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INVESTIGATION OF THE EFFECT OF CONDUCTIVITY CHANGES
OF ISCHEMIC HEART TISSUE ON THE ST SEGMENT OF
ELECTROCARDIOGRAPHY USING THE FINITE ELEMENT
METHOD

Summary

Electrocardiography is a commonly used diagnostic method based on reading electrical
potentials on the human torso. Ischemia is a common pathology diagnosed with
electrocardiography and also the subject of many forward and inverse simulation studies. In
these studies, ischemia is usually modelled by imposing an unhealthy transmembrane potential
on the diseased region without taking the associated change in electrical conductivity of the
ischemic tissue into account. Our objective in this paper is to investigate numerically the effect
of ischemic conductivities imposed on the ischemic region on the outcome of the forward
electrocardiography problem of simulation of the ischemic heart. To achieve this objective, a
finite element code was written to solve the bidomain problem on realistic thorax geometries
with inhomogeneous and anisotropic conductivities. The geometric model for this study
consists of a single two-dimensional slice of MRI data available from the University of Utah
resources. Realistic conductivities are assigned to healthy and ischemic tissues which are
refined to achieve higher spatial density in order to improve numerical solution accuracy. The
results show that taking into account ischemic conductivity may significantly change the
estimated torso potentials in the forward analysis. We conclude that ischemic heart tissue should
be simulated not only by imposing an unhealthy transmembrane potential but also unhealthy
conductivities in numerical studies to achieve a more accurate simulation of this pathology.

Key words: bidomain heart, ischemic tissue, finite element method, conductivity,
forward problem

1. Introduction

The electrical activity of the heart is essential for its functioning. Mathematical modelling
of the heart’s electrical activity from cell level to tissue level has been a major research topic
for several decades.

Calculating the electrical field throughout the body arising from a cardiac source is known
as the forward problem of electrocardiography (ECG). The solution to the forward problem
allows researchers to predict the effect of various factors (such as geometry, inhomogeneity,
and anisotropy) on epicardial potentials and on body potentials [1].
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Ischemia is a relatively common heart condition caused by an insufficient oxygen supply to
the heart muscle due to reduced blood flow to the tissue. It is usually caused by partially or totally
clogged coronary arteries. Depending on where the blood flow is reduced in the heart, it can occur
in the anterior or posterior ventricular walls. Since it is a progressive pathology, the ischemic region
may grow in size. The clinical sign of acute myocardial ischemia is a shift of the ST segment of the
ECG relative to the normal, whose magnitude depends on the size and location of the ischemic
region in the heart tissue, as well as on the severity of the ischemia. In clinical practice, ECG has
modest sensitivity and specificity (65-80%) in detecting and localising myocardial ischemia [2, 3].

Determining the size and the location of the ischemic region in the heart from the
measured body surface potentials represents an inverse problem and has been a major focus of
numerical studies concerning conduction in the heart. The finite element method (FEM) is
widely utilised in forward and inverse problem simulations [4-6].

In a healthy heart, the whole heart muscle is in a depolarised state with a plateau
transmembrane potential (TMP) of 0 mV during the ST segment of the ECG. On the other hand,
in the case of ischemia, an abnormal TMP of -30 mV is observed in the tissue. FEM simulations
of ischemia are usually performed during the ST segment of the cardiac cycle where the heart
is considered to be at a momentary steady state. This effectively eliminates time as a variable
from the problem and greatly reduces the problem’s complexity. Ischemia is generally
simulated only by imposing the abnormal TMP -30 mV on the ischemic region in the heart [2],
[7]. However, the altered electrical conductivity associated with ischemia has usually been
disregarded in simulation studies until recently [8, 9]. The effect of altered conductivity has
never been systematically evaluated.

The goal of this numerical study is to investigate the effect of the conductivity change in
ischemic heart tissue on the resulting torso surface potentials during the ST segment of the FEM
simulation of the forward ECG problem. The effect of anisotropy of healthy and ischemic
conductivities is also evaluated in comparison to assumed isotropic conductivities.

