
510 Technical Gazette 31, 2(2024), 510-517

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20230618000745
Original scientific paper

Enhanced Secure Storage of Big Data at Rest with Improved ECC and Paillier
Homomorphic Encryption Algorithms

Rong HU*, Ping HUANG

Abstract: With the rapid growth of Big Data, securing its storage has become crucial. This study proposes to enhance the secure storage of big data at rest in Hadoop by
improving encryption algorithms. The Elliptic Curve Cryptography Algorithm (ECC) is upgraded by a parallel two-threaded approach for unstructured data. For structured
data, enhance Paillier Homomorphic Encryption to support operations on ciphertexts. Experiments on datasets up to 4 G show that the modified ECC method reduces
encryption time to 60 - 80 seconds, compared to 100 - 160 seconds for standard ECC, AES, and DES. It can also use shorter key lengths than RSA with comparable levels
of security. Enhanced Paillier encryption uses large prime numbers to ensure the validity of the ciphertext. By combining these improved encryption techniques within a
secure Hadoop framework, this research demonstrates an effective way to address vulnerabilities in Big Data storage.

Keywords: hadoop; Paillier Homomorphic Encryption; static Big Data; secure storage;

1 INTRODUCTION

The advent of big data has brought forth significant
challenges in terms of storing and managing extremely
large volumes of data, characterized by their variety and
timeliness [1-2]. The current focus of research in this field
revolves around valuable knowledge extraction and value
mining from these massive datasets. Data storage emerges
as a critical issue in big data analysis, as effective storage
is a prerequisite for subsequent analysis and mining
activities. The challenges associated with big data storage
stem from its inherent nature as an untrustworthy third
party, vulnerable to problems such as server failures that
can potentially compromise data integrity [3-4]. Moreover,
unauthorized access to the platform leads to frequent
incidents of data theft and tampering. To tackle these
concerns, Hadoop, an open-source big data framework, has
emerged as the most popular platform employed by
internet businesses. Built on a distributed computing
framework and a distributed file system (HDFS), Hadoop
provides a transparent infrastructure that addresses these
challenges [5-6]. Its applications span various domains,
including healthcare, banking, and other data-intensive
services. Selective data encryption has gained prominence
as a crucial technique to protect sensitive data and reduce
processing costs. It enables the utilization of multiple
encryption algorithms, accommodating various forms of
data encryption. However, applying encryption algorithms
such as AES, ECC, and RSA directly in Hadoop introduces
a significant amount of overhead in the process of
encrypting and decrypting large-scale data. Existing data
encryption and decryption techniques within the Hadoop
design overlook the challenges posed by standard
encryption methods when directly applied using the
MapReduce parallel computing framework [7]. As a result,
data leakage becomes a potential concern following
decryption. To address the need for improved secure
storage of static big data, this study proposes the encryption
of structured data using the Paillier encryption algorithm
and the upgrading of Elliptic Curve Cryptography (ECC)
within the Hadoop architecture. By leveraging Paillier
encryption for structured data and enhancing ECC for
unstructured data, the study aims to mitigate the limitations

of traditional encryption methods and ensure secure
storage.

To sum up, the rapid growth of big data necessitates
effective storage mechanisms to accommodate the
challenges associated with its variety and timeliness. This
study will shed light on the significance of data storage in
big data analysis, highlighting the vulnerabilities posed by
untrustworthy third parties and unauthorized access.
Additionally, the popularity of Hadoop and the importance
of selective data encryption have been emphasized. The
study's focus on improving secure storage through the
encryption of structured and unstructured data using
Paillier and ECC within the Hadoop framework
demonstrates a promising approach to address these
challenges. This paper is organized as follows: in section 2
we presented a comprehensive review of the related works
in big data research, especially those related to data
storage. In section 3, we proposed an Improved ECC
Parallel Encryption Algorithm as our research method. In
section 4, we used experiment to validate the algorithm we
proposed. Then we discussed the practical and theoretical
implications of the research results in section 5. Finally, we
came up with a conclusion of our study.

2 RELATED WORKS

The Internet is an important part of human working life
today and the large amount of data stored on the web has
made experts aware of the importance of secure storage of
static big data. A number of experts have conducted
research related to secure data storage. A blockchain-based
storage structure was suggested by Liang W. and other
researchers as a solution to the issue of simple data
manipulation in the network environment. During the
procedure, the faulty node data was rectified using
blockchain distributed encoding and the neighbouring
regeneration code. The outcomes demonstrate that the
suggested approach may successfully repair node data [8].
For the issue of audit deduplication, Dong Q. et al. provide
a pseudo-random function-based encryption approach. The
procedure gets rid of the aggregated evidence structure and
uses surrogate signatures to give data blocks audit labels.
The findings demonstrate the effectiveness and

Rong HU, Ping HUANG: Enhanced Secure Storage of Big Data at Rest with Improved ECC and Paillier Homomorphic Encryption Algorithms

Tehnički vjesnik 31, 2(2024), 510-517 511

applicability of the suggested strategy [9]. In an effort to
address the data sharing security concerns raised by drones,
Feng C. presents a blockchain-based data sharing
approach. The procedure integrates ABEM to increase
overall computing speed, uses ABE to improve command
security, public key encryption for accounts, and both. The
results of the experiments demonstrate that the proposed
technique offers faster encryption and improved data
security [10]. A sine-cosine optimization technique for
data security in IoMT was proposed by Joel D. and
colleagues. The procedure employs the SCO method for
node clustering that is energy-efficient, and intuitionistic
fuzzy is used to choose the most efficient paths. The
findings demonstrate that the suggested strategy offers
superior data security and customer service quality [11].
Data security in 5G network environments has been
proposed by researchers like Abd El-Latif A. A. using the
S-box encryption approach. The encryption policy is set
using the quantum walk's unpredictability. The
experimental findings demonstrate the effectiveness of the
suggested strategy to produce safe file passwords [12].

