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Abstract—This paper presents a new training optimizer for
deep learning models, called the Spectral Proximal (SP) method
with saliency matrix, that aims to improve their ability to
generalize to new data. Generalization is the measure of how well
a model can perform on data that it has not seen during training.
The SP method addresses a pair of hurdles affecting generaliza-
tion: the problem of gradient confusion within complex model
architectures and the limited availability of training data. The
key innovation of the SP method is the use of a proximal operator
with a saliency matrix, which adjusts the descent direction based
on the importance of each parameter and avoids overfit issues.
This leads to improved performance on image classification
(MNIST and CIFAR-10) and object detection (YOLOv7) tasks
and better ability to generalize to new data. We conducted a
comprehensive inquiry by performing experiments on various
configurations while controlling for potential confounding factors.
The SP method consistently outperformed the baseline method
based on the results.

Index Terms—spectral proximal method, saliency matrix, deep
learning, machine vision, optimization algorithm.

I. INTRODUCTION

IMAGE classification and object detection tasks can benefit
from the use of deep network models, which can learn

from extensive datasets and perform elaborate computations
to generate reliable results. However, these models have
some drawbacks, such as requiring a lot of computing power
and being susceptible to poor optimization result. To over-
come these challenges, different optimization methods have
been proposed, including Stochastic Gradient Descent (SGD)
method and Adam method.

The SGD method is light and robust, therefore it does
not need much hyperparameter tuning, but it can be affected
by noisy datasets because it scales the gradients uniformly
in all directions. In contrast, Adam method is a more ad-
vanced method that incorporates moment estimation and bias
corrective measures. Adam has been proven to work well
on large-scale optimization problems and to converge faster
than SGD [1]. However, Adam also has some disadvantages,
such as over-optimizing to train data, which results in poor
generalization compared to SGD [2]–[4].
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Some researchers have tried to use second-order methods
that take the Hessian matrix of the parameters into account
to improve the performance of first-order methods. However,
these methods can be very costly in terms of computation [5].

Hence, within the scope of this paper, we introduce an
innovative training method tailored for deep learning models,
denoted as the Spectral Proximal method with a saliency
matrix. The principal novelty underlying the SP method lies in
its integration of a proximal operator in tandem with a saliency
matrix. This dynamic strategy orchestrates adjustments to the
descent direction during the optimization process, factoring in
the significance of each model parameter, thereby effectively
mitigating the potential for overfitting. Consequently, the SP
method yields notable enhancements in model performance
across an array of tasks, encompassing image classification
challenges as well as object detection task.

Our method has a high convergence rate and excellent
generalization properties, outperforming established and well-
tested methods across various small and large-scale opti-
mization challenges, as demonstrated through comprehensive
experimental evaluations. Furthermore, we have analyzed our
method’s strengths and weaknesses and provided comprehen-
sive information to support future research and improvement.

The paper is organized as follows: Section II reviews the
related literature. Section III presents the derivation steps
for the Spectral Proximal (SP) method and the Saliency
matrix. Then, the convergence analysis of the novel method
is provided. Section V shows our experimental results and
comparisons with other methods. Section VI summarizes our
contributions and highlights the advantages of the SP method.
We also include supplementary data in the appendices, such
as the ResNet-18 training results in Appendix A and Yolov7
training results in Appendix B, to give a complete overview
of our work.

II. RELATED WORK

This section provides an overview of the most relevant
optimization methods used in machine learning and computer
vision. We first present second-order methods, which use the
curvature of the objective function to achieve faster conver-
gence and better accuracy. We also discuss quasi-Newton
methods, which approximate the second-order information
using gradient updates. Additionally, we present spectral gra-
dient methods, which minimize the gradient spectral norm of
the cost function. Finally, we introduce proximal algorithms,
which are useful for dealing with non-smooth and constrained
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optimization problems. We also explain how saliency maps can
be used to visualize and highlight the important parameters.

A. Second Order Methods

Newton’s approach represents a second-order optimization
method that employs the Hessian matrix to enhance the op-
timization procedure. The updating mechanism for Newton’s
method is characterized by the following rule:

θt = θt−1 −H−1 · gt, (1)

where the previous weight vector θt−1 subtract the multiplica-
tive product of inverse Hessian matrix and loss gradient vector
gt yields the next weight vector θt

As highlighted by Wang et al. [6], a significant limitation
of this approach lies in its substantial computational demand
for Hessian matrix inversion, which can hinder its practical
applicability. In an effort to mitigate computational expenses,
Wang et al. [6] introduced a subsampling technique, resulting
in a method that attains results on par with the SGD method
during the training of convolutional neural networks (CNNs).

One of the main drawbacks of the second order method is
that it requires the computation of the Hessian matrix, which
is the matrix of second derivatives of the objective function.
The Hessian matrix can be very large and expensive to
compute, especially for high-dimensional problems. Moreover,
the Hessian matrix may not be positive definite, which means
that the second order method may not converge to a local
minimum. In contrast, the first order method only requires the
computation of the gradient vector, which is much cheaper
and easier to obtain.

B. Quasi-Newton Methods

The Quasi-Newton (QN) method is a second-order opti-
mization algorithm that uses the secant equation with the finite
difference approach to approximate the Hessian matrix. This
approach provides the benefit of second-order data utilization
in optimization while simultaneously avoiding explicit Hessian
calculation and reducing computational needs.

The secant equation is:

δgt = Bt+1δθt, (2)

where δgt = gt+1 − gt, δθt = θt+1 − θt, and the Hessian
approximation is Bt+1.