2. Method

2.1 Bidomain model of the heart

In the bidomain model of the heart, the intracellular and extracellular media of the heart
muscle is considered as separate, overlapping, but interacting continua. Letting ®; and ®.
denote the intracellular and extracellular potentials, respectively, the TMP potential across the
cell membrane is given by

V =0 -0, (1)
Both potentials satisfy the Poisson equation:

VieVD,)=41 (2)

V(o VD,)=—41 3)

Here, A is the surface-to-volume ratio of the cell membrane and 7, is the transmembrane
current density per area [10]. The conductivity tensors of intracellular and extracellular
domains, o; and o. respectively, express the anisotropic conductivity tensors in the heart
muscle. Equations (1-3) can be combined into one as:

V- ((Gi +0, )Vq)e) ==V (Giv Vm) 4)

Equation (4) is the first of the two bidomain equations.
The current density across the membrane /» may be described by a time-dependent
capacitive current and ionic current
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ov,
ot
where Ci is the capacitance per unit area of the membrane and /io» is the ionic current.

lm = Cm +]ian (5)

Substituting equation (1) and equation (5) into equation (2) to eliminate ®@; gives

V : (Giv Vm) + v ’ (Givq)e) = Am (Cm 8;/;" + ‘[ion) (6)

Equation (6) is the second of the bidomain equations [11, 12].

During the ST phase, the time derivative and the net ion flux /io» in equation (6) vanish,
and the bidomain model reduces to equation (4) since equation (6) becomes redundant.

The torso is a passive isotropic conductor surrounded by air where the potential within
the torso region ®r satisfies the Laplace Equation:

V- (O-TVCDT) =0 (7

with o7 indicating the isotropic conductivity of the non-heart torso tissue (lungs, fat, skeletal

muscle, blood or torso cavity depending on the considered domain point). The continuity of
potential and current density, respectively, across the torso-heart interface (i.e. outer surface of
the heart) requires:

q)e = (DT (8)
(GeVCDe) ‘n, = _(O-TVCDT) ‘ny, )

where nj; indicates the unit outward normal vector perpendicular to the heart-torso interface.

The applied reference voltage in ECG translates to a Dirichlet boundary condition on part
of the torso’s outer boundary as

O, =D, (10)
The torso is surrounded by air and no current can flow out of it, which is a Neumann boundary
condition and can be expressed as:

(o,VO,)-n, =0 (11)
where n; is the outward normal of the torso.

Let x symbolise the point coordinates in the problem domain. Indicating the heart domain
with H and the torso with T, the associated outer boundaries with “0” and the entire problem
domain withQ =T U H , the model can be summarised as follows:

V- (6(x)VO(x)) = f(x), xeQ (12)
0, xeT
f(x):{V(c,,VVm(x)), xeH (13)
where
) T
(D(x)z{cDT z; (14
| oql xeT 15
o(x)= G, +0, xeH (13)

and where I is the 2x2 identity matrix
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(o,V®,)-n, =0, onol (16)
®,=0,, ondH (17)
(6,V®,)-n, =—(o,V®,)-n,, ondH (18)

In this work, we model the torso including the heart as a two-dimensional medium and
solve the two-dimensional version of the bidomain problem using the FEM. We preferred a
two-dimensional computational study rather than a three-dimensional analysis to reduce the
computational complexity of the problem. Important conclusions can still be drawn from two-
dimensional simulations [13] and this approach is still encountered in the literature [14].

2.2 Finite element formulation of the bidomain heart

The finite element formulation used is based on the standard Galerkin formulation and is
summarised here for completeness. The reader is referred to other sources for further details of
this formulation [2], [5], [15]. The weighted residual of equation (12) over the problem domain
is expressed as:

[[V-(e,v®,)]wd=0 (19)

for the torso and

j [V-((6,+6,)VD®,)+V-(6,VV,)| wdQ =0 (20)

for the heart region, with w indicating the weighting function. Using tensorial identities and the
Green-Gauss theorem on both equations (19-20) yields:

[(e,v@,)-VwdQ~ [ w(o,V®,)-n, dT + [ w(o,V®,)-n, dT =0 (21)
T oT oH

[(6,+06)VD,)-VwdQ— [ (o, +6,)V®D,)-n,d2 == [ (6,V7,)-Vw dQ (22)
H oH H

where Ol indicates the differential boundary element. We assume that the ischemic region does

not directly interface with the torso. When equations (21-22) are summed up and equations

