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Running title: PRETREATMENT OF FENUGREEK SEEDS WITH GIBBERILLIC ACID 

Abstract - Various approaches are used to improve crop production. Seed priming is one of the 

simplest and least expensive methods currently used to ensure rapid and uniform yields. Our 

study highlights the role of priming and imbibition in improving seed germination. The 

objective of this study was to investigate the effect of seed imbibition and hormopriming with 

0.1 mM gibberellic acid (GA3) on germination performance and biochemical changes in 

fenugreek (Trigonella foenum-graecum L.) radicles. The results showed that hydropriming and 

imbibition with GA3 significantly improved germination performance and radicle growth. 

Concurrently, treatments induced stimulation of the antioxidant activities of superoxide 

dismutase, ascorbic peroxidase, catalase and guaiacol peroxidase, and decreased lipid 

peroxidation, stimulated an increase in total non-enzymatic antioxidant capacity and reduced 

glutathione content. Accumulation of hydrogen peroxide and cytochemical analysis of reactive 

oxygen species (ROS) in situ confirmed the role of imbibition in stimulating ROS. Interestingly 

the effects of imbibition with gibberellic acid were more effective then hormopriming, probably 

due to the partial degradation of GA3 during dehydration process. 

  
Keywords: hormopriming, germination, gibberellic acid, radicle, reactive oxygen species, 

Trigonella foenum-graecum  

 

Introduction 

Plant production and productivity are strongly determined by seed germination, which is 

a critical step in the life cycle of higher plants (Cheng and Bradford 1999). Seed germination 

may be asynchronous and consequently plant performance may be far from satisfactory. There 

are currently several approaches to overcoming this problem, including priming. Seed priming 

is a pregermination technique that ensures rapid, uniform and synchronized germination and 

improves seedling vigour and growth under normal and adverse environmental conditions 

(Varier et al. 2010). The priming process involves the imbibition of seeds to allow 

pregermination metabolic activation, followed by dehydration prior to the reversible phase 

(avoiding radicle breakthrough) to avoid radicle emergence (Finch-Savage and Leubner-

Metzger 2006). This technique is economical and environment-friendly. There are different 

priming methods for improving seed germination performance, such as hydropriming (imbibing 

seeds in water), osmopriming (imbibing in an osmotic solution), halopriming (imbibing in a 

saline solution), chemopriming (imbibing in chemical solutions), and hormopriming (imbibing 

with phytohormones). Hormopriming, the technique used in this study, is based on treatment 

with plant hormones such as auxins, abscisic acid, cytokinins, and gibberellins. This type of 

treatment results in a higher germination performance and the resulting plants can be more 

tolerant to abiotic stresses including water stress (Singh and Maheswari 2017). Several authors 

have shown that the positive effects of priming are associated with various physiological, 

biochemical, cellular, molecular and genetic changes such as mobilization of reserves, 
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degradation of albumen, stimulation of osmolyte synthesis and activation of the cell cycle and 

some abiotic stress tolerance genes. The activation of antioxidant enzyme systems has been 

extensively studied in primed seeds (Varier et al. 2010, Boucelha et al. 2019a). The signalling 

roles of reactive oxygen species (ROS) in seed germination and dormancy have been well 

documented and it is assumed that ROS accumulation is beneficial for seed germination and 

seedling growth (see the review by Bailly et al. 2008 and Bailly, 2023). In a more precise way, 

Bailly et al. (2008) proposed the concept of the "oxidative window for germination", which 

restricts the occurrence of the onset of germination to a critical range of ROS level. Thus, ROS 

homeostasis regulates the beginning of germination, which is why activity of ROS-scavenging 

systems plays an important role. Furthermore, several authors also studied the involvement of 

ROS in the priming phenomenon (Boucelha et al. 2019a, Ren et al. 2023).  

The role of ROS in seed dormancy control is due to their interaction with plant hormones 

that have central functions in seed dormancy and germination such as gibberellic acid (GA) 

(see review by Bailly et al. 2008). At low levels applied to the seed, GA stimulates germination 

by breaking dormancy through the activation of hydrolytic enzymes such as amylases, which 

promote the breakdown of reserves that provide energy for germination, resulting in rapid cell 

division and radicle elongation (Gubler et al. 1995). ROS have been reported to stimulate GA 

biosynthesis through a transcriptional regulation (Li et al. 2018) and GA treatment has been 

shown to induce ROS production (Cembrowska-Lech et al. 2015) by modifying the redox status 

of aleurone proteins, a process which might be related to ROS accumulation (Maya-Ampudia 

and Bernal-Lugo 2006).  

