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Abstract – Trehalose (Tre) is an osmoprotectant known to be an important player in regulating 

response to salinity. In this research, the effect of Tre foliar application on the growth rate, the 

content of photosynthetic pigments, accumulation of metabolites, and activity of antioxidant 

enzymes of basil seedlings under salt stress has been investigated. Basil seedlings were 

factorially treated twice a week with levels of 0, 25, 50, 100, and 150 mM NaCl and weekly 

with concentrations of 0 and 5 mM Tre for 4 weeks. Growth characteristics, the content of 

photosynthetic pigments including chlorophyll and carotenoid, and starch content decreased in 

response to salt stress, while the activity of antioxidant enzymes and the accumulation of 

metabolites including soluble sugars, proteins, amino acids, and proline increased. Tre 

treatment caused severe inhibition of plant growth, further reduction of photosynthetic 

pigments, and amount of soluble proteins during salinity stress. Also, starch, total protein, 

amino acids, and proline were hyperaccumulated in response to Tre. These results indicate that 

Tre not only does not reduce the detrimental effects of salinity in basil seedlings but also inhibits 

plant growth possibly by diverting carbon to other metabolic pathways. 
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Introduction 

Salinity is one of the most important factors limiting the yield of crops, especially in arid, 

semi-arid, and coastal areas (Mostofa et al. 2015). This stress negatively affects plant 

physiology by imposing several major limitations leading to reduced crop growth and 

productivity (Ali et al. 2021, Zhang et al. 2021, Khan et al. 2023). Salinity causes osmotic and 

ionic stress, and production of reactive oxygen species (ROS) in plant cells (Ahammed et al. 

2018, Khan et al. 2023, Colin et al. 2023). High production of ROS induces oxidative stress, 

which can destroy membrane components and biomolecules and, at higher levels, cause cell, 

tissue, and plant death (Kaur et al. 2022, Khan et al. 2023, Peng et al. 2023). Salinity tolerance 

is a complex process that involves various molecular, physiological, and biochemical 

mechanisms (Zhang and Shi 2013, Islam et al. 2023).  

The use of osmoprotectants can augment stress tolerance mechanisms in plants (Chen and 

Jiang 2010, Islam et al. 2023). These compounds, which are known as compatible solutes, are 

highly soluble compounds with low molecular weight that directly or indirectly protect plants 

against stresses through various mechanisms such as regulating cellular osmosis, preventing 

membrane damage, stabilizing proteins and enzymes, and eliminating ROS (Singh et al. 2015, 

He et al. 2018). Application of exogenous osmoprotectants can be considered an alternative 

approach to improve plant productivity under saline conditions (Nakayama et al. 2005). The 
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high concentration of compatible solutes can balance the salts entering the cell and at the same 

time deal with the high concentration of salts inside the cell (Türkan and Demiral 2009).  

Sugars are one of the most important compatible solutes that, in addition to the role of 

signal molecules, can act as a source of metabolic energy and play a role in regulating 

metabolism in plants (Islam and Mohammad 2021). Trehalose (Tre) is a non-reducing 

disaccharide consisting of two glucose molecules with a chemically non-reactive nature that 

makes it compatible with cellular metabolism even at high concentrations, and plays an 

important role as an osmoprotectant in stress tolerance of some plants (Ali and Ashraf 2011, 

Lunn et al. 2014). It is naturally distributed in many organisms, from bacteria and fungi to plants 

and invertebrates (Nounjan et al. 2012, Kosar et al. 2019), where it is used for carbon storage 

and transport as well as being an osmoprotectant (Lunn et al. 2014). Among plants, Tre 

synthesis has been reported in some resurrection plants and other plants such as Arabidopsis 

(Muller et al. 1999, Lunn et al. 2014). It has been shown that the expression of plant genes 

involved in Tre metabolism undergoes remarkable changes in response to various abiotic 

stresses (Nakashima et al. 2009). Tre and trehalose-6-phosphate, a phosphorylated intermediate 

in Tre biosynthesis, act as signal molecules in carbohydrate metabolism (Wingler et al. 2000, 

Lunn et al. 2014). Tre induces sucrose synthase activity in soybean (Muller et al. 1998) and 

trehalose-6-phosphate acts as a specific signal of sucrose status in Arabidopsis, and may be 

seen as part of a homeostatic mechanism to control the level of sucrose, as well as part of 

regulatory networks in sucrose export in source organs and in growing sink organs (Lunn et al 

2014). Tre has also a key role in the control of metabolism during plant growth and 

development, and reduces the effects of stress through mechanisms such as membrane 

protection, stabilization of proteins and enzymes, detoxification and removal of ROS, 

molecular signaling, and increasing the accumulation of osmolytes (Luo et al. 2010, Abdallah 

et al. 2016, Islam and Mohammad 2021). Most studies on the role of osmoprotectants in 

enhancing stress tolerance have focused on proline and glycine betaine, but there is relatively 

little knowledge about the effects of Tre on higher plants under stress conditions. Some studies 

have shown that the exogenous application of Tre on plants has induced tolerance to salinity 

stress (Nounjan et al. 2012, Abdallah et al. 2016, Rohman et al. 2019). In contrast, it has been 

found that Tre can have an inhibitory effect on the growth of some plants (Schluepmann et al. 

