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Abstract—Industrial Internet of Things (IIoT) has become an
indispensable element of smart industrial facilities, predicted to
continue to grow at a rapid rate. Wireless technologies have
become a standard part of today’s industrial facilities with ap-
plications including programming and control of electric drives,
remote system and environment monitoring and fault diagnostics
of industrial equipment. However, installation of physical connec-
tions can be time consuming and require substantial economic
resources, especially when considering long-term maintenance
costs. With that regard, IoT applications that use sensor tech-
nology, RFID technology, network communication, data mining
and machine learning could prove to be quite efficient in solving
the previously presented problem of localization. A new indoor
localization algorithm has been introduced based on recurring
neural networks (RNNs) for the positioning of indoor devices.
Experiments were conducted in relatively complex surroundings
of a faculty building. According to experimental results, the
presented system surpasses the state-of-the-art algorithms and
can achieve 98.6% localization accuracy of indoor devices.

Index Terms—Wi-Fi, Signal Strength, Localization, IIoT.

I. INTRODUCTION

The emergence of the Industrial Internet of Things (IIoT)
has been pivotal in the transformation of smart industrial
facilities into highly integrated and efficient systems, and
its influence is expected to escalate further. This paradigm
encapsulates the widespread deployment of technologies such
as sensors and actuators, which are interconnected through the
advancement of wireless communication methods, marking a
significant shift in industrial operations [1]. The integration
of wireless technologies has become a fundamental aspect
of modern industrial settings, facilitating a broad spectrum
of applications from the programming and control of electric
drives to the remote monitoring and diagnostics of systems
and machinery. The adoption of wireless infrastructure in
industrial contexts enables the seamless interconnectivity of
various devices, eliminating the need for physical wiring [2].
The process of establishing wired connections, in addition
to being labor intensive, also incurs considerable financial
outlays, particularly when factoring in maintenance expenses
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over time [3]. Additionally, physical cables are susceptible to
damage under the mechanical and electrical stresses prevalent
in the strenuous conditions of industrial environments. Despite
the primary objective of bypassing the need for direct device
connections, wireless technology offers additional benefits,
such as the ability to locate and track components within
industrial premises [4, 5]. Parallel to the ubiquitous nature of
personal devices like smartphones, which incessantly gather
data from their vicinity, the complexity and quantity of devices
within IIoT networks, alongside the volume of data they
amass, are on an upward trajectory [6, 7]. Consequently, it
is imperative for IIoT systems to adeptly manage data acqui-
sition, facilitate machine-to-machine communications, and, if
necessary, preprocess the collected data, all while balancing
between cost, computational efficiency, and energy consump-
tion [8]. This data serves as a foundation for the development
of technologies, for instance, Wi-Fi-based positioning systems,
by leveraging the connectivity of devices as beacons [9].

Compared to conventional GPS-based methods, which dom-
inate outdoor localization but struggle with accuracy and relia-
bility indoors due to signal attenuation and multipath interfer-
ence, Wi-Fi-based localization offers a significant advantage.
Unlike GPS, Wi-Fi localization is not impeded by roofs or
walls. Instead, it uses existing network infrastructure, making
it a more feasible and economical option for comprehensive
coverage in complex industrial buildings. Moreover, Wi-Fi-
based methods can capitalize on the high density of access
points within industrial settings to enhance localization accu-
racy through techniques like fingerprinting, which maps the
unique characteristics of Wi-Fi signals at different locations.
Recent studies, such as those conducted by [10] and [11], have
explored various aspects of localization technologies in indus-
trial environments, highlighting the importance of accuracy,
reliability, and cost-effectiveness. These works underscore the
potential and challenges of GPS and other technologies in
achieving high localization precision within complex indoor
and outdoor transitions. In this context, our Wi-Fi-based
localization method addresses these challenges by providing
a robust, adaptable, and cost-efficient solution, harnessing the
full potential of existing Wi-Fi infrastructure and advanced
machine learning techniques to meet the unique demands of
industrial localization.

The advancement of wireless indoor positioning technolo-
gies, including Wi-Fi, Bluetooth, and ultra-wideband, has
led to the creation of numerous systems designed to offer
location-based services within large facilities [12]. Among
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these, Bluetooth and Wi-Fi have emerged as prevalent method-
ologies for signal-based localization. Both technologies exploit
characteristics of wireless signals, such as Received Signal
Strength Indicators (RSSIs) or Channel State Information
(CSI), for the estimation of spatial coordinates. In addition,
they incorporate the technique of fingerprinting, establishing
a database of signal attributes at various points in advance
to facilitate optimal location identification through matching
algorithms.