C. Spectral Gradient Methods

The Barzilai-Borwein (BB) method is a spectral gradient
method that utilizes the secant equation for an estimation of
the inverse Hessian matrix while adjusting the learning rate.
The BB method is using λt+1 · I to approximate the inverse
Hessian matrix, where the learning rate is λt+1. Here are the
two learning rate updating formula:

λ1 =
δθTt−1δθt−1

δθTt−1δgt−1
, (3)

λ2 =
δθTt−1δgt−1

δθTt−1δgt−1
. (4)

Sim et al. [7] suggested a spectral gradient approach that
incorporates a damping matrix for the adaptation of the descent
direction during the training process. The damping matrix is
computed by using the spectral decomposition of the Hessian
matrix and applying a damping function to the eigenvalues.
The damping function is designed to reduce the influence of
small and negative eigenvalues, which can cause instability
and slow convergence. In a numerical experiment conducted,
the method exhibited exceptional performance when compared
to other widely used approaches.

Dai et al. [8] introduced another spectral gradient method
which incorporates a blend of both learning rate formulas for
updating the learning rate within the BB method framework.
The method uses the following equation and multiple policies
for choosing γ :

λt+1 = γλ1 + (1− γ)λ2. (5)

The method balances the influence of both formulas by us-
ing a parameter λ, which can be selected by different policies,
such as the Armijo rule, constant, adaptive, or random. The
method has been shown to have better convergence properties
and robustness than the BB method.

Wang et al. [9] unveil a pioneering spectral conjugate
gradient approach, meticulously tailored to address the com-
plexities of large-scale unconstrained optimization challenges.
The method draws inspiration from the approximate opti-
mal stepsize strategy commonly employed in gradient-based
methods leading to the formulation of a novel truncating
framework for determining spectral and conjugate parameters.
The method outperforms several established methods across
an extensive battery of 130 test problems.

Laylani et al. [10] introduces a fresh perspective on spectral
descent methodologies, specifically addressing spectral conju-
gate gradient estimation through equation (6). Our approach is
characterized by its simplicity and its capacity to enhance the
efficiency of gradient-based algorithms while keeping storage
demands to a minimum. The techniques yield substantial
reduction in number of iterations (NI) and the number of
function evaluations (NF).

0 < βt =
gTt+1dt+1

gTt dt
, (6)

where, βt is the conjugate parameter and dt is the descent
direction.

D. Proximal Algorithm

Proximal algorithms constitute a category of optimization
techniques that can solve large and non-smooth optimization
problems. These problems are often difficult to solve by using
gradient-based methods, such as SGD, because the gradients
may not exist or may be noisy. Proximal algorithms use
proximal operators to find the optimal solution by iteratively
minimizing a sequence of simpler subproblems.

The proximal operator is a mathematical function that takes
a point and a parameter as inputs and returns another point
that is closer to the optimal solution. The proximal operator
is defined as:
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proxf (v) =
argmin

θ
(f(θ) + (1/2)|θ − v|22), (7)

The proximal operator is a function that Generates a convex
approximation with smooth characteristics of the objective
function and calculate the optimal solution with it. The
proximal operator can be seen as a regularization technique
that imparts a ”smoother” quality to the function prior to
optimization [11].

Santos & Souza [12] delves into a novel proximal point
method for solving quasi-equilibrium problems in Hilbert
spaces, expanding upon prior methodologies. By iteratively ad-
dressing equilibrium problems, we achieve weak convergence
to QEP solutions under mild assumptions. Our numerical ex-
periments provide empirical evidence of the method’s efficacy.

In their research, Yang et al. [13] utilized the proximal
operator to enhance the performance of SGD with momentum.
Their findings revealed that this modified approach produced
outcomes on par with established training methods commonly
employed in the field.

In addition to incorporating the proximal operator, Tang and
Scheinberg [14] introduced a Quasi-Newton (QN) technique
featuring a strategic selection approach that prioritizes greedy
active elements. This approach entails the selection of indices
that meet the following criteria:

I(1) = i ∈ P |(δf(θ))i ̸= 0, I(2) = i ∈ P |(θ)i ̸= 0, (8)

This approach entails the periodic selection of indices that
fulfill two criteria: they must be non-zero elements (I(2))
and demonstrate substantial descent in the objective function
(I(1)). This selection strategy aims to achieve a sparse solution.

Yun, Lozano & Yang [15] introduced a pioneering approach
to train structured neural networks, venturing into the domain
of stochastic proximal gradient methods aimed at addressing
challenges posed by non-smooth and non-convex problems.
This is facilitated by the integration of a proximal opera-
tor that accommodates both non-convex loss functions and
regularizers. Notably, the empirical findings emphasize the
heightened effectiveness of proximal methodologies compared
to their subgradient counterparts, particularly in scenarios
entailing non-convex regularization, thus shedding light on
their prospective value in complex neural network designs.

E. Saliency Map

A saliency map visually represents the significance or
pertinence of distinct regions within an image or other visual
data, frequently employed in computer vision and machine
learning to gain insights into the decision-making processes of
neural networks and other models. The saliency map is crafted
by emphasizing specific regions within the image or dataset
that exert an impact on the model’s output or prediction. In
our methodology, we derive inspiration from both network
parameter saliency and visual saliency to calculate the saliency
matrix.

In their research, LeCun et al. [16] introduced the pioneering
concept of neural network pruning as a method for complexity
reduction while maintaining performance. They introduced an

algorithm explicitly crafted to detect and remove the least
impactful connections within a pre-trained network. Their
findings demonstrated a substantial reduction in the number of
connections without compromising performance. This research
has been instrumental in advancing the field of neural network
pruning and has left a lasting impact on the evolution of
efficient neural network architectures.