2004, O'Hara et al. 2013) and algae under salinity (Panjekobi and Einali 2021). However, in 

most plants, endogenous Tre cannot adequately ameliorate the harmful effects of stress 

(Mostofa et al. 2015). 

Basil (Ocimum basilicum L.) is a medicinal and aromatic plant that is used in the 

pharmaceutical and food industries due to its abundant essential oils, high content of 

phytomedicines and natural antioxidant molecules, and is usually produced for economic 

purposes (Kwee and Niemeyer 2011, Caliskan et al. 2017). It is commonly used in traditional 

medicine and herbal therapy (Bahcesular et al. 2020, Farouk and Omar 2020). To date, no study 

has been conducted on the role of Tre in the physiological and biochemical responses of basil, 

an important agricultural and medicinal plant, to salinity stress. Accordingly, basil was taken 

as a model system to determine the effect of exogenous Tre on growth, accumulation of 

osmolytes, and the activity of some enzymes of the antioxidant system under salt stress. 

 

Materials and methods 

Plant material and experimental design 

Basil seeds (Ocimum basilicum L.) obtained from the Botanic Garden at the University 

of Sistan and Baluchestan were sown in a greenhouse with a temperature of 29 ± 1 °C in trays 

containing moist cocopeat. After germination, seedlings with two or three leaves that had grown 

uniformly were selected and each seedling was transferred to a 14 x12 cm plastic pot containing 
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1 kg of cocopeat and placed at the same temperature. Seedlings were irrigated with 1/2 

Hoagland's standard nutrient solution at three-day intervals until reaching the 6-8 leaf stage. 

Three days before salt treatment, the seedlings were divided into two parts. By foliar spraying 

on the seedlings, one part was treated with a concentration of 5 mM Tre and the other part 

received only distilled water. Salinity treatment was applied by adding sodium chloride (NaCl) 

in concentrations of 0, 25, 50, 100, and 150 mM to the nutrient solutions of each plant group. 

Tre-untreated plants, which received only 1/2 Hoagland's solution without NaCl, were 

considered as the control for salinity experiments. Seedlings were treated twice a week with 

salinity and every week with Tre for four weeks. After this period, seedlings were harvested 

and studied to investigate the morphological and biochemical responses to salt stress and Tre 

treatment. Each morphological or biochemical experiment was performed individually with 

three biological replicates. 

 

Morphological traits 

The length of root and shoot along with the length, width, and number of leaves of basil 

seedlings were measured. To determine the amount of biomass, first the fresh weight (FW) of 

each shoot and root was measured, and after exposure to 70 °C for 72 h, the dry weight (DW) 

was determined. Shoot water content (SWC) of basil seedlings was obtained using the following 

formula: 

SWC = ((shoot FW− shoot DW)/shoot FW) × 100  

 

Determination of photosynthetic pigments content 

Photosynthetic pigments including chlorophyll (Chl) and total carotenoids (Car) were 

extracted from 1 g of fresh leaf tissue with 80% acetone. The resulting mixture was filtered 

through filter paper (Whatman No. 1) and the residue was saved to measure soluble sugars 

and total protein. The absorbance of the filtrate was recorded at 663, 645, and 652 nm, and the 

amounts of Chls a, b, and total were measured using the following equations (Arnon 1949): 

Chl a (mg mL-1) = 0.0127 × A663 - 0.00269 × A645   

Chl b (mg mL-1) = 0.0229 × A645 - 0.00468 × A663   

Total Chl (mg mL-1) = A652/34.5   

 

Total Car content was measured at 470 nm using the following equation (Lichtenthaler and 

Buschmann, 2001). 

Total Car (μg mL-1) = (1000 × A470-1.82 × Chl a - 85.02 × Chl b)/198   

 

The content of pigments was expressed as mg per g FW. 

 

Determination of soluble sugars and starch content 

Soluble sugars, including reducing and non-reducing sugars, were extracted from 40 mg 

of acetone powder (resulting from the extraction of photosynthetic pigments) using 80% ethanol 

(Einali and Valizadeh 2017). Ethanol extracts were used to determine the content of soluble 

sugars. Reducing sugars (RS) were determined by the method of Miller (1959) and non-

reducing sugars (NRS) were measured by Handel's (1968) method. The residues obtained from 

the extraction of soluble sugars were used to extract and measure the amount of starch 

(McCready et al. 1950). The content of soluble sugars and starch was expressed as mg per g 

FW.  

 

Determination of total proteins, total amino acid, and proline content 

Total proteins refer to proteins extracted with a sample buffer containing 60 mM Tris–

HCl buffer (pH 6.8), 10% (v/v) glycerol, and 2% (w/v) sodium dodecyl sulfate (Stone and 
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Gifford (1997). Extraction of total proteins from 20 mg of acetone powder was done with 0.5 

mL of sample buffer at 90 C for 1 h, followed by centrifugation at 10 000 g for 15 minutes 

(Alisofi et al. 2020). The amount of total proteins was measured at a wavelength of 750 nm by 

the method of Markwell et al. (1981) and expressed as mg per g FW. 

