(b) The CDF distribution of traffic.

Figure 4 Results of communication traffic

(a) Average latency of queries.

(b) The CDF distribution of latency

Figure 5 Results of communication latency

Figures show the query latency. We can see the
average latency of queries from Fig. 5a and the CDF
distribution of latency from Fig. 5b, where less than 60%
of requests in 45.6 milliseconds by using Cassandra
scheme. Using the FBF, more than 95.7% of the queries in
less than 25.3 milliseconds. Thus, the average query
latency using the Cassandra scheme is 64.39 milliseconds,
while the mean latency using FBF is only
13.69 milliseconds resulting in a 78.7% significant latency
reduction. Therefore, we can see from the results that the

average latency of queries is highly reduced by using the
FBF scheme compared to the Cassandra scheme. Therefore,
both the communication traffic and the latency of the
queries are reduced by using the FBF scheme compared to
the Cassandra scheme. Then, we gain the conclusion that
the communication cost of the system in a certain search
process is much better by using the FBF scheme compared
to the Cassandra scheme.

4.3.2 Results of Search Accuracy

It then considers the search accuracy of the results
defined in subsection 4.2. In this subsection, the accuracy
of the query can be seen from the experimental results.
Fig. 6a plots the recall on the provided query set as the top
10 relevant documents returned using the FBF schema
compare to the Cassandra. As can be seen from the figure,
its performance is slightly worse than that of the
Cassandra-based method, which is almost exhaustive
search. We are surprised at the closeness of recall rate of
requests to matching the same number of results by using
the FBF scheme as compared to Cassandra, which means
we can use the FBF scheme to replace the Cassandra
scheme for a little reduce of recall rate. Fig. 6b shows the
recall rate diagram on a set of queries provided in the
returned top k related results. As you can see from the
diagram, we set the k to 1, 5, and 10, respectively. It can be
seen from the figure, that the larger k value is, the smaller
recall rate is. It can be explained intuitively, for the larger
number of results returned by a query, the more servers
need be communicated in the search process. So, we
usually set the value k to 5 in the experiments.

(a) Average recall change with servers

(b) Average recall change with servers at top k

Figure 6 Results of search accuracy

To measure a query performance, the accuracy of
results is the most important metric. The accuracy of the
scheme is shown in Fig. 7a. It can be seen from this figure
that the average query precision is 98.3% by using the FBF

Jinzhou HUANG et al.: FBF: A High-Efficient Query Mechanism for Keyword Search in Online Social Networks

Tehnički vjesnik 31, 2(2024), 352-361 359

scheme, while the size of the network increases from 1000
to 10000. Because of the exhaustive search for the
Cassandra method, it can gain the 100% precision of the
results of a query, but it need much more time for achieving
this high precision. Therefore, it is a very high precision for
a search system by using the FBF scheme. Otherwise,
thanks to the false positive of the bloom filter mechanism
mentioned in subsection 3.2, the precision of the search
system by using the FBF scheme is unable to achieve 100%
precision. The number of friends contacted when different
numbers of top k results are returned is shown in Fig. 7b.
From this figure, we can see that the FBF scheme achieves
a mean number of 8.54 friends to contact with, whereas the
Cassandra scheme needs contact with 275.7 numbers of
friends. Therefore, there is a big gap between the FBF
scheme and the Cassandra scheme. When we need to gain
the same number of results returned for a query, the small
number of friends contacted means the smaller number of
servers the query system need to access. Therefore, we gain
the conclusion that the FBF scheme has an incredibly low
query cost compared to the Cassandra scheme in a certain
query with the same number of top k results.

(a) Average precision change with servers

(b) Average number of friends contacted to achieve top k relevant answers

(c) The return rate change with servers
Figure 7 Results of search accuracy

The return rate of a query for the FBF scheme is shown

in Fig. 7c, which means the rate between results returned
and the number of friends contacted by a query. From this
figure, it can be seen that the FBF scheme achieves an

average return rate of 0.459, while the Cassandra scheme
achieves 0.082. Therefore, when we need to gain the same
number of top k results, we need to contact much smaller
number of friends by using the FBF scheme compared to
the Cassandra scheme. In another word, the FBF scheme
has a higher search efficiency than the Cassandra scheme.

All in all, the FBF scheme has a much higher search
efficiency and lower query communication cost with a little
reduction of recall rate and sacrifice of query precision
compared to Cassandra scheme. Therefore, the FBF
scheme is a better choice for content based search systems
in online social networks when it needs much lower
response time with slightly lower search accuracy
compared to Cassandra scheme.