In their research, Jia et al. [17] presented an innovative
adaptive framework designed to detect prominent objects
in images. This framework dynamically chooses an optimal
strategy for every pixel, taking into account its contextual
connections. The process commences by generating an initial
saliency map using the global contrast technique and then
analyzing the neighboring context of each region. This in-
formation guides the application of various methods to pro-
cess individual regions, ultimately generating the conclusive
saliency map. Extensive experimentation conducted on three
benchmark datasets demonstrates the superior performance of
this approach compared to other contemporary methods.

Amorim et al. [18] addresses the interpretability of deep
learning models in medical image analysis, particularly in
the context of histopathological image classification. While
saliency maps are commonly used for interpretation, the lack
of systematic evaluation tools has been a challenge. To tackle
this issue, the authors propose an innovative approach that
evaluates the reliability of saliency maps through the incor-
poration of natural image perturbations via a counter-class
substitution technique. This results in the generation of mean-
ingful evaluation metrics. Their validation on a breast cancer
metastases detection dataset demonstrates the sensitivity and
relevance of this approach, making it a promising solution for
saliency map validation in medical imaging and beyond.

Kremer et al. [19] tackles the essential challenge of sim-
ulating visual attention in virtual humans and introduces an
innovative contribution through the development of a para-
metric model and methodology for the real-time generation
of saliency maps as perceived by virtual agents. In contrast
to traditional approaches, this model aggregates saliency as-
sessments using user-defined parameters related to objects and
characters visible to the agent, resulting in the creation of a
2D saliency map. Its distinctive feature lies in its capability to
incorporate three-dimensional data and the character’s level
of attentiveness via an attention field. The adaptable and
parameterized framework of this technique provides users
with the ability to replicate a wide spectrum of agents while
retaining the flexibility to extend the model by incorporating
supplementary layers and parameters. Furthermore, its integra-
tion with standard and abnormal models of the human visual
field and gaze control mechanisms can significantly enhance
its applicability across a wide range of use cases.

III. METHOD DERIVATION

We address the problem of stochastic optimization. To find
the optimal value of the parameter, θ, that minimizes the loss
function, L(θ)

O(θ) = argmin
θ

E[L(θ)], (9)
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Optimizing θ, that minimizes the smooth, real-valued loss
function, L(θ), where L(θ) : R → R and the expected loss
value is E[L(θ)]. The gradient of the loss function with respect
to θ is g(θ) = ∇θL(θ), and the second-order loss function
derivative is H(θ) = ∇2

θL(θ), i.e. the Hessian matrix.

A. Notation

We use the following notations to simplify the expressions:
let x ∈ R, y ∈ R be output, θ ∈ R be the model variables,
L(θ) be the cost function, g(θ) = L

′
(θ) be the derivative of

the loss function, i.e. gradient, H(θ) = L
′′
(θ) be the Hessian

matrix, S(θ) be the saliency matrix, and Qp = p(n+ 1) term
of the saliency matrix in ascending order be the p-quantile of
the saliency matrix.

B. Multiple Damping Gradient

One drawback of the SGD method is that it can converge
slowly due to the bad conditioning of the Hessian matrix
and the variance of the stochastic gradient [5]. To address
this issue, we embrace the multiple damping gradient method
introduced by Sim et al. [7]. The formula for updating in this
method is as follows:

θt+1 = θt −B−1 · gt, (10)

where B−1 is the inverse damping matrix as approximation
of Hessian matrix inverse in Equation (1).

By projecting the difference between matrices B and H
along the search direction and constraining it within the
bounds of matrix H , the damping matrix B undergoes an
update. The objective of this technique is to reduce the gradient
while adhering to the limitation imposed by matrix H , thereby
averting the oscillatory behavior often associated with SGD
descent. By adding a constraint on the elements of Bt, based
on minimizing the log-determinant norm and following the
secant equation, we can get an updated formula for Bt,
denoted as B(t + 1).This updated solution applies to any
positive matrix B.

min tr(Bt+1)− ln(det(Bt+1)) (11)

s.t. δθTt Bt+1δθt = δθTt δgt. (12)

Suppose Bt+1 = diag(B(1)
t+1, ..., B

(n)
t+1) and δθt =

δθ
(1)
t , ..., δθ

(n)
t , The minimization problem (11) and (12) is

express as:

min(
n∑

i=1

B
(i)
t+1)− ln(

n∏
i=1

B
(i)
t+1) (13)

s.t. (
n∑

i=1

(δθ
(i)
t )2B

(i)
t+1)− δθTt δgt = 0. (14)

Therefore, the definition of Lagrangian corresponding to
equations (11) and (12) is as follows:

L(α, ω) = (
n∑

i=1

D
(i)
t+1)− ln(

n∏
i=1

D
(i)
t+1)

+ω[(
n∑

i=1

(s
(i)
t )2D

(i)
t+1)− sTt yt].