Few studies have focused on the redox status of root radicles following treatment with 

GA, particularly applied as hormopriming (Ellouzi et al. 2023). Thus, the objective of this work 

was to study the effect of GA applied in two different ways, by seed imbibition in GA followed 

by rinsing (pretreatment with GA) and by hormopriming (GA treatment followed by 

redehydration) on the redox status of Trigonella foenum graecum L. radicles by investigating 

enzymatic and non-enzymatic antioxidant systems. Fenugreek (Trigonella foenum graecum) is 

an annual herb that belongs to the family Leguminosae cultivated worldwide, especially in 

southwest Asia, Middle East and Mediterranean. Due to its strong flavour and aroma fenugreek 

in one of those plants whose leaves and seeds are widely consumed as a spice in food 

preparations, and as an ingredient in traditional medicine. Its seeds are used for their 

carminative, tonic and aphrodisiac effects (Chopra et al. 1986) and it is assumed to have 

antidiabetic effect, hypocholesterolemic influence, antioxidant potency, digestive stimulant 

action, and hepatoprotective effect (Srinivasan 2006). 

 

Materials and methods 

Plant material 

Our study was carried out on fenugreek seeds (Trigonella foenum-graecum L.), variety 

Halba from southern Algeria. Homogeneous seeds were selected from the same lot and rinsed 

with 5% hypochlorite solution for disinfection. 

 

Treatments, seed germination and measurement of seedlings radicle growth 

For pretreatment seeds were treated by imbibition in distilled water or 0.1 mM GA3 for 8 

hours and then rinsed before germination. Hormopriming and hydropriming were performed 

by seed soaking in 0.1 mM GA3 or in distilled water, respectively, for 8 hours and then rinsed 

and dehydrated under ventilation for 48 hours before germination. Control seeds were not 

treated in any way before germination. Treated and control seeds were germinated in Petri 

dishes (9 cm in diameter) on four layers of absorbent paper soaked in distilled water. Three 

Petri dishes, with 50 seeds each, were used per treatment. For the first 24 hours the germination 
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experiment was performed in an oven at 25 ° C, after which the Petri dishes were moved to a 

14 hours-photoperiod of natural daylight and room temperature (24 ± 1 C) for the next two 

days. After three days radicles were sampled for ROS detection, biochemical analyses and 

measurement of activity of antioxidant enzymes. 

The length of radicle obtained from treated and untreated seeds was measured by graph 

paper each day for three days and expressed in cm. The fresh weight of treated and untreated 

radicles was measured after the 3rd day and expressed in grams.  

 

Cytochemical detection of ROS 

Hydrogen peroxide (H2O2) in situ was detected by the method of Thordal-Christensen et 

al. (1997), using a cytochemical method with 3,3'-diaminobenzidine (DAB). A brown colour is 

visible at the site of reaction of DAB with hydrogen peroxide, due to polymerisation of the 

DAB molecule. 

Superoxide anions (O2
.-) in situ were detected by a cytochemical method using nitro blue 

tetrazolium (NBT) (Rao and Davis 1999). The superoxide radicals present in tissue reduce the 

NBT to a stable formazan of blue-indigo colour (Beyer and Fridovich 1987). 

 

Biochemical analyses 

Hydrogen peroxide (H2O2) was measured according to the method described by Alexieva 

et al. (2001) after reaction with 1 M potassium iodide (KI) in 100 mM potassium phosphate 

buffer (pH 7.0). The reaction was developed for 1 hour in darkness (yellowish colour) and 

absorbance measured at 390 nm. The amount of hydrogen peroxide per fresh weight (FW) was 

calculated using a standard curve prepared with known concentrations of H2O2 (0 to 10 nM) 

and expressed as nmol g-1 FW. 