5 CONCLUSION

As the online social network is a potential web-based
service, more and more people are using OSNs to gain
news and communication delivery along social ties
between users. However, due to privacy constraints, the
user is only able to access certain people in the online
social network. Furthermore, because of the key-value
based data management, it is inefficient to query all the
relevant servers to gain the results. We have proposed a
friend-based Bloom filter method with an efficient ranking
model for keyword search. To evaluate our design, we
perform extensive simulations using crawled Facebook
traces. It is shown to achieve high efficiency process
queries avoiding unnecessary server accesses, and achieves
significant comunication cost reductions. This paper only
discusses the application of text-based content search in
social network systems. In the future, we will expand text-
based content search to other kind of content such as image
content. Next, we will focus on optimizing rankings
models in the FBF-based summary index.

Acknowledgements

This work was partly supported by the Hubei Natural
Science Foundation Innovation and Development Joint
Fund Project (Nos. 2022CFD101 and 2022CFD103); in
part by Xiangyang High-tech Key Science and Technology
Plan Project (No. 2022ABH006848); in part by Hubei
Superior and Distinctive Discipline Group of "New Energy
Vehicle and Smart Transportation"; in part by the National
Nature Science Foundation of China (Nos. 62362042,
62262033, and 61962029); in part by the Jiangxi Provincial
Natural Science Foundation of China (Nos.
20202ACBL202005, 20224BAB202012 and
20232BAB202007); in part by the Jiangxi Provincial
Social Science Foundation of China (No. 23GL52D); and
in part by the Scientific and Technological Research
Project of Jiangxi Provincial Education Department of
China (No. GJJ2201914).

6 REFERENCES

[1] Golder, S. A., Wilkinson, D. M., & Huberman, B. A. (2007).

Rhythms of social interaction: Messaging within a massive
online network. Communities and Technologies 2007:
Proceedings of the Third Communities and Technologies
Conference, Michigan State University 2007, 41-66.
https://doi.org/10.1007/978-1-84628-905-7_3

Jinzhou HUANG et al.: FBF: A High-Efficient Query Mechanism for Keyword Search in Online Social Networks

360 Technical Gazette 31, 2(2024), 352-361

[2] Chen, Z., Jiang, R., & Liu, W. (2022). Nearest close friend
query in road-social networks. Computer Science and
Information Systems, 19(3), 1283-1304.
https://doi.org/10.2298/CSIS210930031C

[3] Kim, J., Yu, Y. J., & Kyung, Y. (2022). Activity-based
Friend Recommendation System (ARS) Development in
Location-based Social Network. Journal of System and
Management Sciences, 12(1), 120-128.
https://doi.org/10.14704/WEB/V19I1/WEB19295

[4] Benevenuto, F., Rodrigues, T., Cha, M., & Almeida, V.
(2009). Characterizing user behavior in online social
networks. Proceedings of the 9th ACM SIGCOMM
Conference on Internet Measurement, 49-62.
https://doi.org/10.1145/1644893.1644900

[5] Tuunainen, V. K., Pitkänen, O., & Hovi, M. (2009). Users'
awareness of privacy on online social networking sites-case
facebook. Bled 2009 proceedings, 42.

[6] Huang, J. & Jin, H. (2013). Friends Based Keyword Search
over Online Social Networks. Grid and Pervasive
Computing: 8th International Conference, GPC 2013 and
Colocated Workshops, Seoul, Korea, May 9-11, 2013.
Proceedings 8, 413-422.
https://doi.org/10.1007/978-3-642-38027-3_44

[7] Cui, Z., Wu, Z., Zhou, C., Gao, G., Yu, J., Zhao, Z., & Wu,
B. (2016). An efficient subscription index for publication
matching in the cloud. Knowledge-Based Systems, 110, 110-
120. https://doi.org/10.1016/j.knosys.2016.07.017

[8] Lakshman, A. & Malik, P. (2010). Cassandra: a
decentralized structured storage system. ACM SIGOPS
operating systems review, 44(2), 35-40.
https://doi.org/10.1145/1773912.1773922

[9] Uncu, N. (2022). Load balancing in polling systems under
different policies via simulation optimization. International
Journal of Simulation Modelling (IJSIMM), 21(2).
https://doi.org/10.2507/IJSIMM21-2-602

[10] Bloom, B. H. (1970). Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM, 13(7),
422-426. https://doi.org/10.1145/362686.362692

[11] Baek Tejs Houen, J., Pagh, R., & Walzer, S. (2023). Simple
Set Sketching. Symposium on Simplicity in Algorithms
(SOSA), Society for Industrial and Applied Mathematics,
228-241. https://doi.org/10.1145/1772690.1772735

[12] Ippolito, D., Tramèr, F., Nasr, M., Zhang, C., Jagielski, M.,
Lee, K., & Carlini, N. (2022). Preventing Verbatim
Memorization in Language Models Gives a False Sense of
Privacy. arXiv preprint arXiv:2210.17546.
https://doi.org/10.18653/v1/2023.inlg-main.3