(15)

ω is the Lagrange multiplier. After that, equating the par-
tially differentiate (15) w.r.t. B(i)

t+1 to zero:

δL

δB
(i)
t+1

= 1− 1

B
(i)
t+1

+ ω(δθ
(i)
t )2 = 0, i = 1, 2, ..., n (16)

B
(i)
t+1 =

1

1 + ω(δθ
(i)
t )2

, i = 1, 2, ..., n (17)

Equation (17) is substitute into the constraint (14) yields:

F (ω) =
n∑

i=1

(δθ
(i)
t )2

1 + ω(δθ
(i)
t )2

− δθTt δgt. (18)

The value of the Lagrange multiplier ω can be found by
solving the equation F (ω) = 0., which is the nonlinear equa-
tion. The equation is approximated using single iteration of
Newton-Raphson, with initial condition ω = 0. If the condition
δθTt δθt > δθTt δgt holds, equation (18) has a unique positive
solution, and hence, the Lagrange multiplier ωk approximation
is as follow:

ωt = ω − F (ω)

F ′(ω)
(19)

ωt =
δθTt δθt − δθTt δgt

n∑
i=0

(δθit)
4

. (20)

We observe that δθTt δθt > δθTt δgt, ω > 0 and Bi
t+1 > 0 for

all i = 1, 2, ..., n from Equation (20). The Oren-Luenberger
scaling [20], which is the fraction δθTt δgt/δθ

T
t δθt, is also

utilized as updating formula, in case Bi
t+1 < 0. If the condition

δθTt δgt > δθTt δθt is met, then equation (18) is positive
definite. Therefore, Bt+1 can be expressed as follows:

Bt+1 =

diag(B(1)
t+1, ..., B

(n)
t+1), if δθTt δθt > δθTt δgt

δθTt δgt
δθTt δθt

I, otherwise.

(21)

C. Saliency Matrix

The saliency matrix shows how much the parameters matter
for the learning process. There will be minimal changes to the
loss value when delete parameters with low saliency [16]. The
aim is to find and remove these parameters at every step to
make the model more general and avoid overfitting problems
[21].

L̂(θ) =
n∑

i=1

1

n!
Li(c)(θ − c)i. (22)
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consider up to the 2nd-order:

L̂(θ) = L(θ) + L′(c)(θ − c) +
H(c)

2!
(θ − c)2, (23)

if c is a local minimum point, then the saliency matrix S(θ)
will be as follows:

S(θ) = H(θ)
(δθ)2

2
. (24)

At the minimum point c, the Hessian matrix H(θ) is positive
definite. This means that the loss value will stay the same or
go up if we change the parameters. Also, after a step, the
parameters that change more will have higher saliency values
according to Equation (24). So, we can use this to tell how
important the parameters are for the loss function.

D. Proximal Method

Our method applies the proximal algorithm to streamline
the issue and mitigate overfitting concerns. Provided a non-
convex, 0-Norm loss function L(θ) = β|θ|0, the following is
the proximal operator at point c.

prox(c) = argmin
θ

(β∥θ∥0 +
1

2
∥θ − c∥22), (25)

where the proximal operator is thresholding each element,

prox(c, β) =

{
c, if 12∥c∥

2 > β

0, otherwise.
(26)

From equation (26), β corresponds to importance of parameter,
therefore adding it to Equation (24) and the saliency matrix
become

S(θ) = B(θ)
(δθ)2

2

(θ)2

2
, (27)

To reduce the effecto of ill-conditioned Hessian, H(θ) is
replaced with B(θ). Then we can adjust procimal operator
with the p-quantile Qp of S(θ) as follows:

prox(θ,Qp) =

{
θi, ifS(θi) > Qp

0, otherwise,
i = 1, 2, ..., n

(28)

E. Spectral Proximal with Saliency Matrix

We introduce the Spectral Proximal optimizer enhanced
by a saliency matrix. This method leverages the MDG ap-
proach on Hessian matrix approximation to reduce the gradient
while adhering to the Hessian limitation, thereby averting the
oscillatory behavior often associated with SGD descent, as
detailed in Subsection III-B. To prevent overfiting and ensure
generalization, we employ the saliency matrix to identify
insignificant learning as elucidated in Subsection III-C. After
that, a proximal operator generates a sparsified solution by
removing the insignificant elements as presented in Subsection
III-D. These features in optimizer aims to improve conver-
gence rate and increase optimizer robustness.

The main innovation of this novel method is the integra-
tion of saliency matrix in the sparcification component to
reduce redundent learning and increase learning efficiency.
Algorithm 1 shows the pseudocode for the SP method with

the saliency matrix. The source code for Pytorch imple-
mentation is presented in the following github repository:
https://github.com/LeoYong95/Spectral-Proximal-Method.

Algorithm 1 Spectral Proximal method using saliency matrix
Require: Initial parameters θ ∈ R,
Require: Learning rate λ > 0
Require: Quantile parameter 0 < p < 1
1: t← 0
2: while stopping criterion not met do
3: Sample mini-batch: x = {x1, ..., xn}, yi

4: Compute gradient: gt ←
1

n
∇θt

∑
L(f(x, θt), y)

5: Compute damping matrix Bt with Equation (21)
6: dt ← B−1

t gt
7: θt+1 ← θt − λdt

8: Compute saliency matrix: St ← Bt
(δθt)2

2

(θt)2

2
9: Compute sparse parameters with Equation (28): θt+1 ←

prox(θt+1, Qp)
10: t← t+ 1
11: end while

F. Convergence Analysis

In this section, we investigate the convergence of the
SP with a saliency matrix approach, which is the proposed
algorithm. The examination involves a theorem and several
lemmas that establish the criteria for algorithm convergence.
The theorem and lemmas are as follows:

Lemma 3.1: If Bt ⪰ L·I for ∀z, the update equation θt+1 =
proxQp,Bt

(θt −B−1
t ∇L(θt)) is

L(θt+1) ≤ L(θt)−
1

2
||GBt

(θ)||2Bt

= L(θt)−
1

2
||θt+1 − θt||2Bt

The proof of this lemma can be found in [22]. The next
step is to show that Bk has a lower bound. The analysis relies
on the following assumptions.