To address the issue of record protection in electronic
medical records, Anand A. and Singh A. K. have suggested
an ECC-based record-keeping solution. The procedure
creates an electronic medical record watermark and inserts
it into the Paillier cryptosystem. The proposed approach
has good resilience and imperceptibility, according to
experimental data [13]. For the issue of data decryption,
Kumar P. et al. provide an ECC-based decryption
technique. The method employs DNA coding for a multi-
stage performance improvement before the computational
efficiency of the procedure is assessed. Experimental
findings demonstrate that the suggested technique decrypts
data quickly and efficiently [14]. Aparna P. and Kishore P.
propose an ECC-based recording method for the problem
of image watermarking in e-healthcare. The process
segments the image, compresses the bit stream with
arithmetic coding and embeds the cover. Experimental
results show that the proposed method has good peak
signal-to-noise ratio and can generate image watermarks
effectively [15]. Dwivedi R. K. et al. proposed an
ECC-based key length control method for the access
control problem of medical monitoring sensors. The
process is implemented in the in.NET framework and the
key length is shortened using ECC. The experimental
results show that the proposed method has better length
control speed and can effectively shorten the key length
[16]. For the issue of video compression and encryption,
Rajagopal S. and Shenbagavalli A. suggest an ECC-based
encryption technique. The motion vector is encrypted
during the procedure, and IABC is then optimized using
the generated private key. The suggested approach has a
good video compression rate and quick video encryption,
according to experimental data [17].

In summary, the shortcomings of these studies are that
they only address specific problems in specific domains,
lack comprehensiveness and generality, and may be
validated only in small-scale experimental environments
without large-scale testing in real environments. In
contrast, the novelty of the improved ECC encryption
methods lies in the introduction of blockchain technology
to solve the data manipulation problem, providing
distributed and decentralised features that increase data

security and reliability. Overall, the proposed method is
based on ECC encryption algorithm with high security and
computational efficiency.

3 RESEARCH METHOD

3.1 Static Big Data Secure Storage Framework Design

Hadoop uses a master-slave architecture to carry out
distributed data storage. The NameNode node acts as a
master node in this process, with the primary responsibility
of storing metadata. The DataNode, in contrast, performs
its own job as a slave node by storing data blocks [18, 19].
As a result, in order to assure the secure storage of static
big data in Hadoop, the security of data blocks must come
first on the list of improvements to be made. Based on this
tenet and concept, the study develops a secure storage
architecture for huge static data. The Hadoop Distributed
File System Control module, the Data Encryption module,
and the Metadata Protection module make up the
framework. These modules' primary functions are to
connect the client to the NameNode servers and to initialize
any encryption algorithms that may be present on those
servers. The distribution pass operation, or the
transmission of the NameNode service to the four servers,
is initially carried out by the metadata protection module.
The four servers are split into two groups and operate the
cluster as a whole while also providing external services.
The NameNode metadata in the same group is essentially
identical during this operation. It should be noted that at
the same moment, one and only one is Active, when the
role is to provide services to the outside world. The other
one assumes the function of a backup node, i.e. a hot
backup of the entire process of metadata, in case the node
goes down and the backup node is able to directly replace
the original node for cluster management. The final module
in the secure storage framework involved is the data
encryption module, which performs homomorphic
encryption of textual data to be computed and light
encryption operations on ordinary data through an
improved encryption algorithm. At the same time, the
module implements data encryption and storage processing
using a multi-threaded approach to ensure secure storage
while providing efficient computing capabilities. The
designed secure storage framework is shown in Fig. 1.

Lightweight
encryption
algorithm

Homomorphic
encryption
algorithm

Service Entrance
Selection

Encryption module

Hot
Backup

Hot
Backup

Service Entrance 1

Service Entrance 2

Active Standby

NameNode_1 NameNode_ 2

ActiveStandby

NameNode_3 NameNode_4

DataNode_1 DataNode_2

DataNode_3 DataNode_4

HDFS control
module

Figure 1 The overall framework of the static big data secure storage solution

designed by the research institute

A prerequisite for metadata big data security is to
ensure the reliability of the metadata. Since metadata is
mainly stored in NameNode servers, metadata can be
greatly affected and appear uncontrollable in the event of
NameNode downtime [20]. The study combines the

Rong HU, Ping HUANG: Enhanced Secure Storage of Big Data at Rest with Improved ECC and Paillier Homomorphic Encryption Algorithms

512 Technical Gazette 31, 2(2024), 510-517

Hadoop distributed file system high availability model and
federation mechanism for the design of a multi-NameNode
Hadoop cluster, and by designing a standby NameNode, a
full process of hot backup of metadata is performed, thus
reducing the occurrence of metadata loss caused by a single
point of failure. When trying to implement the highly
available Hadoop distributed file system concept,
ZooKeeper's active NameNode selection and
troubleshooting features are mostly used. In the event of a
server loss, failure detection is a feature that enables
ZooKeeper to promptly terminate a connection and start a
failover service. If the active NameNode is in a crash state,
a particular exclusion lock prevents another node from
taking over as the active NameNode. The corresponding
ZKFC process, which provides health monitoring,
ZooKeeper session management, and node selection, is
maintained by all servers hosting a NameNode. ZKFC
periodically sends health check commands to the
NameNode during health monitoring. Feedback from this
node indicates that it is functioning properly to the ZKFC.
The NameNode on this node is found to be flawed or in a
subpar operational state in the absence of input, and this
node is identified. ZKFC keeps a session active in
ZooKeeper when the neighbourhood NameNode is
deemed to be in good health. ZKFC employs distributed
locking to stop the other nodes from submitting requests to
enter the Active state when the NameNode's state is Active.
A lock release procedure is carried out to make sure that
the remaining nodes may get the distributed lock and
continue processing when the session is terminated, which
means that the current Active node has failed. ZKFC will
decide in the node selection section if the current remaining
node has acquired the status of the appropriate ZNode lock,
which is now split into two scenarios. This node will be
granted the permission of the related ZNode lock if the
required object is not obtained and the NameNode is
healthy. And this node is enrolled after the locking is
successful. Fig. 2 depicts one of them, the operation flow
for a distributed lock by ZooKeeper.