The utility of indoor localization spans several domains,
encompassing emergency response, navigational aids, logis-
tical operations, and intelligent residential management. For
example, Filippoupolitis et al. [13] have advocated for the
use of Bluetooth Low Energy (BLE) to address the challenge
of determining occupancy during emergencies, using beacons
for spatial information dissemination and integrating machine
learning for the assessment of the presence of the inhabi-
tants. In the realm of efficient energy use, Tekler et al. [14]
introduced an innovative system to manage electrical loads,
merging BLE with algorithmic learning to infer occupancy and
thus optimize energy consumption through automated control.
Similarly, leveraging existing Wi-Fi networks and mobile
devices, Balaji et al. [15] proposed a method for occupancy-
driven regulation of heating, ventilation and air conditioning
(HVAC) systems in commercial settings. Furthermore, Tekler
et al. [16] highlighted the importance of selecting key sensor
data characteristics for occupancy prediction using various
deep learning models.

The extensive deployment of Wi-Fi on residential and
commercial premises makes it a powerful tool for location ser-
vices [17]. Wi-Fi technology was used to capitalize the ubiq-
uitous nature of mobile devices and the comprehensive sig-
nal coverage provided by Wi-Fi networks. Wi-Fi positioning
systems, particularly those that use fingerprinting techniques,
have gained popularity for their ability to accurately pinpoint
indoor locations by analyzing RSSI signals. The RSSI range
method, which estimates distances based on signal strength
attenuation, is instrumental in this context, obviating the need
for additional hardware and thus minimizing implementation
costs [18, 19].

H. Lu et al. [20] refined indoor positioning accuracy
by integrating a weighted nearest neighbor (WKNN) algo-
rithm and an extreme gradient boosting technique (XGBoost),
achieving a notable decrease in localization errors. The ar-
ticles [21, 22, 23] have employed supervised classifiers for
indoor positioning tasks, using machine learning algorithms
such as neural networks (NN), feedforward neural networks
(FFNN), support vector machines (SVM), and k-Nearest
Neighbors (kNN). In [23] it is highlighted that while NNs
offer high accuracy, they require considerable computational
resources. Furthermore, the introduction of recurrent neural
networks (RNN) and long-short-term memory (LSTM) models
for device positioning illustrates the potential to achieve high
levels of accuracy in determining device locations, even within
constrained environments [24].

Building upon these advances, the present research intro-
duces a neural network (NN)-based model for fingerprint
indoor localization. In summary, the principal contributions

of this paper are as follows:
• Framework Development for IIoT Indoor Localization:

The paper introduces a novel approach for indoor lo-
calization of devices in Industrial Internet of Things
(IIoT) settings by leveraging the variability in wireless
signal strength. This framework represents a significant
advancement in utilizing existing Wi-Fi infrastructure
for precise indoor positioning, eliminating the need for
additional specialized hardware.

• Utilization of Neural Networks for Enhanced Accuracy:
By applying neural networks to process RSSI data from
Wi-Fi access points, the study showcases how machine
learning techniques can be effectively used to improve
localization accuracy. The use of neural networks for
analyzing signal strength variations marks a pivotal step
in the practical application of AI for indoor localization
tasks.

• Achievement of High Localization Accuracy: The
methodology employed in this study is capable of pin-
pointing device locations with an accuracy of up to
98.6%. This high level of precision in determining device
positions within complex indoor environments under-
scores the effectiveness of the proposed neural network
model.

• Extensive Dataset Collection and Analysis: With the
collection of more than 30,000 data points related to Wi-
Fi signal strength measurements, this study lays a strong
foundation for future research in signal analysis for lo-
calization purposes. The comprehensive dataset supports
the validation of the neural network model and highlights
the potential for further optimizations and enhancements.

The paper is organized as follows: Section II explores
various Wi-Fi localization techniques, focusing on the use of
the Received Signal Strength Indicator (RSSI) and advance-
ments in indoor positioning. Section III discusses methods and
mathematical methods, as well as the realization of the device,
along with preliminary analysis. Section IV delves into the
Neural Networks model, and discusses Algorithm Evaluation
Techniques, as well as the result of indoor localization. Finally,
the Conclusion summarizes the findings on the efficacy of
neural network approaches in indoor device localization and
outlines future research directions.