[13] Zhang, S., Yang, L. T., Zhang, Y., Lu, Z., & Cui, Z. (2022).
Tensor-Based Forward-Backward Algorithms in
Physics-Informed Coupled Hidden Markov Model. IEEE
Transactions on Artificial Intelligence.
https://doi.org/10.1109/TAI.2022.3227222

[14] Hawking, D. (2000, November). Overview of the TREC-9
Web Track. Trec. https://doi.org/10.1145/344250.344254

[15] Chen, H., Jin, H., Wang, J., Chen, L., Liu, Y., & Ni, L. M.
(2008, April). Efficient multi-keyword search over p2p web.
Proceedings of the 17th international conference on World
Wide Web, 989-998. https://doi.org/10.1145/1367497.1367631

[16] Cheng, Y., Park, J., & Sandhu, R. (2015). An access control
model for online social networks using user-to-user
relationships. IEEE transactions on dependable and secure
computing, 13(4), 424-436.
https://doi.org/10.1109/TDSC.2015.2406705

[17] Vieira, M. V., Fonseca, B. M., Damazio, R., Golgher, P. B.,
Reis, D. D. C., & Ribeiro-Neto, B. (2007). Efficient search
ranking in social networks. Proceedings of the sixteenth
ACM conference on Conference on information and
knowledge management, 563-572.
https://doi.org/10.1145/1321440.1321520

[18] Mislove, A., Gummadi, K. P., & Druschel, P. (2006).
Exploiting social networks for internet search. 5th workshop
on hot topics in networks (hotnets06). citeseer, 79.

[19] Chen, R., Lua, E. K., & Cai, Z. (2011, April). Bring order to
online social networks. 2011 Proceedings IEEE infocom,
541-545. https://doi.org/10.1109/INFCOM.2011.5935222

[20] Chen, Y., Yang, L. T., & Cui, Z. (2023). Tensor-Based
Lyapunov Deep Neural Networks Offloading Control
Strategy with Cloud-Fog-Edge Orchestration. IEEE
Transactions on Industrial Informatics.
https://doi.org/10.1109/TII.2023.3266401

[21] Busch, M., Gade, K., Larson, B., Lok, P., Luckenbill, S., &
Lin, J. (2012, April). Earlybird: Real-time search at twitter.
2012 IEEE 28th international conference on data
engineering, 1360-1369. https://doi.org/10.1109/ICDE.2012.149

[22] Hu, H., Lei, W., Gao, X., & Zhang, Y. (2018). Job-shop
scheduling problem based on improved cuckoo search
algorithm. Int. J. Simul. Model, 17, 337-346.
https://doi.org/10.2507/USIMM17(2)CO8

[23] Baydogan, C. & Alatas, B. (2021). Sentiment Analysis in
Social Networks Using Social Spider Optimization
Algorithm. Tehnički vjesnik, 28(6), 1943-1951.
https://doi.org/10.17559/TV-20200614172445

[24] Chen, C., Li, F., Ooi, B. C., & Wu, S. (2011). Ti: an efficient
indexing mechanism for real-time search on tweets.
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, 649-660.
https://doi.org/10.1145/1989323.1989391

[25] Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is
Twitter, a social network or a news media?. Proceedings of
the 19th international conference on World wide web, 591-
600. https://doi.org/10.1145/1772690.1772751

[26] Termehchy, A. & Winslett, M. (2010). Keyword search over
key-value stores. Proceedings of the 19th international
conference on World wide web, 1193-1194.
https://doi.org/10.1145/1772690.1772870

[27] Keith, M., Demirkan, H., & Goul, M. (2010). The influence
of collaborative technology knowledge on advice network
structures. Decision Support Systems, 50(1), 140-151.
https://doi.org/10.1016/j.dss.2010.07.010

[28] Horowitz, D. & Kamvar, S. D. (2010, April). The anatomy
of a large-scale social search engine. Proceedings of the 19th
international conference on World wide web, 431-440.
https://doi.org/10.1145/1772690.1772735

[29] Guo, D., Wu, J., Chen, H., Yuan, Y., & Luo, X. (2009). The
dynamic bloom filters. IEEE Transactions on Knowledge
and Data Engineering, 22(1), 120-133.
https://doi.org/10.1109/TKDE.2009.57

[30] Kwak, H., Lee, C., Park, H., & Moon, S. (2010, April). What
is Twitter, a social network or a news media?. Proceedings
of the 19th international conference on World wide web,
591-600. https://doi.org/10.1145/1772690.1772751

[31] Zhang, R. H., Osma, M. N., Yaakup, H. S. B., & de Costa,
F. (2023). A social media based study on the motivation of
fans' production behavior. Journal of Logistics, Informatics
and Service Science, 10(1), 269-279.
https://doi.org/10.33168/JLISS.2023.0115

[32] Nguyen, H. H., Imine, A., & Rusinowitch, M. (2016). Private
Link Exchange over Social Graphs. arXiv preprint
arXiv:1609.01616.