Lipid peroxidation was measured by quantification of the coloured malondialdehyde 

complex (MDA-TBA) detected at a wavelength of 532 nm, as described by Popham and 

Novacky (1991). The MDA content was expressed as µmol g-1 FW. This was calculated using 

the molar extinction coefficient of MDA (ε = 155 mM-1 cm-1). 

Reduced glutathione (GSH) was measured according to Moron et al. (1979) by using 5,5’-

dithiobis-2-nitrobenzoic acid (DTNB) (Ellman’s reaction) to give a yellow-coloured product 

that absorbs at 412 nm. The measurement was calculated from the molar extinction coefficient 

(ε = 13.3 mM-1 cm-1) and expressed as µmol g-1 FW. 

The total non-enzymatic antioxidant capacity (TAC) was estimated by the 

phosphomolybdenum method (Prieto et al. 1999). TAC is expressed in mg equivalents of 

ascorbic acid per g of dry weight. A standard curve was constructed using 0-300 μg mL-1 

ascorbic acid. 

 

Activities of antioxidant enzymes  

For extraction of catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase 

(APX), 100 mg of radicles were cold ground in extraction buffer (0.1 M Tris-HCl, pH 8.1). The 

guaiacol peroxidase (GPOX) was extracted from 100 mg of radicles ground in 0.1 M potassium 

phosphate buffer (KH2PO4 / K2HPO4, pH 6.5) under cold conditions. The enzyme activity was 

measured in protein extracts by spectrophotometry. Total soluble proteins were determined by 

the Bradford method (Bradford 1976).  

CAT activity was determined following the decomposition of H2O2 at 240 nm using the 

method described by Anderson et al. (1995). The activity was expressed as µmol of H2O2 

degraded per minute per mg of protein. This activity was calculated using the molar extinction 

coefficient of H2O2 (ε = 36 mM-1 cm-1). 

GPOX activity was determined according to the method of MacAdam et al. (1992), 

slightly modified by Boucelha et al. (2019b). The activity is measured by a colorimetric 
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technique based on the increase in absorbance at 470 nm due to the polymerisation of guaiacol 

to tetraguaiacol (oxidation), which gives an orange colour in the presence of hydrogen peroxide. 

The activity was expressed in μmol of oxidised guaiacol per minute per mg of protein, using 

the molar extinction coefficient of tetraguaiacol (ε = 26.6 mM-1 cm-1). 

APX activity was measured according to the method of Nakano and Asada (1981) by 

following the oxidation of ascorbate by hydrogen peroxide, which absorbs at a wavelength of 

290 nm. The enzymatic activity is expressed as µmol of ascorbate oxidised per minute per mg 

of protein. This activity was calculated using the extinction coefficient of ascorbate (ε = 2.8 

mM-1 cm-1). 

SOD activity was measured by method reported by Marklund and Marklund (1974) and 

slightly modified by Boucelha et al. (2019a). It is based on the competition between the 

oxidation reaction of pyrogallol by superoxide ions and the dismutation by SOD. The increase 

in absorbance at 420 nm was due to the auto-oxidation of pyrogallol. An enzymatic unit was 

defined as the quantity of enzyme capable of inhibiting 50% of the autooxidation of pyrogallol 

under the conditions of the assay. The activity of SOD was expressed in units per minute and 

per mg of protein. 

 

Decomposition kinetic of GA3  

To study the stability of GA3 in water used for imbibition, we studied the spontaneous 

decomposition kinetic of 0.1 mM GA3 by spectrophotometry at 254 mM, measuring the 

appearance of gibberellenic acid, a degradation product, according to the method of Pérez et al. 

(1996). 

 

Statistical analysis 

The ANOVA test was used to compare the results. The statistical significance between 

the results was assessed according to the Tukey post-hoc test and values were considered 

statistically significant at P < 0.05. The analysis of data was performed through STATISTICA 

6.0 software (Stat Soft, Inc.). All values were expressed as mean and standard deviation. 