II. RELATED WORK

Innovations in improving indoor Wi-Fi positioning include
the adoption of the local principal gradient direction, as de-
scribed in [25]. Here, the creation of a calibration device mesh,
each designated with a specific principal gradient direction,
facilitates the identification of proximal calibration points
through distance correlation. The position estimation is then
refined using the weighted squared Euclidean distance to the
nearest calibration point. Another significant advancement is
the application of Recurrent Neural Networks (RNN) and
Long Short Term Memory (LSMT) models for device position-
ing, demonstrating high precision in floor-level prediction with
minimal distance errors ranging from 2.5 to 2.7m [24]. The
study reveals that adding complexity to the RNN and LSTM
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frameworks yields marginal benefits relative to the increased
demands on training and testing durations.

Further research has explored pre-training systems with
RSSI data to enable real-time positioning [26], and the use
of deep learning techniques to infer human movement from
Wi-Fi channel state information [27]. Integrating additional
data types has been shown to enhance indoor positioning
accuracy. A notable investigation by [28] combined barom-
eter readings with information from five Access Points to
achieve three-dimensional user localization with less than 1.2
m error margin, conducted at the University of Genoa and
the University of Bologna. This study introduced a novel
3D indoor localization algorithm and found that incorporating
barometer data improved positioning success by up to 22%
when using more than five Access Points. This body of
work underscores the evolving landscape of indoor positioning
technology, highlighting the potential of integrating diverse
data sources and advanced computational models to refine
accuracy and reliability.

In a study by Aigerim et al., an ML classifier-based method-
ology was used for indoor localization purposes [29]. This
investigation leveraged RSSI data collected from Sony Xperia
XA1 mobile devices and BLE product iTAG signal emissions,
pinpointing the iTAG position at a building entrance. Dataset
collection was facilitated by students, with three groups, each
comprising 12 students, assigned an iTAG device. These
groups navigated a confined area with their activated iTAGs,
covering three designated spots at the entrance of the building,
including inside, in the vestibule, and outside, along an 18.35
m × 3 m hallway. Signal capture was executed using two Sony
Xperia XA1 smartphones positioned at both ends of a 2.35-
m ”in vestibule” segment, over a 20-minute duration. The
dataset comprised raw and filtered RSSI readings, with raw
RSSIs obtained directly from smartphones and filtered RSSIs
processed through a feedback filter. Training on these datasets
with Naive Bayes and Support Vector Machine algorithms
yielded a 0.95 accuracy rate for SVM with four vectors.

Singh and colleagues made significant contributions to the
field by exploring indoor location based on mobile phones
through ML methodologies. Their experimental setup in-
volved the collection of 3110 RSSI data points within an
indoor testbed and the evaluation of various machine learn-
ing algorithms, including kNN, RFR, Multilayer Perceptron,
and ZeroR. Their findings demonstrated that the proposed
ML techniques outperformed traditional indoor localization
methods, achieving a mean error of approximately 0.76 m.
They also proposed a novel hybrid instance-based approach
that significantly improved performance by tenfold without
compromising accuracy. The study highlighted the precision
of the proposed methods, their applicability in practical sce-
narios, and their robustness against sparse datasets, particu-
larly demonstrated through an online, in-motion experiment,
validating these methods’ suitability for real-world applica-
tions [30].

Kaur and her team conducted research on RSSI- and ML-
based indoor localization strategies, utilizing Neural Networks
for localization based on RSSI measurements. The study
compared position estimation results using Artificial Neural

Networks (ANN) and Decision Trees, employing an ANN with
three inputs for initial position estimates of RSSI triplets and
later with four inputs for enhanced precision. This comparative
analysis revealed superior accuracy of the algorithms tested
over the decision tree approach [36].

Jun et al. introduced an approach that enhances RSSI-
based localization accuracy through weighted least-squares
techniques. By adopting weighted multilateration, this method
aimed to mitigate error susceptibility and reduce the reliance
on ideal channel models. Using weighted least squares tech-
niques adapted from traditional hyperbolic and circular posi-
tioning algorithms, the study achieved enhanced localization
accuracy with minimal additional computational overhead, val-
idated through extensive real-world testing in various wireless
networks and numerical simulations [31].