Client 1

Client 2

The first node?
Successfully

locked

The first node?
Listen to the previous

node

Y

6. Release the lock and delete the sequence node

2. Determine if
locking is possible

1. Create a
temporary

sequence node

3.1Create a
temporary

sequence node

N

4.Determine if
locking is possible

5. Monitoring status

7.N
otify client 2

Lock“My lock”

xxx-0001

xxx-0002

ZooKeeper

Figure 2 ZooKeeper Distributed lock execution process

Through ZooKeeper, services are shifted to the

standby node in the event of a NameNode failure. The
primary function of ZooKeeper on the NameNode node of
the Hadoop cluster, where it is installed, is to continuously
monitor the node state. In order to maintain uninterrupted
cluster service when a NameNode fails, ZooKeeper
quickly launches the hot backup node. The service must be

started in order to begin keeping track of the server's
condition. The HealthMonitor thread broadcasts packets to
the NameNode at a set time and checks the NameNode
status in the second step of monitoring and detection. The
third phase is the administration of ZooKeeper sessions,
which involves feeding back the new state of the
NameNode whenever its status changes. Implementing
node selection based on ZooKeeper in the fourth stage
entails managing the node's status there in real time after
receiving feedback. Finally, the service is isolated, and
when the backup node's state is Active, the service is
isolated as well. As demonstrated in Fig. 3, in the case that
an Active node fails, the backup node will start up right
away and eventually offer the necessary service to the
cluster, concluding the automated failover.

Log shared
storage area

NameNode:Active

Mirror file

Log Metadata

NameNode:Standly

Mirror file

Log Metadata

ZooKeeper

Avtive Standby

1. Fault detection

2. Notify alternate NameNode

3. Close NameNode

Figure 3 Fault service switching process

The failover between Active and Standby nodes is

possible with ZooKeeper. This feature allows the Standby
node to switch to the Active state in order to maintain the
cluster's normal operation in the event that the NameNode
fails. The study has set up a log sharing management
module to record the information of metadata changes to
assure the reliability of the metadata in order to
synchronize the metadata of the two NameNodes. As
demonstrated in Fig. 3, as soon as an issue is discovered by
the Active fault controller, the Standby fault controller is
notified right away, and the remaining NameNode
processes force a shutdown procedure, putting the node
into the Standby state. The node corresponding to the
Standby fault controller goes to the Active state, balancing
the dual objectives of metadata integrity and failed service
recovery, with every process associated with the failed
NameNode in a stalled state.

3.2 Big Data Storage Based on Improved ECC Parallel

Encryption Algorithm

Elliptic Curve Cryptography (ECC), an asymmetric
cryptography algorithm built on the elliptic curves
mathematical theory, is simply discrete logarithm
encryption [21]. In elliptic curve cryptography, the
supposedly encrypted data is really created by performing
a geometric operation on two points on the curve to create
the ciphertext. The point-addition and point-doubling
operations of elliptic curves are used to encrypt and decrypt
data, respectively. Fig. 4 depicts the encryption and
decryption of elliptic curves.

Rong HU, Ping HUANG: Enhanced Secure Storage of Big Data at Rest with Improved ECC and Paillier Homomorphic Encryption Algorithms

Tehnički vjesnik 31, 2(2024), 510-517 513

Key
generation

Elliptical
curve

Select base
point

Select Private
Key

Generate
public key

Public key
encryption

Plaintext Random Public Key
Ciphertext C1

和C2

Private key
decryption

Ciphertext C1

和C2
P[rivate key C1-kC2 PLaintext M

Figure 4 Elliptic curve encryption and decryption process

The definition of an elliptic curve E is shown in Eq. (1)

3 2

2 1 3 2 4 6E : y a xy a y x a x a x a      (1)

In Eq. (1), denotes the domain of rational numbers as

defined. The simplified representation of an elliptic curve
is shown in Eq. (2).

2 3y x ax b   (2)

The asymmetric encryption characteristic of the ECC

encryption technique is employed in distributed storage
plus number because it allows for improved security with
shorter keys. Nevertheless, it has drawbacks, such as poor
encryption performance when handling bigger data
quantities. To accomplish its encryption efficiency, the
study therefore enhances the ECC algorithm in terms of
both storage technique and encryption mode. To achieve
encryption and storage under mutual disruption, two-
threaded encryption is employed. Data slicing, where the
sliced data blocks are independently encrypted and saved,
is first used to increase the efficiency of encryption and
decryption of a single file. In one procedure, encryption is
examined through byte streams because not all encrypted
files are strings. When processing a lot of tiny files,
Hadoop's speed suffers dramatically [22]. Before
encryption, the research will split the file into two sections,
each of which shows a one-to-one relationship with the
corresponding two service portals. This will help to better
integrate the two-channel storage model with the
encryption technique. Prior to data slicing, the study also
performed a document size analysis, and only files that
fulfilled specific thresholds were permitted to carry out this
stage. The study only began the data cut process for files
larger than 256 MB in order to achieve the objective of
lowering the number of little files, making sure that both
finished cuts exceeded 128 MB. Fig. 5 depicts the
two-threaded encryption model.