[33] Niu, B., Zhang, T., Zhu, X., Li, H., & Lu, Z. (2014). Priority-
aware private matching schemes for proximity-based mobile
social networks. arXiv preprint arXiv:1401.8064.

[34] Beierle, F. (2018). Do you like what I like? Similarity
estimation in proximity-based mobile social networks. 2018
17th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/12th IEEE
International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE), 1040-1047.
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00146

Jinzhou HUANG et al.: FBF: A High-Efficient Query Mechanism for Keyword Search in Online Social Networks

Tehnički vjesnik 31, 2(2024), 352-361 361

[35] Im, N. & Bang, H. (2022). An empirical study on the
antecedents of knowledge hiding behavior. Journal of
Logistics, Informatics and Service Science, 9(4), 209-222.

[36] Fan, L., Cao, P., Almeida, J., & Broder, A. Z. (2000).
Summary cache: a scalable wide-area web cache sharing
protocol. IEEE/ACM transactions on networking, 8(3), 281-
293. https://doi.org/10.1109/90.851975

[37] Salton, G., Wong, A., & Yang, C. S. (1975). A vector space
model for automatic indexing. Communications of the ACM,
18(11), 613-620. https://doi.org/10.1145/361219.361220

[38] Salton, G., Fox, E. A., & Wu, H. (1983). Extended boolean
information retrieval. Communications of the ACM, 26(11),
1022-1036. https://doi.org/10.1145/182.358466

[39] Kalogiannidis, S., Chatzitheodoridis, F., Savvidou, S.,
Kagioglou, F., & Macedonia, W. (2022). The Impact of
Online Communications on Different Users' Social,
Emotional, and Moral Competence as a Potential Business
Communication Tool. Journal of System and Management
Sciences, 12(5), 359-373.
https://doi.org/10.33168/JSMS.2022.0521

[40] Jeong, S. J. & Kim, B. M. (2021). Network analysis of social
awareness of media education for primary school students
studied through big data. Computer Science and Information
Systems, 18(2), 575-595.
https://doi.org/10.2298/CSIS200316011J

[41] Cui, Z., Lu, Z., Yang, L. T., Yu, J., Chi, L., Xiao, Y., &
Zhang, S. (2023). Privacy and Accuracy for Cloud-Fog-Edge
Collaborative Driver-Vehicle-Road Relation Graphs. IEEE
Transactions on Intelligent Transportation Systems, 24(8),
8749-8761. https://doi.org/10.1109/TITS.2023.3254370

[42] Eppstein, D., Goodrich, M. T., Uyeda, F., & Varghese, G.
(2011). What's the difference? Efficient set reconciliation
without prior context. ACM SIGCOMM Computer
Communication Review, 41(4), 218-229.
https://doi.org/10.1145/2018436.2018462

[43] Niranjan Mysore, R., Pamboris, A., Farrington, N., Huang,
N., Miri, P., Radhakrishnan, S., & Vahdat, A. (2009,
August). Portland: a scalable fault-tolerant layer 2 data
center network fabric. Proceedings of the ACM SIGCOMM
2009 conference on Data communication, 39-50.
https://doi.org/10.1145/1592568.1592575

Contact information:

Jinzhou HUANG, Assoc. Prof., PhD
School of Computer Engineering, Hubei University of Arts and Science,
No. 296, Longzhong Road, Xiangyang, 441053, China
E-mail: huangjinzhou@hbuas.edu.cn

Yan TONG, Assoc. Prof., PhD
College of Science, Huazhong Agricultural University,
No. 1 Shizishan Street, Hongshan Distr, Wuhan, 430070, China
E-mail: tongyan.cherish@hotmail.com

Bo HANG, Prof., PhD
School of Computer Engineering, Hubei University of Arts and Science,
No. 296, Longzhong Road, Xiangyang, 441053, China
E-mail: bohang@hbuas.edu.cn

Degang XU, Assoc. Prof., PhD
School of Computer Engineering, Hubei University of Arts and Science,
No. 296, Longzhong Road, Xiangyang, 441053, China
E-mail: pcxinx@163.com

Feng WANG, Assoc. Prof., PhD
School of Computer Engineering, Hubei University of Arts and Science,
No. 296, Longzhong Road, Xiangyang, 441053, China
E-mail: wangfeng@hbuas.edu.cn

Jing YU, PhD
(Corresponding author)
School of Computer and Big Data Science, Jiujiang University,
No. 551, Qianjin East Road, Jiujiang, Jiangxi 332005, China
E-mail: yujingellemma@gmail.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