Ashraf et al. [32] present a significant contribution to the
field of indoor localization by introducing a deep neural
network (DNN)-based approach that leverages magnetic field
data for positioning. This approach stands out by utilizing a
soft voting mechanism to ensemble predictions from multiple
DNNs, all trained on the same magnetic data, to enhance
localization accuracy.

Maduranga et al. [23] present a novel method for in-
door localization using Bluetooth Low Energy (BLE) and
Feed Forward Neural Network (FFNN), aimed at enhancing
location-based services in IoT applications. By training on
RSSI values from thirteen different BLE iBeacon nodes, the
study successfully demonstrates the feasibility of using FFNN
to accurately classify the location of an object within an indoor
environment.

Che et al. [33] introduce a machine learning-based approach
for indoor localization using ultra wide bandwidth (UWB)
systems, aimed at improving accuracy in Industrial Internet
of Things (IIoT) applications. By developing and employing
a Naive Bayes machine learning algorithm, the research ad-
dresses the challenges of line-of-sight (LoS) and nonline-of-
sight (NLoS) conditions in UWB indoor localization.

Koutris et al. [34] introduce a novel deep learning-based
method for indoor localization using low energy Bluetooth
(BLE) signals, leveraging multiple anchor points for the esti-
mation of the angle of arrival (AoA). This approach, for the
first time, utilizes both raw IQ values and RSSI estimates
for ML-powered BLE-based positioning, proposing a range
of novel deep learning architectures.

The research paper in [35] investigates the impact of using
dual-frequency SSIDs from Wi-Fi Access Points on indoor
localization accuracy using machine learning regression al-
gorithms. The findings indicate that dual-frequency SSIDs
significantly improve location prediction accuracy, and the
Support Vector Regression (SVR) algorithm outperforms other
classical machine learning methods.

Xudong and colleagues proposed CNNLoc [37], a deep
learning-based indoor localization system for multi-floor en-
vironments, utilizing a novel model that combines a one-
dimensional Convolutional Neural Network (CNN) with a
stack autoencoder (SAE). This system, designed to achieve
high accuracy in building and floor level localization, demon-
strated superior performance over existing methods on the
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TABLE I
COMPARISON OF DIFFERENT MACHINE LEARNING ALGORITHMS FOR LOCALIZATION.

Reference ML Algorithms Used Remarks Used hardware

[31] Convolutional Neural Networks Good accuracy n/a

[32] Neural Networks 77% accuracy Samsung Galaxy S8

[23] Neural Networks 78% accuracy Gimbal Beacons

[33] Support Vector Machine 82% accuracy, Wi-Fi used n/a

[34] Decision Tree-Based Localization Decent accuracy of DT receiver with an L-shaped antenna array

[35] Self-Organizing Map Fairly good accuracy provided. Wi-Fi was used Raspberry Pi 4B and an iPad

[30] Neural Networks Low accuracy Estimote

Our method Neural Networks High accuracy 98,6% Wi-Fi was used ESP32

UJIIndoorLoc and Tampere datasets, showing success rates
for building and floor-level localization. Table I shows the
comparison study of the existing work and the results.

III. METHODS AND MATERIALS

Location fingerprinting serves as a sophisticated technique
for inferring geographical locations by capitalizing on unique
characteristics associated with particular environments [38].
In this approach, a ”fingerprint” is defined as a combination
of distinct attributes or indicators that identify a geograph-
ical area. Specifically, in the context of Wi-Fi research, a
fingerprint includes a collection of Received Signal Strength
Indicators (RSSIs) collected from a variety of Access Points
(APs) at a specific site. The methodology underlying location
fingerprinting divides into two essential phases: the offline
phase and the online phase. The offline phase is characterized
by the collection of features from several sites within a test
environment to create a reference database or mapping. This
reference collection contains a variety of fingerprints, each
linked to their respective geographical coordinates. In contrast,
the online phase involves collecting features from an unknown
location to determine its location based on its fingerprint. This
fingerprint is then cross-referenced with the database entries
to determine the geographical position of the unknown site. A
schematic representation of the proposed system architecture
is provided in Figure 1, which offers a visual overview of
the operational framework. Therefore, as described in detail
in Section IV the input for the neural network (NN) model is
established as RSSIi,k = (xi1, ..., xij , ...xin), where RSSIi,k
constitutes a one-dimensional vector that encompasses the
extent of k RSSI measurements from the wireless access points
at position i, where j determines the RSSI of jth access
point, determined with a unique SSID and a MAC address.
Throughout the training stage, each RSSI measurement is
matched with a distinct label indicative of locations in different
rooms. For example, the expression (RSSIi,k, i) illustrates the
RSSI fingerprint RSSIi,k linked to the ith specific location
of the building. The data collected are passed to a centralized
database with high computational power to train a deep neural
network model. To facilitate the training process, the data set
is divided into three segments: the training set, the validation
set, and the test set. Upon training, the test set data is validated
on a model to estimate the location of a device.
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Fig. 1. System Architecture