 Free amino acids and proline were extracted from 0.2 g of fresh leaf tissue using 80% 

ethanol at 70 C for 10 minutes, followed by centrifugation at 2 000 g for 10 minutes (Einali 

and Valizadeh 2017). The extraction process was repeated four more times. The concentrated 

ethanol extract was decolored by chloroform (1:5, v/v). The ninhydrin (1% (w/v) ninhydrin and 

0.06% (w/v) KCN in acetone) method using a glycine calibration curve at 570 nm was used to 

determine total free amino acid (Yemm and Cocking 1955). Proline content was measured at 

520 nm by another ninhydrin (1% (w/v) ninhydrin in 60% (v/v) acetic acid) method using 

proline as a standard (Bates et al. 1973). The content of free amino acids and proline was 

expressed as µmol per g FW.  

 

Soluble protein extraction and enzyme assays 

Crude enzyme extract was prepared from 0.2 g of fresh leaf tissue with 3 mL of enzyme 

extraction buffer containing 100 mM cold potassium phosphate buffer (pH 7.0), 10% glycerol, 

1 mM EDTA, 10 mM KCl, 1 mM MgSO4, 1 mM phenylmethylsulphonyl fluoride (PMSF), 50 

mM 2-mercaptoethanol, 0.1% (v/v) Triton X-100, and 1% (w/v) polyvinylpolypyrrolidone 

(PVPP)) as described elsewhere (Alisofi et al. 2020). Extraction was done in a cold mortar with 

pestle. The extraction buffer for ascorbate peroxidase (APX) determination contained 5 mM 

ascorbic acid as well. The homogenate was filtered through four layers of cheesecloth and 

incubated at 4 C for 1 h. The amount of 10 mg of charcoal was added to the filter to remove 

the extracted pigments, and then it was centrifuged at 12 000 g for 10 minutes at 4 C. The 

supernatant, containing soluble protein fraction, was used for enzyme assays. Soluble proteins 

refer to proteins extracted in the absence of sodium dodecyl sulfate. Soluble protein content 

was measured by Bradford's (1976) method using the albumin standard curve and expressed as 

mg per g FW.   

APX reaction mixture (1 ml) consisted of 50 mM potassium phosphate buffer (pH 7.0), 

1 mM H2O2, 0.5 mM ascorbic acid, and 50 µL enzyme extract. The oxidation of ascorbate to 

dehydroascorbate was monitored at 290 nm and the activity of the enzyme was calculated using 

the extinction coefficient 2.8 mM-1 cm-1 and expressed as µmol of oxidized ascorbate per min 

per g FW (Chen and Asada 1992).  

The activity of pyrogallol peroxidase (PPX) was measured in a reaction mixture (1 mL) 

containing 50 mM potassium phosphate buffer (pH 7.0), 40 mM pyrogallol, 1 mM H2O2, and 

50 µL enzyme extract. The conversion rate of pyrogallol to purpurogallin was monitored at 430 

nm and the enzyme activities were calculated using the extinction coefficient 2.47 mM-1 cm-1 

and expressed as µmol of purpurogallin produced per min per g FW (Nakano and Asada 1981). 

Polyphenol oxidase (PPO) activity was measured in the same way as PPX at 430 nm using the 

extinction coefficient 2.47 mM-1 cm-1, except that the reaction mixture was without H2O2 

(Nakano and Asada 1981). 

 

Statistical analysis 

All results obtained from plant growth and biochemical studies were expressed as mean 

and standard deviation (SD) of three independent measurements. The statistically significant 

difference between treatments was determined in the form of factorial design using two-way 

ANOVA and Duncan's test at the level of 5% (P < 0.05). 
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Results 

Effect of salinity and Tre on plant growth 

Salt treatment at low concentration (25 mM) caused a clear 15% increase in shoot length 

compared to the control, but higher salt concentrations gradually decreased these values (Tab. 

1). 

 

Tab. 1. Longitudinal growth and leaf characteristics of trehalose-treated (+Tre) or untreated (-

Tre) basil seedlings in response to different salinity concentrations. Values are the mean ± 

standard deviation of three separate measurements. Different letters in each column indicate 

significant differences between the various treatments at P < 0.05 according to the Duncan test. 

LL - leaf length; LW - leaf weight. 

 
Salt 

treatment 

(mM) 

 
Plant length (cm) LL (cm) LW (cm) LL/LW 

LL × LW 

(cm2) 

Number of 

leaves 

Shoot Root      

0 -Tre 26.00 ± 1.00b 19.67 ± 2.08a  3.77 ± 0.46a 1.93 ± 0.12a  1.95 ± 0.20a  7.30 ± 1.18a 14.00 ± 1.00ab 

+Tre 23.33 ± 0.58c 22.67 ± 2.08a   2.67 ± 0.29bc 1.63 ± 0.06b  1.64 ± 0.21a  4.35 ± 0.41c 14.00 ± 0.00a 

25 -Tre 30.00 ± 1.00a 20.00 ± 2.00a  4.33 ± 0.76a 2.10 ± 0.17a  2.07 ± 0.39a  9.12 ± 1.84a 16.00 ± 0.00a 