(16), (18) are utilised, all boundary integrals vanish. (Note that the torso region has two

boundaries 07 and OH ):

[0, +06,)VD,)-VWwdQ+[(0,VD,)-VwdQ = [(6,VV,)- VwdQ (23)

The above formula prescribes basically a FEM formulation for the Poisson problem with
inhomogeneous conductivities. It should also be noted that the right-hand side of equation (23)
takes a nonzero value around the boundary of the ischemic zone in the heart and acts as the
source term. The integrals in equation (23) are the sum of individual integrals evaluated over
the M and L elements in the heart and the torso, respectively:

f“ [ (6, +6,)VD,)-VwdQ, +ZL:J-(O"TV®E)-deQk =—f: [(6vr,)-Vwde, (24)
i1 gy, k=17, k=l a,

Assuming a total of J nodes in the entire mesh, ®@ and w are interpolated on both regions
using the nodal shape functions Nj(x) as:

M
®,=>¢,N,=Nc (25)
Jj=1
M
w=>Yd N,=Nd (26)
Jj=1
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where N is the row vector containing the nodal shape functions, and the column vectors ¢ and
d contain the nodal degrees of freedom. The source term creates a force vector f with nonzero
entries corresponding to the heart nodes where VV  is nonzero. Equations (21-22), when

substituted into equation (20), result in a system in the form:
d" (Ke-f)=0 (27)

where K is the stiffness matrix and f is the force vector. The vector d is assumed to be arbitrary,
and the above equality holds if

Ke=f (28)
The solution of equation (24) gives the vector ¢ and produces the FEM solution to the problem.

2.3 Material properties of heart tissue

The anisotropy of the heart muscle is a consequence of its fibrous structure. The
conductivity is higher parallel to the fibres compared to the cross-fibre direction [4], [16].
Furthermore, the muscle fibres are organised in sheets. Consequently, it is possible to define
local principal directions of anisotropy at any point within the myocardium according to this
structure. In two dimensions, the first principal direction is along the fibre direction (fibre axis)
and the second one is perpendicular to the fibre axis lying in the sheet plane (sheet axis) [17].
In this local coordinate system, the conductivity tensor 6* is diagonal and is given as:

¢ = [G’ 0 } (29)

0 o,

where ¢; and o, are conductivities parallel and perpendicular to the fibre, respectively. In the

FEM formulation, the conductivity given in the local coordinates needs to be transformed to
the Cartesian coordinates [18, 19]. In two dimensions, if the local coordinates system has a
positive (clockwise) rotation of & with respect to the Cartesian coordinates, the conductivity
tensor is transformed to the Cartesian coordinates as:

6,=Ac,A" h=iore (30)

where ¢, is the conductivity tensor of either the intracellular (i) or extracellular (¢) medium,
and the matrix A is an orthogonal rotation matrix given by

Az{cosé’ sin@} 31

—sin@ cosl

Using the generalised helicoid model (GHM) [20-22] given in the literature, the fibre
orientation can be expressed with an orientation function (x, y) in two dimensions expressed as:

K. x+K,y j

(32)
1+ K, x—K,y

O(x,y) =tan™" [

where K, = 0.3 and K,y = 0.2 are the GHM constants [21].

It is known that, during the action potential, the transmembrane potential jumps from a value
of -90 mV to close to 0 mV for healthy tissue, but may reach only -30 mV in the case of ischemia.
It is also known that both intracellular and extracellular conductivity values decrease in the case of
ischemia or more severe lesions [7], [23]. In this work, the conductivity values for ischemic and
healthy tissues taken from the literature (Table 1) [24] are used in the FEM simulation.
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Torso cavity Lungs

Ventricles

Boundary where ECG chest leads are typically placed

Fig. 1 Two-dimensional geometric model of the torso. The marked boundary on the chest
indicates the location where the ECG chest leads are placed.