Assumption 3.2:
i The loss function L has second-order continuous deriva-

tives.
ii The set Θ = {θ ∈ R : f(θ) < f(θ0)} is convex.

iii There are possitive constants C1 and C2 such that for
∀z ∈ R and ∀z ∈ Θ where

C1||z||2 ≤ zTG(θ)z ≤ C2||z||2. (29)

This implies that L has a unique solution θ∗ in Θ.
This lemma establishes the minimum value for Bk.
Lemma 3.3: Positive constants ξ1 and ξ2 exist that bound

Bt defined in (21). The loss function L meets Assumption 3.2,
and initial Damping matrix B0 = I .

Proof: First, we know that B0 is bounded. Then we define
G as

G =

∫ 0

1

∇2L(θt + τδθt)dτ. (30)

Applying the mean value theorem, we obtain

δgt = Gδθt. (31)

We can express Assumption 3.2(iii) differently as

C1||δθt||2 ≤ δθTt δgt ≤ C2||δθ||2. (32)
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Case 1: if δθTt δθt > δθTt δgt, Bt+1 is express as in (21) and
(20)

Bi
t+1 =

1

1 +
δθTt δθt − δθTt δgt

n∑
i=0

(δθit)
4

(δθit)
2

. i = 1, 2, ..., n, (33)

Denote (δθMt )2 = max{(δθ1t )2, ..., (δθnt )2}. We know that
δθTt δθt =

∑n
i=1(δθ

i
t)

2, therefore ||δθt||2 ≤ n(δθMt )2. Besides

that, the term
δθTt δθt − δθTt δgt

n∑
i=0

(δθit)
4

(δθit)
2 is positive, we can

express Bt+1 as

1

1 + n(1− C1)
≤ Bi

t+1 ≤ 1. (34)

Case 2: Assuming that δθTt δθt ≤ δθTt δgt, we can directly
obtain Bt+1 from Assumption 3.2(iii)

C1 ≤ Bi
t+1 ≤ C2. (35)

Hence, (34) and (35) provide

ξ1 = min{ 1

1 + n(1− C1)
, C1} ≤ Bi

t ≤ max{1, C2} = ξ2,

(36)
which gives the boundness of Bt.

The convergence analysis of Algorithm 1 is based on the
theorem from [22]. The theorem is as follows:

Theorem 3.4: For SP in Algorithm 1, L(θt) converges to
the optimal value L∗, i.e., lim

t→∞
L(θt) := L∗ .

Proof: Since the Bt is bounded, and we pair SP algorithm
with proven learning rate scheduler (Section III-E). Following
lemma 3.1 and lemma 3.3 we have,

L(θt+1) ≤ L− 1

2
||θt+1 − θt||2Bt

= L− 1

2
||GBt(θ)||2(Bt)−1 ,

for this function at limit we have,

0 = lim
t→∞

||θt+1 − θt||2Bt

= lim
t→∞

||GBt(θt)||2(Bt)−1 .
(37)

The limit point L∗ satisfies GB∗(θ∗) = 0, which means
θ∗ is a stationary point. Moreover, the convexity of L from
Assumption 3.2(ii) implies that θ∗ is the global minimum.

IV. EXPERIMENT

In this section, we present the experiment conducted to
evaluate the novel optimizer. The Dataset subsection intro-
duces the datasets used in training process. Deep Learning
Models subsection highlights the diverse architectures used
in experiment. The Experimental Setup subsection details
hardware, training parameters, and configurations, laying the
groundwork for a comprehensive assessment of the novel
optimizer’s performance.

A. Dataset

The MNIST dataset is a collection of 70,000 handwritten
digits from 0 to 9, each represented by a 28x28 pixel grayscale
image. The dataset is widely used as a benchmark for testing
various machine learning algorithms, especially those related
to image recognition and computer vision. The dataset is di-
vided into 60,000 training examples and 10,000 test examples,
and each digit has roughly the same number of samples. Figure
1 shows example images from MNIST dataset.

Fig. 1. Example images from MNIST dataset.

The CIFAR-10 dataset [23] is a collection of 60,000 color
images of size 32x32 pixels, divided into 10 classes of objects.
The classes are: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. The dataset is commonly used
for image classification and recognition tasks, such as deep
learning models. In the training process using this dataset, we
used random horizontal flipping, random cropping to 32 x 32
pixels, and normalization with mean (0.5, 0.5, 0.5).Figure 2
shows example images from CIFAR-10 dataset.

Fig. 2. Example images from CIFAR-10 dataset

The Yale-CMU-Berkeley (YCB) dataset is a self-generated
dataset based on the YCB objects and model set [24] in a
simulated household environment. The dataset consist of 7,000
training images and 35 test images of size 640x480 pixels
divided into 63 different classes. During training process, we
adopted the established mosaic data augmentation method to
enhance training for YOLOv7. A visual representation of YCB
training images following mosaic augmentation is portrayed in
Figure 3.

B. Deep Learning Models

In this experiment, we aim to assess the effectiveness of the
novel optimizer by employing a diverse set of models. These
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Fig. 3. Mosaic augmentation applied to training images.

models, each tailored for specific tasks and exhibiting varying
degrees of complexity.

A small custom CNN we design ourselves to fit our specific
task and data. It is made of two convolutional layers and two
fully connected layer at the end. This model is designed to
handle simple image classification tasks, such as recognizing
handwritten digits in the MNIST dataset.

MobilenetV2 [25] is a model that was developed by Google
researchers to perform efficient image classification and object
detection on mobile devices. It uses an inverted residual
structure with linear bottlenecks to reduce the number of
parameters and computations, while preserving the feature
richness of the network. This model is suitable for more
complex image classification tasks, such as identifying objects
in the CIFAR-10 dataset.