+Tre 24.00 ± 2.65c 21.00 ± 1.00a   2.93 ± 0.31bc 1.70 ± 0.10b  1.73 ± 0.18a  4.99 ± 0.69bc 14.67 ± 1.15ab 

50 -Tre 26.33 ± 2.08b 21.00 ± 1.00a  4.03 ± 0.45a 2.23 ± 0.21a   1.80 ± 0.07a  9.07 ± 1.80a 15.33 ± 1.15a 

+Tre 21.33 ± 1.53d 21.33 ± 1.53a  3.13 ± 0.15b 1.67 ± 0.15b  1.89 ± 0.15a  5.23 ± 0.63bc 14.67 ± 1.15ab 

100 -Tre 24.33 ± 0.58c 23.00 ± 2.65a  3.87 ± 0.32a 2.13 ± 0.21a  1.81 ± 0.03a  8.29 ± 1.46a 15.33 ± 1.15a 

+Tre 20.33 ± 2.08d 19.33 ± 1.15a  3.20 ± 0.10b 1.77 ± 0.06b  1.81 ± 0.08a  5.65 ± 0.26b 14.67 ± 1.15ab 

150 -Tre 21.33 ± 1.53d 21.00 ± 0.00a   3.50 ± 0.30ab 1.93 ± 0.12a  1.81 ± 0.19a  6.77 ± 0.72a 13.33 ± 1.15b 

+Tre 14.67 ± 1.53e 19.67 ± 1.53a  2.70 ± 0.17c 1.37 ± 0.15c  1.98 ± 0.11a  3.71 ± 0.63d 13.33 ± 1.15b 

 

However, salinity did not affect root length and leaf characteristics including length (LL), 

width (LW), LL/LW ratio, LL × LW production, and number of leaves. Tre treatment alone or 

under salt stress had a significant negative effect on the length of the shoot and some leaf 

characteristics compared to untreated controls, but it did not change the root length and the 

number of leaves (Tab. 1).  

Although SWC remained unchanged, the effect of salinity on fresh and dry weight of 

shoots and fresh weight of roots was negative and caused a decrease proportional to salt 

concentration, while the dry weight of roots increased significantly in response to different salt 

treatments compared to the control (Tab. 2). 

 

Tab. 2. Shoot and root biomass accumulation and water content of trehalose-treated (+Tre) or 

untreated (-Tre) basil seedlings in response to different salinity concentrations. Values are the 

mean ± standard deviation of three separate measurements. Different letters in each column 

indicate significant differences between the various treatments at P < 0.05 according to the 

Duncan test. FW - fresh weight; DW - dry weight; SWC - shoot water content. 

 
Salt 

treatment 

(mM) 

 
FW (g) DW (g) FW/DW 

SWC (%) 
Shoot Root Shoot Root Shoot Root 

0 -Tre 2.19 ± 0.08a 0.43 ± 0.04a 0.60 ± 0.01a 0.05 ± 0.01c 3.64 ± 0.08c 9.50 ± 2.20a 72.49 ± 0.58d 

+Tre 1.06 ± 0.16c 0.18 ± 0.02d  0.23 ± 0.07de 0.08 ± 0.01b 4.76 ± 1.04b 2.26 ± 0.43e  78.35 ± 4.49cd 

25 -Tre  1.99 ± 0.31ab 0.31 ± 0.03b 0.52 ± 0.01b 0.10 ± 0.01b  3.83 ± 0.62bc 3.21 ± 0.21d 73.41 ± 4.20d 

+Tre 1.12 ± 0.25c  0.26 ± 0.04bc  0.25 ± 0.05de 0.06 ± 0.01c 4.61 ± 0.91b 4.66 ± 0.82b  77.67 ± 4.90cd 

50 -Tre 2.29 ± 0.31a 0.32 ± 0.02b 0.43 ± 0.06c 0.12 ± 0.01a 5.29 ± 0.09b 2.74 ± 0.30e 81.09 ± 0.31c 

+Tre 1.64 ± 0.14b  0.16 ± 0.03de 0.27 ± 0.03d 0.06 ± 0.02c 6.19 ± 0.79b 2.80 ± 0.55e 83.65 ± 2.26c 

100 -Tre 1.71 ± 0.21b 0.24 ± 0.04c 0.41 ± 0.08c 0.09 ± 0.01b 4.28 ± 0.91c 2.52 ± 0.28e  76.00 ± 4.75cd 

+Tre 1.38 ± 0.15b  0.29 ± 0.05bc 0.23 ± 0.02e 0.06 ± 0.00c 6.03 ± 0.60b 4.79 ± 0.94b  83.31 ± 1.57bc 

150 -Tre 1.10 ± 0.04c 0.13 ± 0.02e 0.30 ± 0.01d 0.07 ± 0.01c 3.73 ± 0.20c 1.84 ± 0.02f 73.13 ± 1.41d 

+Tre 1.01 ± 0.04c 0.08 ± 0.01f 0.11 ± 0.02f 0.02 ± 0.00d 9.56 ± 0.96a 3.86 ± 0.39c 89.47 ± 1.11a 
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Tre application in most salt treatments caused a decrease in fresh and dry weight of 

shoot and root, so that the decrease in dry weight was more intense. In contrast, Tre treatment 

caused a 23% increase in SWC in seedlings exposed to 150 mM NaCl compared to the untreated 

control (Tab. 2). 