Table 1 Longitudinal (o,) and transverse (o,) values (see equation (29)) of anisotropic intracellular (c;) and
extracellular (o,) conductivities of healthy and ischemic tissues

Conductivity component Value (mS/cm)
Healthy intracellular longitudinal 3.000
Healthy intracellular transverse 0.315
Healthy extracellular longitudinal 2.000
Healthy extracellular transverse 1.351
Ischemic intracellular longitudinal 0.300
Ischemic intracellular transverse 0.006
Ischemic extracellular longitudinal 1.000
Ischemic extracellular transverse 1.010

2.4  Geometric model

The geometric model for this study consisted of a single two-dimensional slice of MRI
data obtained from the University of Utah resources [4], [13], [25]. The slice image is taken
50 mm superior to the apex of the heart, a level that cuts through the ventricular walls where
ischemia is most common and in line with the ECG chest leads. The image is processed for the
segmentation of lungs, skeletal muscle, fat, and the torso cavity (Fig. 1). Different isotropic
conductivity values are assigned to these regions (Table 2) [13], [26-27].

Table 2 Conductivity values (indicated as 6, in the FEM formulation) corresponding to different non-heart
tissues in the model

Tissue Conductivity (mS/cm)
Lungs 0.96
Skeletal Muscle 2.00
Fat 0.45
Blood 2.39
Torso Cavity 2.39

2.5 Modelling of the ischemic region

A healthy heart is electrically inactive during the ST phase. Hence, the ST segment of the
ECG is on the baseline level. However, in the presence of ischemia, a difference in the TMP
between the ischemic and healthy tissue occurs which results in the shift of the ST segment
from the baseline. The magnitude and direction of the ST shift and the ECG leads where the
shift is observed are indicative of the size and location of the ischemic region. However,
diagnosing ischemia and infarction is far from simple [27-29].
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Since we are interested in modelling only the ST-segment shift, we take advantage of the
fact that during the ST interval the TMP is homogeneous throughout the heart except for the
ischemic tissue [27]. Consequently, the TMP is defined as:

O0mV,  for healthy tissue
Vm(x,y)={ Y (33)

-30mV, forischemic tissue

When implementing equation (33), the transition from healthy tissue to diseased tissue
occurs not abruptly but through a transition zone. Clearly, the size of the transition zone and
the profile of Vi across this zone (i.e. the magnitude of the source) will affect VI and the
problem outcome. We defined a strip of thickness / of the ischemic region next to the healthy

region as the transition zone and proposed the following functional variation within this
zone:

V. =30- cos[%dj ~30 (34)
where £ is the width of the transition zone, which varies between 0.4 — 1 mm [30]. d is the

perpendicular distance of the considered point to the border of the ischemic region. Therefore,
equation (30) can be written in the form:

O, fOr QH@ulrhy
Vm (d) =430-cos (%dj - 303 for QTmm[lion (3 5)
=30, for Q

Ischemic

where QHealthy, Qischemic and Qtransition indicate healthy and ischemic tissues and the transition
zone of the heart, respectively.

2.6 Programming of the finite element code

To solve the forward problem of ECG, we programmed a FEM code from scratch in
Python language using the Spyder environment. The code is designed in such a way that it can
solve both the Poisson and Laplace PDEs in the appropriate parts of the problem domain
simultaneously. In addition, different conductivity tensors can be assigned to different elements
according to equation (28) and equation (29). These features are not typically available in
commercial finite element packages. The code was validated by comparing its results with those
obtained from the COMSOL Multiphysics (COMSOL AB, Stockholm, Sweden) package in
certain test problems. The finite element mesh of the geometric model was also generated using
COMSOL.

3. Results

Three different ischemia cases, each with an ischemic region of a different size and
location, are created within the geometric model. The ischemia cases represent realistic
scenarios and we will refer to them as “Ischemia 17, “Ischemia 2”, and “Ischemia 3”. A
membrane potential of -30 mV along with the appropriate conductivity values is imposed on
the ischemic regions to simulate ischemia.

The examples are run with isotropic and (more realistic) anisotropic conductivities both
in the healthy heart and in the ischemic region. For both healthy and ischemic tissues, the
isotropic conductivities are taken to be equal to the longitudinal conductivity values given in
Table 1. The resulting potentials are compared with those obtained with healthy conductivities
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imposed on the whole heart including the ischemic region. (Recall that, in the existing literature,

ischemia is imposed only through ischemic TMP, and conductivity change originating from
ischemia is usually ignored.)