Data to be
stored

ECC-Thread
1

ECC-Thread
2

Data segmentation

Hot
Backup

Hot
Backup

Service Entrance 1

Service Entrance 2

Active Standby

NameNode_1 NameNode_ 2

ActiveStandby

NameNode_3 NameNode_4

DataNode_1 DataNode_2

DataNode_3 DataNode_4
Figure 5 Research on an Improved ECC parallel encryption model

The study uses a homomorphic encryption scheme to

ensure that data is not compromised during the processing
of enormous volumes of data. The data to be computed is

normally transmitted to the Hadoop distributed file system
via text files. Homomorphic encryption enables particular
operations to be carried out on the ciphertext as well as the
direct computation of encrypted data. In order to achieve a
result equivalent to one under plaintext, the resulting
ciphertext is simultaneously decrypted. As a result, the
privacy of the data is better secured and there is a
significant reduction in the expensive consumption of
frequent encryption and decryption. Fig. 6 depicts the
homomorphic encryption algorithm's operational
procedure.

M1 M2 ... Mn

Clear text
calculation

Ciphertext
calculation

C1 C2 ... Cn

M

C

Figure 6 Operation process of homomorphic encryption algorithm

Not only is the Paillier homomorphic encryption
algorithm capable of public key encryption, but it also
performs better in a variety of cloud computing
applications and is essential for resolving issues with data
privacy. To better fulfill the storage needs, the study adds
the Paillier homomorphic encryption method to the
structured data storage phase and enhances the read and
write data processes. Eq. (3) demonstrates how the Paillier
homomorphic encryption algorithm first creates two huge
prime integers, and at random by selecting the least
common multiple of each minus 1.

lcm(1)(1)q p    (3)

In Eq. (3), represents the least common multiple,

while represents the least common multiple sought, and
represent two randomly generated large primes. A random
integer is then obtained, which must conform to an order
that can divide, as shown in Eq. (4).

2(mod ,) 1gcd g n n  (4)

In Eq. (4), is the maximum convention number. In the

encryption stage, for the plaintext, the conditions and are
satisfied, while a random number BB is determined for the
secondary encryption, and the conditions and are satisfied.
The encrypted ciphertext is obtained as shown in Eq. (5).

2(,) modm nc E m r g r n   (5)

In Eq. (5), is the encryption process for and denotes

the random number obtained from the auxiliary encryption
process. In the decryption stage, the plain text obtained by
decrypting the ciphertext is shown in Eq. (6).

2

2

(mod)
() mod

(mod)

L c n
m D c,sk n

L g n



  (6)

The study reads in the plain text and writes out the

cipher text at the same time through a buffered character
stream since the data to be encrypted are strings and text,
which helps to enhance the speed of reading and writing

Rong HU, Ping HUANG: Enhanced Secure Storage of Big Data at Rest with Improved ECC and Paillier Homomorphic Encryption Algorithms

514 Technical Gazette 31, 2(2024), 510-517

files during encryption and decryption. I/O (Input/Output)
reduction is mostly used by buffered character streams to
increase data processing effectiveness. A buffered stream
may read and write 8 k bytes in comparison to a standard
physical stream's 1 byte, significantly lowering the number
of I/O operations required to read and write the same
amount of data. Additionally, text data often has one row
for each piece of data in projects where data is generated
using the MapReduce distributed computing framework
and follows a particular alignment constraint. To ensure
that MapReduce can efficiently recognize the alignment
criteria once the encryption is stored, the Paillier method
needs to be further enhanced. Since the cipher text is
printed out in the same arrangement format as the plain
text, the study employs the division of strings to encrypt all
the strings corresponding to the fields one by one
throughout the encryption process. The data is split during
the read phase of the plaintext data by reading it line by line
in conjunction with the plaintext separator, after which the
Paillier homomorphic encryption method is initialized. The
divided data is then encrypted and output in a regular
format in accordance with how the plain texts are
organized.

Regarding parameter configuration, I usually need to
choose the right parameters according to specific
application scenarios and requirements. For example, for
machine learning tasks, hyperparameters such as learning
rate, batch size, and number of iterations need to be
adjusted to optimise the performance of the model. In
practice, techniques such as grid search are used to find the
optimal parameter configuration. During implementation,
various open source software and tools such as
TensorFlow, PyTorch, Hadoop, etc. are used. These
software and tools help to implement the algorithms more
efficiently and make the best use of the available
computational resources. For example, TensorFlow
provides a series of APIs and tools to easily build and train
deep learning models. For the setup of a Hadoop cluster,
we need to consider various factors, such as hardware
configuration, network topology, storage system, and so
on. In practice, Hadoop's command line tools are used to
manage and configure the cluster, such as hadoop-
config.sh and yarn-config.sh. Regarding the steps for key
encryption, a simple pseudo-code is provided here:

[# Generate public and private keys
generate_keypair().
 # Generate a random private key
private_key = generate_random_private_key()
 # Generate the corresponding public key based on the

private key
public_key = generate_public_key(private_key)
 # Return the public and private keys
 return public_key, private_key
Encrypt data with the public key
encrypt_data(data, public_key).
 # Encrypt the data using the public key
encrypted_data = encrypt_with_public_key(data,

public_key)
 # Return the encrypted data
 return encrypted_data
Transfer the encrypted data
Decrypt data with private key
decrypt_data(encrypted_data, private_key).
 # Decrypt the encrypted data using the private key

decrypted_data =
decrypt_with_private_key(encrypted_data, private_key)

 # Return the decrypted data
 return decrypted_data

Main program
public_key, private_key = generate_keypair()
data = "Data to be encrypted"
encrypted_data = encrypt_data(data, public_key)
transmit_data(encrypted_data)
decrypted_data = decrypt_data(encrypted_data,

private_key)]

This process uses the Paillier encryption algorithm,
which is an RSA-based encryption scheme that enables
additive encryption and decryption. By this method, the
privacy and security of the data can be ensured.