 

Results 

Radicles growth 

Fenugreek seed pregermination treatments significantly improved radicle length, 

following the same, almost linear, kinetics for all treatment types (Fig. 1A). However, this 

improvement was closely related to the type of treatment applied. In fact, we found that GA 

imbibition (without redehydration) showed the best growth, with an increase of about 66% on 

day 3 compared to the control batch. This was followed by the hydropriming (HP) with an 

increase of 49%, then the imbibition with water (W) and hormopriming (HO) with an increase 

of 36% and 20%, respectively, compared to the control. All treatments induced an increase in 

the fresh weight of fenugreek radicles (Fig. 1B). The greatest increases are recorded for 

imbibition with GA (107%) and hormopriming (95%). For the hydropriming, the increase was 

75% while for imbibitions, it was only 23%. 

 



 

6 

 

 
 

Fig. 1. Radicle length (A) and fresh weight (B) of fenugreek seedlings after different treatments 

of seeds. W − imbibition with water, HP − hydropriming, GA − imbibition with 0.1 mM 

gibberellic acid, HO − hormopriming with 0.1 mM gibberellic acid. Results are expressed as 

means (N = 3) and error bars represent standard errors. Different alphabetical letters indicate a 

significant difference (P < 0 .05) between means. 

 

ROS production in situ 

DAB assay revealed that the degree of H2O2 accumulation in tissue varied according to 

the type of treatment applied. Control seed radicles were characterized by the lowest production 

of H2O2 (Fig. 2A). A high accumulation of H2O2 was observed in the radicles of GA and 

hydropriming treated seeds, especially in the region of the root cap and elongation. In contrast, 

a low H2O2 accumulation was observed in the radicles resulting from hormone priming and 

water imbibition treatments. 

Fenugreek radicles treated with NBT showed an accumulation of superoxide anions in 

the tissue (Fig. 2B). In the control radicles, the accumulation of superoxide anions was lower 

than in the radicles from treated seeds. Gibberellic acid imbibition showed the highest 

production of superoxide anions localized throughout the radicle. Hydropriming treatment also 

induced an accumulation of superoxide anions. However, in water imbibition and 

hormopriming treatments the presence of superoxide anions was only slightly visible. 
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Fig. 2. Detection of reactive oxygen species in fenugreek radicles after different treatments of 

seeds: hydrogen peroxide (H2O2) after 24 hours of germination (A) and superoxide anion      

(O2
.-) after 48 h of germination (B). W − imbibition with water, HP − hydropriming, GA − 

imbibition with 0.1 mM gibberellic acid, HO − hormopriming with 0.1 mM gibberellic acid. 

 

 

Hydrogen peroxide and malondialdehyde content  

Results indicate that the pregermination treatments of fenugreek seeds induced a 

significant increase in H2O2 concentration in the radicles except for water imbibition (Fig. 3A). 

Indeed, hydropriming and GA imbibition resulted in almost the same increase in H2O2 content 

(101% and 98%, respectively), as the control. An increase of 23% was observed in the case of 

the hormopriming treatment compared to the control.  

Pregermination treatments of fenugreek seeds showed a significantly higher MDA 

content of control radicles than the radicles of treated seeds (Fig. 3B). Seed imbibition with 

gibberellic acid, favoured a decrease in MDA content for 44% compared to the control. This 

was followed by the hydropriming treatment (decrease of 24%), then the hormopriming 

treatment (decrease of 16 %) and finally the water imbibition treatment (decrease of 14%) 

compared to the control.  
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Fig. 3. Contents of hydrogen peroxide (H2O2) (A) and malondialdehyde (MDA) (B) in the 

radicles of fenugreek seedlings after different treatments of seeds. W − imbibition with water, 

HP − hydropriming, GA − imbibition with 0.1 mM gibberellic acid, HO − hormopriming with 

0.1 mM gibberellic acid. Results are expressed as means (N = 3) and error bars represent 

standard errors. Different alphabetical letters indicate a significant difference (P < 0 .05) 

between means. 

 

 

Activities of antioxidative enzymes  

The pregermination treatment of fenugreek seeds induced a significant increase in 

antioxidant enzyme activities in some treatments (Fig. 4). 

We observed significantly increased activity of catalase in seedlings from the gibberellic 

acid and hydropriming treated seeds, with increases of 88% and 33%, respectively, compared 

to the control. However, a less significant increase was observed in the water-imbibition (15%) 

and hormopriming treatment (12%) (Fig. 4A). 