The simulated potentials are observed along a boundary line in the chest that corresponds
to the locations of pericardial (chest) leads of ECG (Fig. 1), which is also indicated in Figs. 2,
5, and 8 which describe the above-mentioned three ischemia cases. The mesh nodes that
coincide with this boundary line are numbered from left to right, which we refer to as the “node

index”. In the graphs displayed in the figures below, the torso potentials are plotted against the
node index.

In the first example (Ischemia 1, Fig. 2), the results show that taking ischemic
conductivity into account increases the magnitude of the measured torso potentials both in the
isotropic case (Fig. 3) and in the anisotropic case (Fig. 4). The difference seems significant in
the anisotropic case.
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Fig. 2 Torso model and ischemic region on the posterior wall of the heart (Ischemia 1). The torso potential results
are displayed for the nodes located along the chest boundary line (dark line) as a function of the node index.
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Fig. 3 Torso potentials predicted at the epicardial
nodes with isotropic heart tissue using healthy and
unhealthy (ischemic) conductivities (Ischemia 1).

Fig. 4 Torso potentials predicted at the chest nodes
with anisotropic heart tissue using healthy and
unhealthy (ischemic)conductivities (Ischemia 1).
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In the next example (Ischemia 2, Fig. 5), an ischemic region is created again in the left
ventricle but closer to the posterior side of the chest. A similar comparison is made as in the
first example. Since the ischemic region in this example is closer to the nodes where the torso
potentials are measured, the measured potentials are larger in magnitude. Taking the ischemic
conductivity into account seems to make a difference in this example as well. While the
difference in the measured potentials is relatively small in the isotropic case (Fig. 6), it is
significantly higher in the anisotropic case (Fig. 7).

Node index 1-2-3... ..27-28-29

Fig. 5 Torso model and ischemic region in the left ventricle (Ischemia 2). The torso potential results are
displayed for the nodes located along the chest boundary line (dark line) as a function of the node index.
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Fig. 6 Torso potentials predicted at the epicardial Fig. 7 Torso potentials predicted at the epicardial
nodes with isotropic heart tissue and healthy and nodes with anisotropic heart tissue and healthy and
unhealthy (ischemic) conductivities (Ischemia 2). unhealthy (ischemic) conductivities (Ischemia 2).

The third example (Ischemia 3, Fig. 8) involves an ischemic region in the right ventricle.
Compared to the first two cases, the ischemic conductivity makes a smaller difference for the
potentials read close to the sagittal plane both in isotropic (Fig. 9) and anisotropic (Fig. 10)
cases. The difference is more pronounced at the leads away from the sagittal plane.
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Fig. 8 Torso model and ischemic region in the right ventricle (Ischemia 3). The torso potential results are
displayed for the nodes located along the chest boundary line (dark line) as a function of the node index.
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Fig. 9 Torso potentials predicted at the epicardial Fig. 10 Torso potentials predicted at the epicardial
nodes with isotropic heart tissue and healthy and nodes with anisotropic heart tissue and healthy and
unhealthy (ischemic) conductivities (Ischemia 3). unhealthy (ischemic) conductivities (Ischemia 3).

4. Discussion and Conclusions

FEM is widely used in various subfields of biomedical engineering such as orthopaedic
biomechanics [31, 32], biofluid mechanics [33, 34], biomaterials [35, 36], and
electrophysiology. With advancements in computer technology, computationally more
complex but more accurate methods are proposed for forward cardiology problems, where more
realistic physical properties are employed to model cardiac tissue, and for inverse cardiology
problems, where FEM optimisation is achieved through gradient methods [37], artificial neural
networks [38, 39], and genetic algorithms [40]. We believe that studies such as those presented
here are useful small steps towards the more accurate FEM simulation of heart
electrophysiology.

In this study, we have numerically investigated the effect of ischemic conductivity on the
torso potentials for three different numerically constructed ischemia cases. To the best of our
knowledge, this is the first study that evaluates the relevance of ischemic conductivity in
numerical heart simulations.