4 RESULTS AND DISCUSSION

The study uses encryption speed and Hadoop
distributed file system storage speed as evaluation metrics
to contrast the suggested two-threaded ECC encryption
with the pre-modified ECC, AES (Advanced Encryption
Standard), and DES (Data Encryption Standard) under
conventional Hadoop. Fig. 7 compares the encryption
execution times of the four algorithms for data sizes of
55 M and 500 M. As can be seen in Fig. 7a, the encryption
execution times obtained by all four methods fluctuate to
varying degrees over the 90 experiments. The AES
algorithm fluctuates between 2.5 s and 3.0 s, the ECC
algorithm fluctuates relatively more, with a maximum of
nearly 5 s and a minimum of 4 s. The DES algorithm has a
minimum of 3.0 s and a maximum of less than 4.5 s. The
DH-ECC algorithm only fluctuates between 1.0 s and
1.5 s, the shortest time among the four methods. As can be
seen in Fig. 7b, both AES and DES methods have
encryption times above 10 s when processing 500 M data
volume, and there are relatively large fluctuations. The
difference between the two methods, ECC and DH-ECC,
is smaller, and the proposed method still has a small
advantage.

0.5

3.5

1.5
2.0
2.5
3.0

Number of experiments

0

1.0

E
n

cr
y

p
ti

o
n

 e
x
ec

u
ti

o
n

 t
im

e(
s)

4.0
4.5
5.0

9080706050403020100

(a) Comparison of encryption execution
time under a data size of 55M

2

14

6
8
10
12

0

4

16
18
20

E
n

cr
y

p
ti

o
n

 e
x
ec

u
ti

o
n

 t
im

e(
s)

Number of experiments
(b) Comparison of encryption execution

time under a data size of 500M

9080706050403020100

AES ECC

DES DH-ECC

AES ECC

DES DH-ECC

Figure 7 Comparison of encryption execution time between four methods at

55 M and 500 M data scales

The main highlights of this research include the use of
encryption speed and Hadoop distributed file system
storage speed as evaluation metrics, which integrates
algorithm execution efficiency and storage performance.
Comparing the proposed two-threaded ECC encryption
with premodified ECC, AES and DES under traditional

Rong HU, Ping HUANG: Enhanced Secure Storage of Big Data at Rest with Improved ECC and Paillier Homomorphic Encryption Algorithms

Tehnički vjesnik 31, 2(2024), 510-517 515

Hadoop helps to understand the performance of different
algorithms in big data environments.

Fig. 8 displays the encryption execution times for the
four algorithms using 1G and 2G data sizes. Fig. 8a shows
that the time needed for AES to encrypt and execute 1 G of
data varies between 12 and 16 seconds for each of the four
algorithms, making it the quickest of the four. Although the
proposed DH-ECC technique takes a little longer than the
AES algorithm, it differs from it less. The ECC algorithm
performs the worst, taking up to 36 s, whereas both DES
and other approaches are over 24 s. When processing data
of the 2 G scale, the four approaches, as shown in Fig. 8b,
exhibit a comparatively wide disparity. Between them,
there is just a 5 second gap between DH-ECC and AES. In
comparison, the time needed for the DES approach varied
between 50 and 55 seconds, exceeding 40 seconds for both
ECC and DES. The highlight of this research is the use of
larger data sizes (1 G and 2 G) for the experiments,
enabling a more comprehensive assessment of the
performance of different algorithms when dealing with
large-scale data. The performance of the four algorithms is
analysed in detail in a large-scale data scenario and clear
differences are demonstrated in terms of experimental
results.

4

28

12

16

20

24

Number of experiments

0

8En
cr

yp
tio

n
ex

ec
ut

io
n

tim
e(

s)

32

36

40

9080706050403020100

(a) Comparison of encryption execution time under a
data size of 1G

10

40

20

25

30

35

5

15

45

50

55

En
cr

yp
tio

n
ex

ec
ut

io
n

tim
e(

s)

Number of experiments

(b) Comparison of encryption execution time under a
data size of 2G

9080706050403020100

AES ECC

DES DH-ECC

AES ECC

DES DH-ECC

Figure 8 Four methods for encryption execution time in the face of 1G and 2G

data scales

The suggested DH-ECC algorithm was shown to be
less dissimilar from the AES technique after verification of
the encryption execution time at data sizes of 55 M, 500 M,
1 G, and 2 G. The study also continued to raise the data
size and validate the encryption execution time for the four
approaches at 3.5 G and 4 G because the initial four data
sizes were quite small. Fig. 9 displays the outcomes after
grouping the 90 studies into an average of nine groups and
eliminating the lowest and highest values. In Fig. 9, the
group is represented by the horizontal axis, and the average
encryption time is shown by the vertical axis. Fig. 9a shows
that for all nine sets of trials at the 3.5 G data scale, the
average encryption time of the proposed DH-ECC
algorithm is between 40 s and 60 s, demonstrating good
performance. The encryption times of all three techniques
are longer, with DES reaching 110 s and AES and ECC
varying between 80 and 100. Fig. 9b shows that the ECC
algorithm's encryption time varies between 150 and 160
seconds for 4.0 gigabytes of data size. The AES and DES
techniques differ by less, each taking between 120 and 140
seconds. On the other side, the suggested DH-ECC method
is below 80 s, with a minimum of close to 60 s, which offers
higher processing power. The highlights of this research
include is the validation of encryption execution time for
different data sizes (55 M, 500 M, 1 G, 2 G, 3.5 G, and
4 G), demonstrating the performance of different
algorithms for different data sizes. The performance of the

algorithms is verified under different data sizes, especially
the DH-ECC algorithm shows better performance when
dealing with large-scale data.