GPOX activity was significantly higher in fenugreek radicles pretreated with gibberellic 

acid, with an increase of 46% compared to the control. Hydropriming had a less prominent 

effect on the activation of this enzyme, with an increase of 16% over the control. In contrast, 

hormopriming and water-imbibition of the seeds had no effect on GPOX activity in the radicle 

(Fig. 4B). 

The results of the APX activity showed that the pretreatments caused a very significant 

activation of this enzyme. Indeed, GA imbibition and hydropriming caused the significantly 

highest increase compared to the control (252% and 215% respectively), while in 

hormopriming and water-imbibition, the increase was of 188% and 148% respectively (Fig. 

4C). 
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The antioxidant enzyme activity of SOD in the radicle revealed that GA imbibition and 

hormopriming induced respectively significant increases of 29% and 17% over the control. A 

less significant increase was observed in the activity of this enzyme for hormopriming while 

water-imbibition treatments did not show any significant change from the control (Fig. 4D). 

 

 

 
 

Fig. 4. Antioxidant activities of catalase (A), guaiacol peroxidase – GPOX (B), ascorbate 

peroxidase – APX (C) and superoxide dismutase – SOD (D) in fenugreek radicles after different 

treatments of seeds. W − imbibition with water, HP − hydropriming, GA − imbibition with 0.1 

mM gibberellic acid, HO − hormopriming with 0.1 mM gibberellic acid. Results are expressed 

as means (N = 3) and error bars represent standard errors. Different alphabetical letters indicate 

a significant difference (P < 0 .05) between means. 

 

Total antioxidant capacity and reduced glutathione content 

All seed treatments significantly stimulated antioxidant capacity in the radicles of 

fenugreek seedlings; however, this increase was dependent on the type of treatment applied 

(Fig. 5A). Indeed, we observed that radicles soaked with gibberellic acid were characterized by 

the highest value in comparison to control (45%) followed by hydropriming (32%), 

hormopriming (22 %) and water-imbibition (10%) compared to the control. 

Gibberellic acid and hydropriming treatments of fenugreek seeds caused a high increase 

in reduced glutathione content in the radicles (Fig. 5B) with percentages of 72% and 55% 

respectively compared to the control. However, we observed that hormopriming induced a 

weaker increase with 15% while water-imbibition treatment did not present any significant 

difference with the control.  
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Fig. 5. Total antioxidant capacity (A) and reduced glutathione content (B) of fenugreek radicles 

after different treatments of seeds. W − imbibition with water, HP − hydropriming, GA − 

imbibition with 0.1 mM gibberellic acid, HO − hormopriming with 0.1 mM gibberellic acid. 

Results are expressed as means (N = 3) and error bars represent standard errors. Different 

alphabetical letters indicate a significant difference (P < 0 .05) between means. 

 

Gibberellic degradation 

In order to follow the stability of gibberellic acid in an aqueous medium, we followed its 

spontaneous degradation at 25 °C. From the curve obtained (Fig. 6), we were able to deduce 

that the gibberellic acid solution decomposes spontaneously into gibberellinic acid (inactive 

form).  
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Fig. 6. Kinetics of gibberellic acid degradation at 25 °C represented by gibberellinic acid 

appearance. 

 

 

Discussion 

In this study, we found that pregermination treatments of fenugreek seeds, particularly 

imbibition with gibberellic acid, induced biochemical changes in the radicles derived from these 

fenugreek seeds and consequently better seed germination and seedling growth. 

A significant improvement in germination performance was observed in Trigonella 

foenum-graecum L. seeds that had undergone pregermination treatments, particularly in the 

gibberellic acid and hydropriming treatments, followed by the hormopriming and water 

imbibition. 

Hydropriming is known to improve seed germination performance and has been reported 

for rice (Hussain et al. 2015), sunflower (Hussain et al. 2006), wheat (Ahmadi et al. 2007), 

maize (Janmohammadi et al. 2008), bean (Ghassemi-Golezani et al. 2010), lentil (Saglam et al. 