ResNet [26] is another model that was proposed by Mi-
crosoft researchers to solve the problem of vanishing gradients
and degradation in very deep neural networks. It introduces
residual blocks that allow the network to learn identity map-
pings between layers, and skip connections that enable the
network to bypass some layers if they are not useful. In this
experiment, we selected the ResNet-18 and ResNet-50 model
variant to evaluate the effect of model depth on performance.

YOLOv7 [27] is a recent version of the popular YOLO
(You Only Look Once) model that performs real-time object
detection using a single neural network. It is based on the
PyTorch framework and incorporates several improvements
over previous versions. YOLOv7 can detect multiple objects
of different sizes and shapes in an image with high accuracy
and speed. Therefore, we select this model to train with the
YCB dataset.

We choose to use these models because they represent
different levels of complexity, pre-training, and architecture
design. By testing the optimizer on these models, we can
evaluate how well it can optimize different types of networks,
how fast it can converge to a good solution, and how robust
it is to different tasks and datasets.

C. Experimental Setup

The experimental setup involved training various neural
network models on different datasets, each with specific con-
figurations outlined in Tables I, II, and III. For the MNIST
dataset, the training utilized an Intel(R) Xeon(R) W-1350
CPU, an Nvidia RTX A4000 GPU, 16GB of RAM, and
PyTorch 1.10.0. The CIFAR-10 dataset employing the same
hardware specifications with different training parameters,
such as 300 epochs and batch size of 32. For the YCB
dataset, YOLOv7 was trained with an Intel(R) Xeon(R) CPU
@ 2.00GHz x 2, an Nvidia Tesla P100 GPU, 12GB of RAM,
and PyTorch 1.11.0. The training parameters are, image size
of 480, 300 epochs, and batch size of 32. For each dataset,
we applied three distinct learning rate scheduling techniques,
aligning with established practices outlined in the literature
[28]–[30]. These setups aimed to comprehensively evaluate the
novel optimizer’s performance across diverse models, datasets,
and training configurations.

TABLE I
THE CONFIGURATION OF THE TRAINING SETTINGS FOR THE MODELS ON

MNIST DATASET.

Core processors (CPU) Intel(R) Xeon(R) W-1350
Graphics Card (GPU) Nvidia RTX A4000 x 1

RAM 16GB
Framework pytorch 1.10.0(GPU support)

Python version 3.7.12
Architecture Custom CNN (Convolutional layer

x 2 ,Fully-connected layer x 2)
Epoch 15

Batch size 128
Scehduler StepLR (gamma = 0.7)

TABLE II
THE CONFIGURATION OF THE TRAINING SETTINGS FOR THE MODELS ON

CIFAR-10 DATASET.

Core processors (CPU) Intel(R) Xeon(R) W-1350
Graphics Card (GPU) Nvidia RTX A4000 x 1

RAM 16GB
Framework pytorch 1.10.0(GPU support)

Python version 3.7.12
Architecture MobileNetV2, ResNet18 . and

ResNet50
Epoch 300

Batch size 32
Scehduler ReduceLROnPlateau tenthing

TABLE III
THE CONFIGURATION OF THE TRAINING SETTINGS FOR THE MODELS ON

YCB DATASET.

Core processors (CPU) Intel(R) Xeon(R) CPU @
2.00GHz x 2

Graphics Card (GPU) Nvidia Tesla P100 x 1
RAM 12GB

Framework pytorch 1.11.0(GPU support)
Python version 3.7.12

Architecture YOLOv7
Epoch 300

Batch size 32
Image size 480
Scehduler Simplified cosine annealing
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V. RESULTS AND DISCUSSION

This section demonstrates the resilience of the SP method
we propose across two image classification datasets (MNIST,
as discussed in Section V-A, and CIFAR-10, as outlined in
Section V-B), as well as one object detection dataset (the
Household Objects dataset, as detailed in Section V-C) in
a real-world application context. We employ diverse model
architectures (including custom CNN, MobileNetV2, ResNet-
18, ResNet-50, and YOLOv7) throughout our experiments to
assess the efficacy of our approach across a range of models.

We conduct a performance evaluation of our approach in
comparison to well-established methods (SGD, Adam, and
SGD+Nesterov) across three key metrics: test accuracy, test
loss, and training loss. These metrics serve as indicators
for assessing the training effectiveness, model generalization
capabilities, and potential overfitting. Our experimental setup
adheres to standard step size reduction and hyperparameter
configurations as documented in the literature for each dataset
and model. You can find further information on the experi-
mental setup in Subsection IV-C.

The objective of these experiments is not to attain optimal
outcomes but rather to showcase the capabilities of the pro-
posed SP method across various training scenarios involving
diverse models and datasets. In the majority of instances within
these experiments, the SP method outperforms the alternative
approaches.

A. MNIST Classification

The MNIST dataset serves as a widely utilized image clas-
sification benchmark within the machine learning community.
In this specific experiment, we devised a concise CNN model,
characterized by a mere 1.5 million parameters in total.

We evaluated two main types of methods: optimizers with-
out momentum and optimizers with momentum. The SP
method consistently performs better than the other methods
in both types.

The Adam method tends to cause overfitting, as shown
by the graphs of the training loss and test accuracy. This is
attributed to Adam’s tendency to converge towards suboptimal
local solutions. In contrast, the SP+Nesterov variant demon-
strates robust generalization capabilities within this experimen-
tal setup and even exhibits slight performance enhancements
compared to the SGD+Nesterov method, as visually depicted
in Figure 4.