30

90

50

60

70

80

Group

20

40A
ve

ra
ge

 e
nc

ry
pt

io
n

ti
m

e(
s)

100

110

120

987654321

(a) Comparison of encryption execution time under a
data size of 3.5G

70

130

90

100

110

120

60

80

140

150

160

A
ve

ra
ge

 e
nc

ry
pt

io
n

ti
m

e(
s)

Group

(b) Comparison of encryption execution time under a
data size of 4G

AES ECC DES DH-ECC

987654321

AES ECC DES DH-ECC

Figure 9 The average encryption time of four methods for 3.5G and 4G data

scales

Combining the encryption time verification results of
the four methods at different data sizes shows that when
the data volume is below 2 G, the encryption speed of the
AES algorithm differs less from that of the proposed
DH-ECC algorithm, and there are cases where the former
is superior. In comparison with the ECC algorithm, it can
be seen that the DH-ECC algorithm improves the improved
encryption efficiency when it is below 2 G. The reason for
this is that the asymmetric encryption algorithm does not
simply perform a byte round conversion operation, so the
encryption speed is on the lower side compared to the
symmetric encryption algorithm. At the same time, the
Institute's DH-ECC algorithm has trouble taking advantage
of dual-threading's benefits when the volume of data is
modest. Because AES and DES algorithms primarily
require several round-robin operations such row shifting
and column obfuscation to encrypt data, their encryption
performance substantially declines when data volumes
exceed 2 G. Too many round-robin procedures when there
is a lot of data will significantly slow down encryption. The
suggested DH-ECC technique, in contrast, offers
dual-threaded encryption and buffered byte stream modes
that may both fully utilize system resources and speed up
reading and writing of huge volumes of data.

As the research combines the designed two-channel
storage model with it to boost the security and
effectiveness of data storage, it is not simply an upgrade of
the encryption method. Therefore, it is necessary to assess
the Hadoop distributed file system's upload efficiency. A
thorough experiment on the data encryption and upload
process was then carried out, and the results are shown in
Fig. 10. The study's proposed dual-channel storage scheme
was compared to the Hadoop-based highly available
storage model (RU_NN), the HDFS-based Federated
Access Control Model (FACRM), and the original Hadoop
distributed file system.

Fig. 10b displays the cumulative results of the
encrypted uploads for the four techniques, whereas
Fig. 10a displays the upload speed at various data sizes.
Fig. 10a shows that for various data sizes, the
research-improved HDFS data upload speed is superior
than the other three models, reaching up to 60 MB/s. The
research-improved HDFS system's cluster configuration
includes two Active NameNodes, and two storage portals
allow for simultaneous data uploads. Fig. 10b shows that
even for 4 G scale data, the suggested DH-ECC encryption
algorithm only needs a total upload time of about 170 s,

Rong HU, Ping HUANG: Enhanced Secure Storage of Big Data at Rest with Improved ECC and Paillier Homomorphic Encryption Algorithms

516 Technical Gazette 31, 2(2024), 510-517

which is faster than the other three approaches. This shows
that when used in conjunction with the dual-channel
storage option, the total upload efficiency of this
encryption technique is greatly increased.

30

45

Data scale

0

15D
at

a
up

lo
ad

 s
pe

ed
(M

B
/s

)

60

75

(a) Upload speed of data of different scales

55M 500M 2G 3.5G 4G

100

150

Data scale

0

50

T
ot

al
 e

nc
ry

pt
ed

 u
pl

oa
d

ti
m

e(
s)

200

250

(b) Encrypted Upload Comprehensive Experiment

55M 500M 2G 3.5G 4G

HDFS RU_NN FACRM
Improved-HDFS

AES ECCDES

DH-ECC

Figure 10 Comprehensive experimental results on upload speed and encrypted

upload of data of different scales

The suggested DH-ECC encryption technique's
security was then further examined by comparison with the
RSA (Rivest-Shamir-Adleman) algorithm, an asymmetric
encryption algorithm. The resulting comparison of key
length and security level is displayed in Tab. 1.

Table 1 Key length and security level of DH-ECC and RSA
Confidentiality

level
Key length of
DH-ECC / bit

Key length of
RSA / bit

Confidentiality
period

80 160 1024 2010
112 224 2048 2030
128 256 3072 2040
192 384 7680 2080
256 512 15360 2120

As can be observed from Tab. 1, the proposed

DH-ECC algorithm requires smaller keys than the RSA
algorithm for the same secrecy level, requiring keys of
160 bits, 224 bits, 256 bits, 384 bits, and 512 bits,
respectively. It demonstrates how the suggested DH-ECC
encryption technique can be more effectively used to store
static huge data securely, make greater use of distributed
resources, and protect private keys.

The ciphertext after homomorphic encryption can be
examined using the terminal in the study because Paillier
homomorphic encryption is compatible with MapReduce
distributed computing. Fig. 11 displays the outcome of the
enhanced Paillier homomorphic encryption after it has
been finished. Fig. 11 shows how the modified Paillier
encryption technique primarily uses big prime numbers to
encrypt data and then uses the same large prime numbers
to decrypt the data, essentially assuring the operation of the
ciphertext. While the data after Paillier encryption can be
better utilised by distributed computing frameworks like
MapReduce, it is more applicable because the study reads
data per line through buffered character streams, making it
impossible to determine its alignment criteria.