A. Experimental Setup

At the heart of the sensor apparatus lies the Espressif Sys-
tems ESP32 microcontroller, which is equipped with integrated
Wi-Fi and Bluetooth capabilities, as shown in Figure 1. In the
first phase, ESP32 enters the scan mode, where it captures
data related to SSID, MAC address, and RSSI of neighboring
access points. After that, the collected data is passed over
Wi-Fi to a centralized database using the MQTT protocol
for further analysis. Illustrated in Figure 2 are the various
sites within a university building where ESP32 devices were
installed (pisiotions 1-24) to collect data on the strength of
the Wi-Fi signal from neighboring access points, comprising
a total of 24 different locations where these ESP32 devices
were deployed. These devices were strategically placed in four
rooms located on the same floor, and two of the rooms were
located within the same building sector. The objective behind
this indoor localization effort was to evaluate the capability of
the designated machine learning model to accurately identify
the device’s specific location, whether it be within a particular
room or a broader building sector. In total, this study collected
more than 30,000 data points related to measurements of the
strength of the Wi-Fi signal.

The experimental setup for the machine learning tests was
configured with a hardware and software environment that
included an Intel Core i7-7700HQ CPU operating at 2.80 GHz,
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Fig. 2. Measurement locations.

16 GB of system memory, an NVIDIA GeForce GTX 1050 for
graphics processing, and ran on a 64-bit version of Windows
10. To enhance the performance on the GPU, the NVIDIA
CUDA toolkit (cuDNN) was employed. For conducting the
experiments, which varied in batch sizes, the Keras library
version 2.3.1 was utilized, which relies on Tensorflow 2.2.0
and supports CUDA for GPU acceleration.

B. Wi-Fi Data Analyses

The examination of Wi-Fi data necessitated a distinctive
analytical approach, given the presence of 397 access points
(APs) and in excess of 30,000 received signal strength indi-
cators (RSSI). For a complete comparative analysis, specific
attention was redirected toward the data emanating from rooms
A242 and 243 in Figure 2, with a more detailed analysis
provided. Regarding the location pairs discussed above, their
respective RSSI readings were revisited (vectors RSSIi,k at
locations i = {A242, A243}. Figure 3 shows a histogram of
RSSI values collected at location points 4 and 12 in rooms
A242 and A243 from a specific access point (AP 2 in this
example). As can be seen, there is some degree of overlap
for locations within different rooms, although with a clear
distinction; for example, lower RSSI readings were typically
associated with location 4, while higher values were more
common for location 12, when considering the same AP.
This differentiation hints at the nuanced spatial distribution of
signal strengths across different locations, offering a valuable
perspective for interpreting Wi-Fi data in spatial analyses.

This clearly indicates that Wi-Fi data can indeed represent
a source of localization information, especially in dense in-
dustrial environments with multiple access points deployed in
numerous locations. Moreover, combining such data on signal
strength with an appropriate deep learning algorithm from
multiple access points can indeed boost indoor localization.
The overall conclusion of the above analyses for Wi-Fi data
has exhibited data properties and interconnections that aim to
point out the most optimal selection of a Machine Learning
algorithm capable of accurately classifying a location point
based on Signal Strength data values. The next Section elab-
orates the selection.
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Fig. 3. Histogram of RSSI values from AP 2 for room A242 and A243 and
location points 4 and 12.