 

Effect of salinity and Tre on photosynthetic pigments 

The amount of Chl and Car in response to salinity of 50 mM and above decreased significantly 

compared to the control (Fig. 1). 

 

 
 

Fig. 1. Effect of different salinity concentrations on content of Chl a (A), Chl b (B), and total 

Chl (C), as well as on Chl a / b ratio (D), total Car (E), and Chl / Car ratio (F) in trehalose-

treated (+Tre) or untreated (-Tre) basil seedlings. Results are the mean ± standard deviation of 

three separate measurements. Different letters indicate significant differences between the 

various treatments at P < 0.05 according to the Duncan test. 

 

Although the 25 mM concentration of NaCl had no effect on the amount of Chl b and total Car 

compared to the control (Fig. 1B, D), it caused a significant increase in the content of Chl a and 

total Chl by 41 and 30%, respectively (Fig. 1A, C). A significant or non-significant increase in 

response to 25 mM salinity was observed in Chl a/b and Chl/Car ratios, respectively, which 

decreased or remained unchanged at higher salinities compared to the control (Fig. 1D, E). Tre 

treatment resulted in a significant decrease in pigments amount and Chl a/b ratio at most salt 

levels compared to untreated controls (Fig. 1A-E). However, the Chl/Car ratio increased in salt 

treatments with a NaCl concentration above 25 mM (Fig. 1F). 
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Effect of salinity and Tre on soluble sugars and starch contents 

All salt treatments caused a sharp increase in the content of soluble sugars, including 

reducing, non-reducing and total sugars, compared to the control (Fig. 2A-C), so that total 

soluble sugars reached 145.81 mg g-1 FW under 150 mM NaCl (Fig. 2C). 

 

 

 

 

Fig. 2. Effect of different salinity concentrations on content of reducing sugars, RS (A), non-

reducing sugars, NRS (B), and total soluble sugars, TSS (C), as well as on reducing / non-

reducing sugars, RS/NRS ratio (D), and starch content (E) in trehalose-treated (+Tre) or 

untreated (-Tre) basil seedlings. Results are the mean ± standard deviation of three separate 

measurements. Different letters indicate significant differences between the various treatments 

at P < 0.05 according to the Duncan test. 

 

However, a significant decrease in RS/NRS ratio and starch content was found under all 

salinities compared to control (Fig. 2D, E). Tre treatment increased soluble sugars in non-stress 

or salinity conditions up to 50 mM NaCl concentration compared to untreated plants, but at 

higher salt concentrations, it caused a slight increase in NRS and a significant decrease in RS 

(Fig. 2A-C). Tre alone increased the ratio of RS/NRS by 22% compared to the untreated control, 

but did not change this ratio at mild salinity (25 and 50 mM NaCl) or even decreased it to the 

same extent at 100 and 150 mM NaCl (Fig. 2D). These changes were associated with the 

accumulation of starch in Tre-treated seedlings at salt concentrations of 50 mM and higher (Fig. 

2E). 

 

Effect of salinity and Tre on total proteins, total amino acid, and proline contents 

The positive effect of salinity on total protein content was observed only at 25 mM salt 

concentration with a 75% increase and no significant change was found in other salt treatments, 
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while all salinity levels significantly increased soluble proteins, especially up to 10.88 mg g-1 

FW under 50 mM NaCl (Fig. 3A, B). 

 

 
 

Fig. 3. Effect of different salinity concentrations on contents of total proteins (A), total soluble 

proteins (B), total amino acids (C), and proline (D) in trehalose-treated (+Tre) or untreated (-

Tre) basil seedlings. Results are the mean ± standard deviation of three separate measurements. 

Different letters indicate significant differences between the various treatments at P < 0.05 

according to the Duncan test. 

 

Salinity also caused the accumulation of amino acids and proline so that this increase was 

proportional to the salt concentration and reached 151 and 247% of control for amino acids and 

proline in 150 mM NaCl concentration, respectively (Fig. 3C, D). Tre treatment at all salinity 

concentrations caused a strong increase in total proteins, amino acids, and proline contents, 

which was associated with a decrease in the concentration of soluble proteins (Fig. 3). 

 

Effect of salinity and Tre on enzyme activities 

The activity of antioxidant enzymes including APX, PPX, and PPO increased strongly 

with salt concentration and reached 144, 179, and 218% at 150 mM NaCl compared to the 

control (Fig. 4). 
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Fig. 4. Effect of different salinity concentrations on the activity of ascorbate peroxidase, APX 

(A), pyrogallol peroxidase, PPX (B), and polyphenol oxidase, PPO (C) in trehalose-treated 

(+Tre) or untreated (-Tre) basil seedlings. Results are the mean ± standard deviation of three 

separate measurements. Different letters indicate significant differences between the various 

treatments at P < 0.05 according to the Duncan test. 