Compared with the RSA algorithm, the DH-ECC
algorithm has a small difference in encryption speed
compared with the AES algorithm at less than 2 G data
volume, and sometimes it is better. Whereas, the DH-ECC
algorithm improves the encryption efficiency compared to
the ECC algorithm on data volumes below 2 G. This is
because asymmetric encryption algorithms (including
DH-ECC and RSA) have lower encryption speeds
compared to symmetric encryption algorithms such as AES
and DES.

[hunter@Hadoop1 hadoop-2.7 .7]$ bin/hadoop fs -cat /usr /H-encryption_ em. txt
20075633135453180882606322568952416669928236257539221696986159262103573171
9425927503341 2182459662375 316672674141891438409675580318666434062090847
2195 2828344199817115171007532
1387 1647 668928846781481282727850904013755925965770750633244543392520715171
5112321445752 1898015439540497 272875506779058444730671361663784780977459
932201 37969 270647431308514197
120621101064295 54259450234521770089386362120688171353161331699127098460500
98 31084613457 9146324416818754971320795484457 379434540328246849686023840
37 60566937060461836659780654
2125598718245924 3059293328064835588570206379547802885782379407221748317442
7199297 264119 1518474147 792327886821141134457 762098034235040913376329703
11354 662725 127634899480057306
4882145 66562378908786567887876412087031999826538430088420486 35266702849219
39810991690 37 76168755858606588870748602558856993168567013793009713593
38107 46108270010276405029921

Figure 11 Improved Paillier homomorphic encryption rendering

Asymmetric encryption algorithms need to perform
complex operations, whereas symmetric encryption
algorithms can use simple byte operations and therefore
encrypt faster. In addition, it is difficult for DH-ECC
algorithm to take advantage of dual-threading when the
amount of data is small, whereas AES and DES algorithms
mainly need to perform multiple cyclic operations such as
row shifting and column obfuscation to encrypt the data,
and their encryption performance decreases significantly
when the amount of data is more than 2 G, because too
many cyclic operations will reduce the encryption speed.
The DH-ECC algorithm, on the other hand, can make full
use of system resources and accelerate the reading and
writing speed of massive data by providing two-threaded
encryption and buffered byte stream mode. In summary,
the DH-ECC algorithm has a certain advantage over the
RSA algorithm in terms of encryption efficiency, and it is
able to better exploit the performance advantage when
dealing with large data.

4 CONCLUSION

One of the most important components of data security
is the secure storage of static massive data. The main
research problem of this study is the secure storage of
massive data. In order to solve this problem, the study
proposes a storage framework consisting of a Hadoop
distributed file system control module, a data encryption
module, and a metadata protection module, and proposes
improved ECC and Paillier homomorphic encryption
algorithms. Through experiments, it is found that the
encryption time of the DH-ECC algorithm ranges from 1.0
to 1.5 seconds, while the encryption time of the AES
algorithm ranges from 2.5 to 3.0 seconds. The difference
in encryption time of the ECC algorithm is even greater,
with a maximum value of close to 5 seconds and a
minimum value of 4 seconds. In the nine sets of
experiments with 3.5 G of data, the average encryption
time for the DH-ECC method ranged from 40 to 60
seconds, while both the AES and ECC algorithms
fluctuated between 80 and 100 seconds. All three have
longer encryption times. The key lengths of the DH-ECC
algorithm are 160, 224, 256, 384 and 512 bits at the secrecy
level of 80256, which are smaller than the key lengths of
the RSA method at the same secrecy level. Enhanced
Paillier encryption for structured data uses large prime
numbers for data encryption and large prime numbers after
encryption is complete, which greatly extends the amount
of massive data that can be stored securely. However, the
study does not take into account the complexity of the
Paillier algorithm for application in Hadoop, and thus
further improvements need to be introduced with fully

Rong HU, Ping HUANG: Enhanced Secure Storage of Big Data at Rest with Improved ECC and Paillier Homomorphic Encryption Algorithms

Tehnički vjesnik 31, 2(2024), 510-517 517

homomorphic encryption algorithms. The research results
show that the DH-ECC algorithm has better performance
and security in data encryption, and has potential
application value for encrypted storage of big data.
However, in practical applications, the complexity,
scalability and difficulty of implementation of the
algorithm need to be considered comprehensively to
choose a suitable encryption method. Meanwhile, future
research can further improve the complexity of Paillier's
algorithm to enhance its application in Hadoop.

5 REFERENCES

[1] Gurav, Y. B. & Patil, B. M.(2023). De-centralized

information flow control for cloud virtual machines with
hybrid AES-ECC and improved meta-heuristic optimization
based optimal key generation. International journal of
intelligent robotics and applications, 7(2), 406-425.
https://doi.org/10.1007/s41315-022-00268-6

[2] Suzhen, W., Chunfeng, D., Weidong, Z., Jindong, Z., Hong
J., Bo, M., & Lingfang, Z. (2023). EaD: ECC-Assisted
Deduplication With High Performance and Low Memory
Overhead for Ultra-Low Latency Flash Storage.IEEE
Transactions on Computers, 72(1), 208-221.
https://doi.org/10.1109/TC.2022.3152665

[3] Yin, B., Yin, H., Wu, Y., & Jiang, Z. (2020). FDC: A secure
federated deep learning mechanism for data collaborations
in the Internet of Things. IEEE Internet of Things Journal,
7(7), 6348-6359.
https://doi.org/10.1109/JIOT.2020.2966778

[4] Smarandache, F. (2022). Plithogeny, plithogenic set, logic,
probability and statistics: a short review. Journal of
Computational and Cognitive Engineering, 1(2), 47-50.
https://doi.org/10.47852/bonviewJCCE2202191

[5] John, Y. M., Sanusi, A., Yusuf, I., & Modibbo, U. M. (2020).
Reliability Analysis of Multi-Hardware–Software System
with Failure Interaction. Journal of Computational and
Cognitive Engineering, 2(1), 38-46.
https://doi.org/10.47852/bonviewJCCE2202216

[6] John, N. & Sam, S. (2021). Provably Secure Data Sharing
Approach for Personal Health Records in Cloud Storage
Using Session Password, Data Access Key, and Circular
Interpolation. International journal on Semantic Web and
information systems, 17(4), 76-98.