IV. NEURAL NETWORKS MODEL

During the past two decades, Artificial Neural Networks
(ANN) have emerged as a cornerstone in machine learning,
extensively applied across various domains for both predictive
and classificatory functions [8]. Drawing inspiration from the
biological neural networks of the brain, ANNs are devised as
mathematical models to replicate the structure and function-
ality of their biological counterparts [39]. Their applications
span various scientific fields, including but not limited to
pattern recognition [40], image classification [41], language
processing [42], computer vision [43], and time series fore-
casting [44].

ANN architecture is fundamentally composed of three lay-
ers: the input layer, hidden layers, and the output layer.
The presence of multiple hidden layers signifies the depth
of the network. These networks simulate brain learning by
identifying latent correlations in input data through neurons
in the hidden layers, where each neuron’s output is relayed as
input to subsequent layers. The performance of training and
the predictive accuracy of an ANN are significantly influenced
by the initial weighting of the connections and the choice of
activation function [45]. Activation functions, which can be
linear or nonlinear, are crucial in maintaining the neuron’s
output within a typical range of [0, 1] or [−1, 1], with nonlinear
functions like Sigmoid, Rectified Linear Unit (ReLU), and
Tanh being prevalent [46].

The Sigmoid function is characterized for its continuous
differentiability but is criticized for its gradient vanishing
issue, which can impede the learning process [45]. This
challenge is addressed by the ReLU activation function that
facilitates continuous learning progression, making it a pre-
ferred choice for neurons in hidden layers, while Sigmoid is
favored for output layer neurons [45]. Neural networks operate
on supervised learning principles, where neuron weights are
adjusted during training to closely approximate ground truth.
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TABLE II
SELECTION OF THE HYPER PARAMETERS FOR DESIGNING THE NN

MODELS.

Hyper Parameter Values

Number of neurons Layer1-192, Layer2-96, Layer3-24
Learning rate 0.001, 0.01
Number of epochs 50
Batch size 64

The iterative training process involves a loss (cost) function to
evaluate the network’s performance with specific weights. For
tasks involving multiple classes, such as localization, Categor-
ical Cross-Entropy is frequently employed as a loss function
for multi-class classification. Optimization algorithms, includ-
ing Stochastic Gradient Descent (SGD), Adaptive Moment
Optimization (Adam), and Root Mean Square Propagation
(RMSProp), play a critical role in minimizing the loss function
during training to efficiently fine-tune the weights of neurons.

A. Algorithm Evaluation Techniques

In the evaluation of predictive or classification algorithms,
several standard metrics are routinely used to assess perfor-
mance. For predictive tasks, the Mean Squared Error (MSE)
and Mean Absolute Error (MAE) are commonly utilized
metrics, formulated as:

MSE =
1

2m

m∑
i=1

(ŷ(i) − y(i))2. (1)

MAE =
1

m

m∑
i=1

|ŷ(i) − y(i)|. (2)

The MSE metric serves as a measure for error estimation,
with lower values indicating higher precision in estimation. It
calculates the average of the squared discrepancies between
predicted outcomes and actual values, while MAE quantifies
the average magnitude of errors across predictions. Validation
loss, furthermore, indicates the model’s performance through-
out the training phase.

For classification tasks, such as those in localization studies,
the research community leverages specific metrics to gauge
various aspects of a classifier’s performance. These metrics
include Confusion Matrix, Accuracy, F1 Score, Receiver Op-
erating Characteristic Curve (ROC AUC) Accuracy, Average
Precision (AP), and Top-k Accuracy.

• Confusion Matrix: This is an N ×N matrix, where N is
the number of distinct classes, that contrasts actual versus
predicted classifications, offering a comprehensive view
of the classification model’s effectiveness and the nature
of its errors.

• Accuracy: This metric measures the overall proportion of
correct predictions made by the model, calculated as:

Accuracy =
TP + TN

TP + FP + TN + FN
, (3)

where TP and TN represent correctly classified positive
and negative instances, respectively, and FP and FN de-
note incorrectly classified negative and positive instances,
respectively.

• F1 Score: Representing the harmonic mean of Precision
and Recall, the F1 Score encapsulates both the accuracy
of positive predictions and the rate at which positive
instances are correctly identified [47], computed using:

F1 score = 2 · Precision ·Recall

Precision+Recall
. (4)

The F1 Score varies within the [0, 1] range, achieving its
minimum and maximum in scenarios of perfect misclas-
sification and flawless classification, respectively [48].
In multi-class scenarios, it is essential to incorporate a
comprehensive measure of Precision and Recall for all
classes into the harmonic mean, resulting in two versions:
Micro F1 score and Macro F1 score.