B. CIFAR-10 Classification

In this Subsection, we present the findings in training
with CIFAR-10 dataset. The selection of MobileNetV2 [25],
ResNet18, and ResNet50 [26] architectures for this inves-
tigation was deliberate due to their established efficacy in
handling CIFAR-10 image classification tasks. Our primary
aim centered on evaluating the performance of our method
across models representing different levels of parameteriza-
tion: underparameterized (MobileNetV2), adequately param-
eterized (ResNet18), and overparameterized (ResNet50). We
only report the findings related to MobileNetV2 and ResNet50
in this section. The results for ResNet18 are in Appendix A.
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Fig. 4. Comparison of different methods on the MNIST dataset using a CNN
model. The graphs show the test accuracy (a), test loss (b) and train loss (c)
over 15 epochs. The SP method and SP + Nesterov method achieve the best
performance, with a test accuracy of 99.1% and 99.2%, respectively, and a test
loss of 0.03 and 0.02, respectively. The other methods have lower accuracy
and higher loss on the test set.

Anticipations were that the momentum-based optimizers
would exhibit subpar performance during MobileNetV2 train-
ing, given their inclination to converge towards suboptimal
local minima. Likewise, there were expectations of overfitting
in the case of ResNet50 due to its overparameterization,
resulting in diminished test accuracy and elevated training loss
values for this particular model.

As depicted in Table IV, the outcomes of MobileNetV2
training reveal the superior performance of our approach,
denoted as SP, surpassing other methods and achieving a
substantial enhancement compared to SGD. As previously
conjectured, the SP+Nesterov variant exhibited diminished test
accuracy and elevated training loss values, as illustrated in
Figure 5, signifying its convergence towards a suboptimal
solution. Notably, a significant limitation of SP+Nesterov
lies in its incompatibility with training narrow models. This
limitation stems from the adverse influence of the 0-Norm
proximal operator and momentum component on the descent
direction within compact networks.

Furthermore, the slim and deep structure inherent to Mo-
bileNetV2 can introduce negative gradient correlations across
training batches, posing a hindrance to momentum-based op-
timizers due to their historical gradient memory, as discussed
in [31]. In this particular scenario, SGD also grapples with
discrepancies in the descent direction due to its lack of cor-
rective mechanisms. Our approach uses damping correction,
which avoids gradient confusion during the training process
by maintaining a consistent rate of gradient descent across the
Hessian spectrum.

In the context of training the overparameterized model, our
approach exhibited remarkable advancements when compared
to the array of other methods under scrutiny. Specifically,
the momentum-based optimizers excelled in achieving the
highest test accuracy. The broader architectural framework of
ResNet50 mitigates issues related to gradient confusion, as
elaborated upon in [31], thereby affording gradient-dependent
momentum-based optimizers greater accuracy in determining
the descent direction.

As Figure 6 shows, optimizers based on Nesterov momen-
tum performed better than Adam, achieving faster convergence
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in both the graphs of the training loss and test accuracy.
This accelerated convergence can be attributed to the fact
that at each iteration, optimizers that use Nesterov momentum
produce better descent directions than Adam’s Heavy-Ball
method [32]. This is a consistent advantage of Nesterov
momentum-based optimizers.

The SP+Nesterov method achieved the highest test accuracy
in this experimental setting. This may be due to the use of
the saliency matrix proximal operator. This operator serves to
prevent overfitting while enhancing generalization capabilities.
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Fig. 5. Comparison of different methods on the CIFAR-10 dataset using a
MobileNetV2 model. The graphs show the test accuracy (a), test loss (b) and
train loss (c) over 300 epochs.
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Fig. 6. Comparison of different methods on the CIFAR-10 dataset using a
ResNet50 model. The graphs show the test accuracy (a), test loss (b) and
train loss (c) over 300 epochs.

TABLE IV
A COMPARISON OF MOBILENETV2 AND RESNET50 MODELS USING

DIFFERENT TRAINING METHODS FOR CIFAR-10 IMAGE CLASSIFICATION
TASK.

MobileNetV2 Resnet 50
SGD 82.56 71.76
SP 83.26 (+0.7) 74.37 (+2.61)

Adam 64.05 80.53
SGD + Nesterov 83.32 80.30
SP + Nesterov 67.25 (-16.07) 80.81 (+0.51)

C. Detecting Household Objects with YOLOv7 Model

In this particular experimentation, we put our method to the
test in a real-world scenario, focusing on object detection—a

critical aspect of numerous contemporary vision-based appli-
cations, including self-driving vehicles, autonomous robotics,
and surveillance technology. We used a subset of objects from
the YCB object dataset [24], which is designed for robot
manipulation. We applied the YOLOv7 [27] model, which
is the latest in object detection. Our main goal was to test
how well our method can handle a common industry problem:
training a large network with a small dataset.

The results presented in Figure 7 shed light on the per-
formance of our method. Although the SP method did not
exhibit as swift initial convergence as Adam, it consistently
maintained lower training loss values compared to SGD. This
observation underscores the speedy convergence capabilities
of the SP method and its proficiency in achieving more cost-
effective solutions when juxtaposed with other approaches.
This efficacy can be attributed to the unique proximal op-
erator inherent to the algorithm, which effectively eliminates
superfluous elements while minimizing the learning burden.

Furthermore, the SP method demonstrated formidable gen-
eralization attributes, boasting the highest test mean Average
Precision (mAP) values, as depicted in Figure 8 and quantified
in Table V. Models with robust generalization characteristics
tend to produce fewer false positives and false negatives. A
comparative analysis of the confusion matrices for both the
SP-trained and SGD-trained models in Figure 10 corroborates
this, indicating a higher level of accuracy in the SP-trained
model.