2010) and black-eyed bean (Boucelha et al. 2019a). These authors have shown that priming 

was an effective method for improving germination performance, resulting in uniform and 

homogeneous cultures. Several authors have suggested that this improvement is related to 

changes at the seed level, such as accelerated water uptake (Gelormini 1995), increased 

respiration intensity Corbineau et al. (2000), nucleic acid synthesis, strong degradation of 

reserves (Varier et al. 2010), activation of antioxidant enzyme activities (Amooaghaie and 

Vaviland 2011) and strong protein synthesis under genetic control (Varier et al. 2010). All these 

phenomena could be the consequence of a "memorization by the embryo" of events that 

occurred during the redehydration imposed during priming. It has been shown that a plant can 

store information when exposed to stress events and can use this memory to aid responses when 

these events reoccur (see review by Kinoshita and Seki, 2014). It has been demonstrated that 

epigenetic mechanisms are essential for stress memory and adaptation in plants (Chen and 

Arora 2013). Gibberellic acid is known to play a role in stimulating seed germination and is 

involved in many physiological and biochemical processes in plants (Mirheidari et al. 2022). 

Moreover, gibberellic acid is widely used in the laboratory and greenhouse to trigger the 

germination of some seeds that would otherwise remain dormant (Riley 1987). Thus, several 

works have reported the use of gibberellic acid as an exogenous treatment to enhance 

germination (Seandhalaksmi et al. 2022). Based on the work of Ogawa et al. (2003), exogenous 

GA enters the seed and is added to endogenous GA. Indeed, these authors showed that GA-

deficient Arabidopsis thaliana seeds could not germinate without the addition of exogenous 
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GA. This improvement has been linked to the synthesis and activation of amylases (Vieira et 

al. 2002) and lipases (Jridi et al. 2004), allowing accelerated germination with faster division 

cells (Li et al. 2018). Thus, seeds treated with gibberellic acid showed significant cell elongation 

compared to the other treatments. This cell expansion would also be due to the GA activation 

of aquaporins, membrane channels involved in water transport, which increases cell turgidity 

(Ogawa et al. 2003). 

The treatments applied to fenugreek seeds stimulated the production of ROS in embryonic 

tissues, more precisely in the meristematic zone. This ROS formation, as evidenced by 

cytochemical tests and increased H2O2 content, was more pronounced in the gibberellic acid 

and hydropriming treatments. These effects are in line with the concept of the "oxidative 

window" proposed by Bailly et al. (2008) and confirmed in the case of hydropriming by 

Boucelha et al. (2019a). According to Bailly et al. (2008), for seed germination it is necessary 

that ROS content be within a range that allows signalling, while lower or higher amounts of 

ROS would lead to inability to germinate. Published data have shown that ROS are key players 

in several physiological processes in seeds such as seed dormancy control due to their 

interaction with plant hormones like gibberellic acid (Finkelstein et al. 2008) and the perception 

and transduction of environmental conditions during imbibition (Bailly 2019). In dry seeds, i.e 

at low moisture content, ROS accumulation would probably result mainly from non-enzymatic 

reactions. In this physiological state, glucose and amino groups derived from amino acid and 

nucleic acids are condensed to form Amadori and Maillard products, which are major sources 

for ROS production (Sun and Leopold 1995) and lipid peroxidation (McDonald 1999). 

However, during imbibition, the reactivation of metabolism causes an enhanced accumulation 

of ROS, generally resulting from electron leakage within the mitochondrial electron transport 

chain (Kranner et al. 2010). 

Bailly et al. (2008) proposed a mechanism for the control of dormancy and germination 

through a dialogue between ROS and hormone. Indeed, according to these authors, there is an 

interaction between ROS and the gibberellic acid signalling pathway during germination. Under 

imbibition conditions, NADPH oxidase and β-oxidation increase ROS levels, which in turn 

repress the DELLA protein responsible for the negative regulation of GA synthesis. This 

induces the synthesis of gibberellic acid, which then triggers the activation of GA-inducible 

transcription factors GAMYB which in turn induces the transcription of α-amylase in the 

aleurone layers of many seeds (Gubler et al. 1995, Kaneko et al. 2002). 