 

Tre treatment alone or with concentrations of up to 100 mM salt strongly decreased APX 

activity but increased its activity at 150 mM salt concentration by 24% compared to untreated 

control (Fig. 4A). PPX enzyme activity did not change in plants treated with Tre alone, but it 

was strongly increased at 25 mM salinity by 92%, slightly decreased at higher salt 

concentrations, and significantly decreased at 150 mM salinity by 56% compared to untreated 

control (Fig. 4B). The activity of PPO enzyme showed a 62% decrease in Tre-treated seedlings 

compared to untreated ones under non-stress conditions, but it increased significantly by 58 and 

104% at concentrations of 25 and 50 mM salt, respectively, and remained unchanged at higher 

salinities (Fig. 4C). 

 

Discussion 

Much research has documented the negative effect of salinity on plant growth and 

biomass (Ahmad and Jhon 2005, Yoon et al. 2009, Qiu et al. 2014, Ahmad et al. 2018, Scagel 

et al. 2019, Sheyhakinia et al. 2020). Despite the reduction of some growth indices in basil 
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seedlings under saline conditions, root length, leaf characteristics, and shoot water content did 

not change and root dry weight increased. Considering the lack of change in the length of the 

root and also the decrease in the ratio of fresh weight to dry weight of the root under salinity, 

which is due to a decrease in fresh weight and increase of dry weight, the increase of root 

biomass can be caused by the accumulation of nutrients in the organ during stress. In fact, 

salinity causes a change in the pattern of carbon allocation between roots and shoots. This 

change in the pattern of carbon distribution during salinity is associated with the reduction of 

shoot biomass. An increase in root biomass and a decrease in shoot biomass under salt stress 

have been reported (Bernstein and Kafkafi 2002, Imada et al. 2015). Since this process is similar 

to the responses of roots and shoots to soil water availability (Zhang et al. 2005, McCarthy and 

Enquist 2007, Imada et al. 2008), one of the reasons is probably the reduction of soil moisture 

absorption (McCarthy and Enquist 2007). In fact, the inhibition of growth induced by salinity 

may be related to the reduction of water absorption due to the reduction of soil osmotic 

potential. Such a phenomenon leads to cell dehydration and loss of turgor pressure, which leads 

to growth arrest (Zhao et al. 2021). In addition, salinity leads to the accumulation of Na+ and 

Cl- ions, which reduces the absorption and transport of nutrients due to competitive interactions 

with their transporters (Zhao et al. 2021, Gao et al. 2022). However, in our results, salinity-

induced growth reduction was observed without a change in shoot water content, indicating that 

this reduction is associated with continuous water uptake and maintenance of shoot turgor 

pressure, as previously documented (De Costa et al. 2007, Alisofi et al. 2020, Sheyhakinia et 

al. 2020). Accumulation of proline in basil seedlings under salinity can explain the 

uninterrupted water uptake and thus the maintenance of shoot water content despite growth 

limitation. Therefore, changes in carbon partitioning and accumulation of osmolytes to continue 

water absorption by plants can be the main reason for growth inhibition under saline conditions. 

The results of studies on Hibiscus sabdariffa (Sheyhakinia et al. 2020) and Momordica 

charantia (Alisofi et al. 2020) under salt stress are in good agreement with our findings. 

Contrary to previous studies on the effect of Tre on plant growth under salinity stress 

(Mostofa et al. 2015, Abdallah et al. 2020), Tre treatment in most salinities decreased shoot 

length and fresh and dry weight of shoots and roots in basil seedlings, so that the dry weight 

reduction was more severe. Early experiments on the effect of Tre on higher plants through 

inhibition of trehalase (a Tre-degrading enzyme) in species with very low trehalase activity 

showed that Tre accumulation is toxic or at least Tre acts as a plant growth inhibitor possibly 

through inhibition of cell wall biosynthesis (Veluthambi et al. 1981, Veluthambi et al. 1982a). 

This effect is associated with a disturbance in carbohydrate metabolism as indicated by a 

decrease in sucrose content (Veluthambi et al. 1982b). Therefore, the reduction of growth in 

basil seedlings due to Tre treatment can be related to the low activity of this enzyme. 

Meanwhile, in plant species with high trehalase enzyme activity, such as Raphanus sativus, 

Quamoclit phoenicea, and Zea mays, toxicity and inhibition of growth by Tre were not observed 

(Veluthambi et al. 1981). In transgenic Arabidopsis seedlings in which trehalase enzyme 

activity was overexpressed, there was no effect of growth inhibition in the presence of Tre, 

unlike the control (Schluepmann et al. 2004). Therefore, the decrease of growth induced by Tre 

can be due to the plant's inability to metabolize it, which leads to the accumulation of trehalose-

6-phosphate and subsequently to the reduction of the glucose-6-phosphate pool (Schluepmann 

et al. al. 2004). In addition, it has been found that trehalose-6-phosphate induces plant defense 

responses, which are associated with growth reduction (Reignault et al. 2001, Brodmann et al. 