We have observed that the torso potentials are affected differently depending on the size
and location of the ischemic region. Larger ischemic regions that are closer to the pericardial
(chest) leads cause a larger depression in the torso potentials.
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Taking the ischemic conductivity into account can cause significant changes in the torso
potentials. The magnitude of this change also depends on the size and location of the ischemic
region. We have observed that the change is more pronounced if the ischemic region is larger
and closer to the posterior of the heart (such as in the Ischemia 1 case). In other words, the
larger the “heart material” between the ischemic region and the leads, the stronger is the effect
of ischemic conductivity.

The anisotropy of the conductivity has a strong influence on the torso potentials. [schemic
conductivity has a greater effect on the torso potentials if the anisotropy of myocardium is taken
into account. Depending on the size and the location of the ischemic region, anisotropic
ischemic conductivity may lead to torso potentials that are twice as large as those produced by
anisotropic healthy conductivity induced on the ischemic region. In the Ischemia 1 and 2 cases,
this difference is percentage-wise smaller when isotropic conductivities are utilised. With
isotropic conductivities, the difference may be smaller in magnitude but the shift in TMP is
consistently towards higher magnitudes at each output point. A cross-comparison between the
graphs reveals that the difference in the estimated torso potentials with isotropic-healthy
conductivities and with anisotropic-unhealthy conductivities can be even more pronounced.
Consequently, it can be argued that a significant improvement in the heart model can be
achieved if ischemic conductivity and the associated anisotropy are simultaneously taken into
account in the model.

In an entirely healthy heart, the torso potentials should read as exactly zero during the ST
phase of ECG. In the case of ischemia, the difference in the TMP of the healthy and ischemic
tissues forms a distributed dipole across their common boundary, which acts as a current source.
The magnitude of the dipole is related to V'V, per equation (4). The length of the boundary (i.e.
the size of the ischemic region) is a determinant of the cumulative strength of the source. These
factors, along with the location of the ischemic region, determine the level of torso potentials.
In general, the magnitude of the ST shift is relatively low, yet taking the ischemic conductivity
into account makes a significant difference in the severity of the ST shift.

In this work, the transition of the TMP potential from the healthy to the ischemic region
is given by the expression in equation (34). In the literature, different functional forms
expressing a smooth transition from the healthy region to the unhealthy one are used [7-9], [41,
42]. It should be noted that the width of the transition zone 4 has a minimal effect on the problem
outcome. The last term in Eq. 23 is the source term, VV,, where is integrated over the area of a

closed strip surrounding the ischemia zone where it has a nonzero value. A smaller assumed /
results in a larger VV,, value (hence a larger integrand value) but a smaller strip area (hence a

smaller integration region). In contrast, a larger assumed /% results in a smaller VV,, but a larger

strip area. Consequently, the magnitude of the source term is related mainly to the value of
ischemic Vi and the length of the ischemic zone boundary (hence the size of the ischemic
region).

While the forward ECG problem is actually a three-dimensional problem, we performed
a two-dimensional analysis in this work to deal with a moderate level of computational burden.
Although we believe that the main conclusions are not going to change, it is possible to repeat
this study on a three-dimensional model. The computational burden that comes with a three-
dimensional simulation is significantly higher than we encountered in the current study, and a
three-dimensional model requires proportionally higher computing resources. Another
idealisation employed in this study is to use a generic torso model and conductivity values taken
from the literature. In reality, torso geometries, as well as conductivity values, vary from one
patient to another. We believe that the qualitative conclusions drawn from this study will remain
largely intact, while its quantitative outcome may change with the above-mentioned factors,
especially with variations in the torso geometry.
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The computational setting established in this work can be used to research more clinically
relevant problems. For example, if ischemic conductivity is taken into account, it may be
possible for ischemia occurring in certain parts of the heart to be better located by solving the
inverse problem of ECG with FEM. Similarly, again using the inverse problem, non-standard
ECG lead spots can be identified on the chest to better locate the ischemia in the heart. In such
an analysis, taking the ischemic conductivity into account may increase the solution accuracy
of the problem.
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