[7] Li, P. & Lo, K. T. (2020). Survey on JPEG compatible joint
image compression and encryption algorithms. IET Signal
Processing, 14(8), 475-488.
https://doi.org/10.1049/iet-spr.2019.0276

[8] Liang, W., Fan, Y., Li, K. C., Zhang, D., & Gaudiot, J. L.
(2020). Secure data storage and recovery in industrial
blockchain network environments. IEEE Transactions on
Industrial Informatics, 16(10), 6543-6552.
https://doi.org/10.1109/tii.2020.2966069

[9] Dang, Q., Ma, H., Liu, Z., & Xie. Y.(2020). Secure and
Efficient Client-Side Data Deduplication with Public
Auditing in Cloud Storage. International Journal of Network
Security, 22(3), 462-475.

[10] Feng, C., Yu, K., Bashir, A. K., Al-Otaibi, Y. D., Lu, Y.,
Chen, S., & Zhang, D. (2021). Efficient and secure data
sharing for 5G flying drones: a blockchain-enabled
approach. IEEE Network, 35(1),130-137.
https://doi.org/10.1109/MNET.011.2000223

[11] Joel, D. & Juliet, S. E. (2021). A Secure Data Storage
Architecture for Internet of Medical Things (IoMT) Using
an Adaptive Gaussian Mutation Based Sine Cosine
Optimization Algorithm and Fuzzy-Based Secure
Clustering. Journal of Medical Imaging and Health
Informatics, 11(12), 2883-2890.

https://doi.org/10.1166/jmihi.2021.3838
[12] Abd El-Latif, A. A., Abd-El-Atty, B., Mazurczyk, W., Fung,

C., & Venegas-Andraca, S. E. (2020). Secure data
encryption based on quantum walks for 5G Internet of
Things scenario. IEEE Transactions on Network and Service
Management, 17(1),118-131.
https://doi.org/10.1109/TNSM.2020.2969863

[13] Anand, A. & Singh, A. K. (2020). Joint Watermarking-
Encryption-ECC for Patient Record Security in Wavelet
Domain. IEEE Transactions on Multimedia, 27(3), 66-75.
https://doi.org/10.1109/MMUL.2020.2985973

[14] Kumar, P. & Kumar, B. A. (2020). Enhancing multi‐tenancy
security in the cloud computing using hybrid ECC‐based
data encryption approach. IET Communications, 14(18),
3212-3222. https://doi.org/10.1049/iet-com.2020.0255

[15] Aparna, P. & Kishore, P. (2020). An iris biometric-based
dual encryption technique for medical image in e-healthcare
application. International Journal of Computational Vision
and Robotics, 10(1), 1-20.
https://doi.org/10.1504/IJCVR.2020.104353

[16] Dwivedi, R. K., Kumar, R., & Buyya, R. (2021). Secure
Healthcare Monitoring Sensor Cloud With Attribute-Based
Elliptical Curve Cryptography. International Journal of
Cloud Applications and Computing (IJCAC), 11(3), 1-18.
https://doi.org/10.4018/IJCAC.2021070101

[17] Rajagopal, S. & Shenbagavalli, A. (2020). OptimalECC-
based signcryption algorithm for secured video compression
process in H.264 encoder. International Journal of
Biomedical Engineering and Technology, 32(1), 36-65.
https://doi.org/10.1504/IJBET.2020.104676

[18] Li, L. (2020). Secure encryption algorithms for wireless
sensor networks based on node trust value. International
Journal of Internet Protocol Technology, 3(13), 117-123.
https://doi.org/10.1504/IJIPT.2020.107967

[19] Ding, L., Wang, Z., Wang, X., Wang, X., & Wu, D. (2020).
Security information transmission algorithms for IoT based
on cloud computing. Computer Communications, 155(4),
32-39. https://doi.org/10.1016/j.comcom.2020.03.010

[20] Abroshan, H. (2021). A hybrid encryption solution to
improve cloud computing security using symmetric and
asymmetric cryptography algorithms. International Journal
of Advanced Computer Science and Applications, 12(6), 31-
37. https://doi.org/10.14569/IJACSA.2021.0120604

[21] Yin, S., Liu, J., & Teng, L. (2020). Improved Elliptic Curve
Cryptography with Homomorphic Encryption for Medical
Image Encryption. International Journal of Network
Security, 22(3),421-426.

[22] Viswanathan, S., Bhuvaneswaran, R. S., Ganapathy, S., &
Kannan, A. (2022). Euler phi function and gamma function
based elliptic curve encryption for secured group
communication. Wireless Personal Communications, 125(1),
421-451. https://doi.org/10.1007/S11277-022-09557-6

Contact information:

Rong HU, Associate Professor
(Corresponding author)
School of Intelligence Technology, Geely University of China, Chengdu Sichuan,
641423, P. R. China,
No. 123, SEC. 2, Chengjian Avenue, Eastern New District, Chengdu City
Sichuan Province
E-mail: 727749104@qq.com

Ping HUANG, Master lecturer
School of Mathematics and Computer Science, Panzhihua University,
Panzhihua, Sichuan, 617000, P. R. China
No. 10, North Section of Sanxian Avenue, East District, Panzhihua City, Sichuan
Province
E-mail:1269228282@qq.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