2002, Renard-Merlier et al. 2007). However, Tre did not affect SWC in basil seedlings up to 

100 mM NaCl, but increased it in seedlings exposed to 150 mM NaCl. This event is associated 

with proline hyperaccumulation, so it can be concluded that changes in carbon partitioning and 

directing it to proline biosynthesis are the reason for Tre-induced growth inhibition under saline 

conditions. Considering the role of Tre and its metabolism in the regulation of growth and 



 

12 

 

development (Nunes et al. 2013, O'Hara et al. 2013), it is likely that this metabolite is involved 

in the growth regulation processes of basil seedlings. In this regard, it has recently been found 

that methyl jasmonate treatment not only does not reduce the harmful effects of salinity stress 

in radish (Raphanus sativus) but can even inhibit plant growth (Henschel et al. 2023). This 

shows that signal molecules and osmolytes such as Tre, which usually increase tolerance to 

environmental stresses, do not work in the same way in all plants and their performance against 

different stresses can depend on the type of plant species. 

It has been found that the concentration of photosynthetic pigments is sensitive to 

environmental stresses and in most plants, it decreases significantly in response to salinity 

(Ahmad and Jhon 2005, Gunes et al. 2007, Yoon et al. 2009, Qiu et al. 2014). However, a study 

on tomato has shown that 0.3 M salt concentration induces Chl production per unit of leaf area 

(Agong et al. 2004). This shows that very low salinity induces Chl biosynthesis in basil, as 

observed in the concentration of Chl a and total Chl at 25 mM NaCl. In addition, the observed 

decrease in Chl a/b and Chl / Car ratios in response to salinity shows the greater sensitivity of 

Chl a compare to Chl b and Chl to Car. Contrary to current studies on the role of Tre in 

increasing the photosynthetic pigments of different plants under salinity (Theerakulpisut and 

Phongngarm 2013, Abdallah et al. 2016, 2020), treatment of basil seedlings with Tre in most 

salinities showed a significant decrease in pigment content compared to untreated plants. The 

increase in the ratio of Chl a/b in Tre-treated seedlings under non-stress conditions or not 

changing it at the concentration of 25 mM indicates the greater sensitivity of Chl b to Tre. It 

has been found that the biosynthesis of Chl b is carried out through the oxidation of a methyl 

group to a formyl group on the B ring of the Chl a molecule (Porra et al. 1994). Therefore, it 

can be assumed that the enzyme(s) involved in Chl a biosynthesis are more active than Chl b 

due to Tre treatment alone or in combination with low salinity. However, the sharp decrease of 

this ratio in salt concentrations of 50 mM and higher shows the greater sensitivity of Chl a to 

Tre. The change pattern of the Chl to Car ratio also shows the lower sensitivity of Car to Tre in 

non-stressed conditions or in combination with low salinity and its greater sensitivity in higher 

salinity concentrations. Considering the negative effect of Tre on the growth of basil seedlings 

under salt stress, the reduction of photosynthetic pigments can be attributed to the inability of 

plants to properly metabolize Tre or direct carbon to other metabolic pathways. 

Accumulation of sugars or osmotic regulators in plant cells under salinity is a strategy to 

control plant water content and inhibit water loss (Chaves et al. 2009). The role of the 

accumulation of soluble sugars in salinity stress tolerance has been widely studied (Mishra et 

al. 2008, Yin et al. 2010). This indicates the type of basil strategy in salinity tolerance that is 

done through the accumulation of soluble sugars. Considering the sharp decrease in the ratio of 

RS/NRS under salt stress compared to the control, it can be concluded that the accumulation of 

NRS occurs at a higher rate than RS during salt treatment. In addition, the numerical 

comparison of the amount of these sugars in response to different salt concentrations shows that 

the accumulation of NRS is almost twice as much as RS. This indicates the important role of 

non-reducing sugars in basil seedlings for salinity tolerance. On the other hand, the increase of 

soluble sugars during salinity stress is associated with the decrease in starch content. This 

suggests that a change in photosynthetic carbon partitioning occurs in basil seedlings during 

salinity stress, leading to more sucrose synthesis and less starch accumulation. The higher 

accumulation of NRS than RS confirms this. However, starch breakdown can also increase 

soluble sugars during salt stress. The conversion of starch to sugars, especially NRS, and a 

change in their metabolism, which has been introduced as a common defense strategy against 

water stress, is possible through increasing the activity of starch hydrolyzing enzymes such as 

amylases and simultaneous decrease of sucrose hydrolyzing activities (Kumari and Asthir 

2016). The unremarkable increase of NRS content in Tre-treated seedlings under salinity 

compared to the untreated controls indicates that this metabolite does not accumulate in basil 
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seedlings. This finding can confirm the hypothesis that Tre accumulates in some Tre-treated 

plants in another form such as trehalose-6-phosphate (Schluepmann et al. 2004). This proves 

that the effects of Tre on growth are due to changes in carbohydrate metabolism. Evidence to 

support this hypothesis comes from the observation that the simultaneous addition of sucrose 

in the presence of Tre and starch accumulation restores growth in response to Tre feeding 

(Wingler et al. 2000). Tre feeding leads to an increase in ADP-glucose pyrophosphorylase gene 

expression as well as an increase in its enzyme activity, which is crucial in starch biosynthesis 

(Wingler et al. 2000). In addition, trehalose-6-phosphate also plays a role in the activation of 

this enzyme (Kolbe et al. 2005). Various studies have shown that growth was impaired after an 

increase of the gene expression of this enzyme in potato plants, but with the addition of sucrose, 

growth returned to the normal state (Stark et al. 1992). Accordingly, one of the reasons for Tre-

induced growth inhibition during salt treatment can be due to the reduction of carbon for export 

to growth areas because of starch accumulation. 