Membrane lipid peroxidation, which causes damage to cell membranes, is a good 

indicator of the presence of reactive forms of oxygen and thus allows assessment of cellular 

oxidative stress intensity. Oracz et al. (2007) supported the hypothesis of an inverse correlation 

between MDA content and seed dormancy since they observed that the MDA content increased 

during dormancy alleviation. Our results showed a more pronounced decrease in MDA content 

in the gibberellic acid and hydropriming treatments compared to the control as well as 

hormopriming and water imbibition where the decrease was less prominent. A reduction in lipid 

peroxide content in hydroprimed seeds has already been reported by El-Araby and Hegazi 

(2004) for tomato and Sharma et al. (2014) for okra seeds. This decrease was also observed in 

gibberellic acid-treated seeds, as shown in the work of Li et al. (2013) and Ahmad (2010). The 

reduction in MDA accumulation in primed seeds could be explained by improved membrane 

repair during the priming process and induction of antioxidant enzymes (Nawaz et al. 2013). 

For all treatments in this study, the decrease of MDA content correlated with the increase of the 

different antioxidative enzymes activities as well as increased level of glutathione, but did not 

correlate with the level of ROS. Therefore, the MDA content could be the result of the enhanced 

antioxidative defence which prevents oxidative damage despite higher level of ROS. Thus, cells 

maintain ROS homeostasis during germination (Li et al. 2013). 
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Fenugreek seed treatment stimulated the activation of antioxidant enzymes such as 

superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase at the radicle 

level, with the most significant effect in the gibberellic acid pretreatment. These results are in 

agreement with those of different authors who showed that treatment of seeds with gibberellic 

acid leads to an increase in enzymatic antioxidant activity (Li et al. 2013). The increase in 

antioxidant enzymes activities was also observed in fenugreek radicles after hydropriming 

treatment although less prominently. Several studies showing that hydroprimed seeds of several 

crop species are characterised by very high antioxidant activities (Varier et al. 2010, Boucelha 

et al. 2019a, Melzi Ou Mezzi et al. 2021). Thus, several works have linked germination 

improvement to increased antioxidant enzymatic activities, which allow the elimination of free 

radicals, and, then, the restoration of the homeostasis of the redox status (Varier et al. 2010, 

Boucelha et al. 2019a, Boucelha et al. 2021).  

Total antioxidant capacity corresponds to the presence of natural antioxidants capable of 

preventing oxidative damage (Priando et al. 1999). These non-enzymatic antioxidants include 

glutathione, ascorbic acid (vitamin C), tocopherols (vitamin E), carotenoids and phenolic 

compounds including flavonoids (Asada 2006). TAC levels reflect the reduced state of these 

molecules. Our results showed that radicles from seeds soaked in gibberellic acid had the 

highest total non-enzymatic antioxidant activity, which is in agreement with lower MDA 

content. Few studies have measured non-enzymatic antioxidant activities after pregermination 

treatments. Boucelha et al. (2019a) showed no significant changes in hydroprimed Vigna 

unguiculta seeds, while the results of Melzi Ou Mezzi et al. (2021) suggested that hydropriming 

stimulates total antioxidant activities in fenugreek radicles. 

Imbibition in gibberellic solution (without redehydration) and hydromopriming induced 

separately increases in almost all parameters (radicles growth, H2O2 content, catalase, GPOX, 

APX and SOD activities, TAC, GSH content). However, hormopriming in which seeds were 

dehydrated after treatment with gibberellic acid resulted in values more like those obtained for 

seeds imbibed in water. This could mean that some of the exogenous gibberellic acid that 

entered the seed during imbibition may be degraded to gibberellenic acid during drying. Pérez 

et al. (1996) reported that gibberellic acid loses its biological activity in aqueous alkaline 

solutions over time by degradation to gibberellenic acid via an isomeric form iso-GA 

(degradation intermediate), both of which are inactive and do not induce amylase activity in 

barley endosperm. On the basis of these observations and our results, we suggest that drying 

the seeds for 48 h caused a partial degradation of GA to inactive forms, which was unable to 

exert a beneficial effect on the seeds. 

 

Conclusion 

Pretreatment of seeds with gibberellic acid and hydropriming resulted in improved 

germination performance and balanced redox status of fenugreek (Trigonella foenum graecum 

L.) seeds. These physiological and biochemical changes at the radicle level would be the result 

of the activation of certain cell signalling pathways leading to a change in gene expression that 

needs to be further elucidated. 
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