In the training process, computational expenses hold sig-
nificant importance. Although our approach incurs a greater
computational cost, the model trained using Stochastic Proxi-
mal (SP) demonstrates superior performance compared to the
model trained through Stochastic Gradient Descent (SGD),
as detailed in Table V. We also conducted tests on the SP-
trained model after the completion of SGD training, which
required 29.25 hours of wall time. At this juncture, the SP
method exhibited a higher mAP0.5 than the SGD method
and matched the SGD method in terms of mAP0.5:0.95.
This implies that the SP-trained model produces fewer false-
negative predictions (refer to the confusion matrix in Figure
10) and generates bounding boxes of equivalent accuracy to
those generated by the SGD-trained model. Figure 9 provides
visual representations of the predictions made by the SP-
trained model on the YCB dataset testing images.

TABLE V
THE MAP PERFORMANCE OF YOLOV7 MODEL TRAINED WITH SP AND

SGD METHODS ON YCB OBJECT DETECTION TASK.

mAP0.5(%) mAP0.5:0.95(%) mAP0.5
@29.25

hours (%)

mAP0.5:0.95
@29.25

hours (%)
SGD 88.1 68.5 88.0 68.1
SP 90.1 (+2.0) 71.0 (+2.5) 90.6 (+2.6) 68.1

VI. CONCLUSION

We have put forward a fresh approach to training deep learn-
ing models, christened the Spectral Proximal (SP) method with
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Fig. 7. The training losses of YOLOv7 model on YCB dataset using different
experimental settings.
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Fig. 9. YCB dataset test images annotated with the predictions of the model
trained with SP method.

the saliency matrix. This SP method stands out as a superior
optimizer when compared to SGD and Adam, boasting a note-
worthy convergence rate and delivering exceptional generaliza-
tion outcomes. Many of today’s machine vision applications
grapple with the complexities of overparameterization and the
constraints of limited datasets. Here, the SP method steps in
as a potent solution, effectively surmounting these hurdles by
crafting high-accuracy models with robust generalization capa-
bilities. What’s more, our approach exhibits a keen awareness
of resource constraints during training sessions, outperforming
other methodologies by achieving top-tier model performance
while staying within predefined resource limits.

Nevertheless, our experiments have unveiled a caveat when
employing the SP method with momentum: the proximal

Fig. 10. The comparison of the confusion matrices for the models trained
with sp and SGD methods. The sp-trained model’s confusion matrix is shown
above and the SGD-trained model’s confusion matrix is shown below.

operator inherent to SP has a tendency to perturb the descent
direction in narrow models due to heightened gradient confu-
sion. As a precautionary measure, we advise against utilizing
the SP method with momentum when training slender models.

To summarize, we have introduced the novel Spectral Prox-
imal (SP) method supplemented by the saliency matrix as an
optimizer for deep learning model training. The SP method
excels in swift convergence and yields superior generalization
capabilities during testing. Our comprehensive array of test
results serves as a testament to the optimizer’s performance
across a spectrum of scenarios, where it frequently outper-
forms baseline methods, particularly in the realm of training
overparameterized models. However, we are committed to
addressing the SP method’s performance limitations in nar-
row model training with momentum in our future research
endeavors.

APPENDIX A
EXPERIMENT CIFAR-10 (RESNET18)

In this experimental phase, we gauge the SP method’s
effectiveness when applied to training a sufficiently-sized
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model. The outcomes, as presented in Table VI and Figure 11,
mirror the findings from our MobileNetV2 training endeavors.
Notably, the SP method outperforms SGD and closely rivals
SGD+Nesterov in performance. Additionally, scrutiny of the
test accuracy graph reveals a narrower gap between vanilla
optimizers and momentum-based optimizers when compared
to the MobileNetV2 setup. This observation is attributed to
reduced gradient confusion, a consequence of the broader
architecture of ResNet18 as opposed to MobileNetV2.

TABLE VI
A COMPARISON OF DIFFERENT METHODS FOR TRAINING RESTNET18 ON

CIFAR-10 DATASET USING TEST ACCURACY METRIC.

Resnet 18
SGD 84.28
SP 84.63 (+0.35)

Adam 83.55
SGD + Nesterov 84.65
SP + Nesterov 84.10 (-0.55)
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Fig. 11. The performance of ResNet18 on CIFAR-10 dataset classification
performance. The test accuracy (a), test loss (b) and train loss (c) graphs.

APPENDIX B
EXPERIMENT YCB (YOLOV7) USING ADAM METHOD

Displayed in Table VII are the test mAP values obtained
from training the model using the Adam method. Notably,
the Adam method is notorious for its subpar generalization
capabilities, rendering it ill-suited for the YCB dataset in the
YOLOv7 framework, which necessitates a model with the
capacity to effectively generalize to novel data. This model’s
shortcomings become evident as it struggles to consistently
distinguish objects from the background. As depicted in Figure
12, the model trained with the Adam method records a higher
frequency of false negative predictions within the background
class.

TABLE VII
THE MAP PERFORMANCE OF YOLOV7 MODEL TRAINED WITH ADAM

METHOD ON YCB OBJECT DETECTION TASK.

mAP0.5
(%)

mAP0.5:0.95
(%)

mAP0.5
@29.25

hours(%)

mAP0.5:0.95
@29.25

hours(%)
Adam 59.8 39.5 84.4 58.6

Fig. 12. The performance of the model trained with Adam method on the 
test images. The confusion matrix shows how the model classifies the images 
into different categories.
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