Environmental stresses, including salinity, generally cause protein degradation or reduced 

synthesis due to the acceleration of the aging process (Mishra et al. 2008, Misra and Saxena 

2009). The results of our study on basil seedlings showed the opposite of this finding, which 

could indicate an increase in the synthesis of stress-specific proteins or enzyme proteins during 

the salinity period. The observed decrease in soluble protein levels, which was accompanied by 

a significant increase in total protein content in Tre-treated seedlings, could be attributed to a 

change in their solubility due to Tre treatment. This suggestion is supported by the fact that the 

level of soluble protein is positively correlated with protein solubility (Afify et al. 2012, Ma et 

al. 2019, Ebert et al. 2020). Therefore, the increase in total protein while the soluble protein 

decreased can be due to the role of Tre in reducing the solubility of proteins. The response of 

basil seedlings to Tre treatment can confirm that the pathway of carbon partitioning and its 

metabolism is changed due to Tre treatment, which in turn reduces growth in Tre-treated 

seedlings under salinity conditions. Similar results regarding the effects of Tre on salinity 

tolerance and its role in carbon partitioning have also been reported in Dunaliella bardawil 

(Panjekobi and Einali 2021). 

Accumulation of amino acids and proline is considered a common response during 

environmental stress, and is often associated with the improvement of plant tolerance to stress 

conditions (Claussen 2005, Khadri et al. 2006, Yoon et al. 2009). However, some studies have 

shown that the level of accumulated proline indicates the severity of stress symptoms when 

plants are exposed to different types of abiotic stresses (Metwally et al. 2003, Mostofa et al. 

2014, 2015). A study on Cathranthus roseus under salt stress showed that proline accumulation 

under stress conditions is negatively correlated with relative water content, biomass, and 

potassium accumulation (Chang et al. 2014). However, the lack of change in SWC in saline 

conditions or its increase due to Tre treatment and high salt dose, which is associated with 

proline accumulation, can indicate the increase of this metabolite in order to maintain the water 

content of the plant. Therefore, in our study, the excessive accumulation of amino acids and 

proline that occurred especially due to Tre treatment is related to the maintenance of water 

content, which is caused by Tre-induced metabolic changes during salt stress. In this way, the 

increase of these metabolites in seedlings treated with Tre alone also indicates a kind of stressful 

condition. On the contrary, studies on plants treated with Tre under salt (Nounjan et al. 2012, 

Mostofa et al. 2014, Sadak, 2019) and drought stress (Ali and Ashraf 2011) show a lower level 

of proline or amino acid in these plants, which could indicate a lower demand for proline or a 

compensatory mechanism for Tre, because both can act as an osmoprotectant. 

The increased activity of antioxidant enzymes in response to salinity can be considered 

as an indication of increased ROS production and a common protective mechanism to reduce 

oxidative damage caused by salinity. These results are consistent with other studies on the role 

of ROS-scavenging enzymes under salt stress (Ahmad et al. 2018, Alisofi et al. 2020, 
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Sheyhakinia et al. 2020). Different activities of antioxidant enzymes in response to Tre under 

salt stress have been reported in various plants. Tre treatment decreased the activity of 

peroxidase, catalase, and superoxide dismutase enzymes in rice under salt stress (Rohman et al. 

2019). In another study, the treatment of Chenopodium quinoa with Tre under salt stress 

increased the activity of APX, catalase and superoxide dismutase enzymes (Abdallah et al. 

2020). In addition, an increase in the activity of antioxidant enzymes has been observed with 

Tre treatment under different stress conditions (Zhao et al. 2019, Liu et al. 2020). However, in 

all these studies, Tre-treated plants showed tolerance to salt stress, which can indicate the 

existence of different strategies in plants to cope with salinity in the presence of Tre. In contrast, 

our results showed that the changes in enzyme activity patterns induced by Tre treatment do 

not indicate increased tolerance to salt stress, because these patterns are not correlated with 

other indicators showing stress reduction. 

 

Conclusion 

The results of this study show that salt stress without change in SWC decreases growth 

characteristics, photosynthetic pigments, and starch content, but increases the activity of ROS-

scavenging enzymes and the accumulation of metabolites including soluble sugars, proteins, 

free amino acids, and proline. Tre treatment not only does not reduce the adverse effects of 

salinity but even causes more severe inhibition of plant growth, further reduction of 

photosynthetic pigments and soluble proteins along with the excessive accumulation of free 

amino acids and proline. Therefore, Tre treatment is not effective in salinity tolerance of basil 

seedlings and reduces their growth possibly through diverting carbon to other metabolic 

pathways rather than growth processes. However, due to the effect of Tre on the change in 

carbon partitioning, the role of this molecule in various metabolic and physiological pathways 

is obvious, the detailed understanding of which requires further research on the physiological 

effects of Tre under stress and non-stress conditions. 
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