• ROC AUC: The ROC curve, an evaluation tool for binary
classifications, plots the True Positive Rate against the
False Positive Rate [47]. The AUC value serves as a
classifier’s capability indicator to differentiate between
classes, with a perfect classifier achieving an AUC of
1 [49].

• Average Precision: This metric integrates both Recall and
Precision, presented as a recall function p(r).

• Top-k Accuracy: Frequently used in machine learning, es-
pecially within deep neural network contexts, this metric
assesses the likelihood that the correct class is among the
top-k predictions. It is particularly relevant in fields like
computer vision, indicating the model’s predictive range.

B. Neural Network Model for Localization

The development of a Neural Network model for local-
ization involved several critical steps, starting with the pre-
processing of data, which included data normalization of the
collected data. This initial stage adjusted for the varying
scales of data values through normalization, focusing on the
k collected RSS values from specific jth Wi-Fi Access Points
as input at ith position, as depicted in Section III and shown
in Figure 1. The objective was to predict sensor location i,
which were classified into 25 distinct positions (ranging from
i ∈ {0, . . . , 24}). For this purpose, the input of 397 Wi-Fi
access points was utilized for the Wi-Fi model. The dataset
was then divided, assigning 10% for testing, and the remaining
portion was further segmented into training and validation sets,
the validation subset also comprising 10%.

To determine the most effective and accurate model con-
figuration, various hyper-parameter combinations were evalu-
ated. This included experimenting with the Adam optimizer
alongside other parameters, which are detailed in Table II.
The results of these experiments, particularly those related to
the Wi-Fi Neural Network model, are summarized in Table III.
Here, it was observed that a specific parameter set, comprising
a learning rate of 0.001 and a training duration of 50 epochs,
yielded the highest test set accuracy. The performance of the
model, depicted in Figure 4, illustrates the progression of
learning in both the training and validation phases, highlight-
ing the increase in accuracy and the decrease in loss over time
until the model converges.

Furthermore, a confusion matrix was generated for the
model using a learning rate of 0.001 and 50 epochs with Wi-Fi
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TABLE III
RESULTS OF FIRST NEURAL NETWORK MODEL USING SIGNAL STRENGTH DATA FROM WI-FI.

Macro Avg Weighted Avg

Learning Rate Epochs Accuracy Precision Recall F-Score Precision Recall F-Score

train 0.01 50 0.9307 0.9365 0.9065 0.9082 0.9424 0.9307 0.9260
val 0.01 50 0.9317 0.9398 0.9073 0.9139 0.9404 0.9317 0.9289
test 0.01 50 0.9287 0.9359 0.8999 0.9033 0.9404 0.9287 0.9239
train 0.001 50 0.9866 0.9834 0.9770 0.9793 0.9874 0.9866 0.9866
val 0.001 50 0.9831 0.9789 0.9708 0.9736 0.9841 0.9831 0.9831
test 0.001 50 0.9864 0.9810 0.9781 0.9786 0.9873 0.9864 0.9864

Fig. 4. Learning path of model with training and validation loss and Accuracy plot for Wi-Fi data.

Fig. 5. Confusion matrix for 0.001 learning rate and 50 epochs and Wi-Fi
data.

data, providing a detailed visual representation of its predictive
accuracy across different locations, as shown in Figure 5. The
axes of the confusion matrix are critical for understanding the
performance and accuracy of our model. The vertical axis (y-
axis) represents the actual classes, indicating the true locations

as determined by our setup. These classes are segmented into
distinct areas within the industrial environment, each labeled
according to predefined zones of interest (positions 1-24 in
Figure 2. The horizontal axis (x-axis) corresponds to the
predicted classes, showcasing the output of our localization
model. Similarly to actual classes, these predicted classes are
categorized into the same zones, allowing for a direct compar-
ison between where the model predicts that a device is located
and its actual location. The cells within the matrix elucidate
the number of predictions for each class, with the diagonal
cells indicating correct predictions (true positives) where the
model’s predicted location matches the actual location. Off-
diagonal cells represent misclassifications, where the model’s
predictions diverge from the true locations, categorized as
either false positives or false negatives depending on the
direction of the discrepancy. This confusion matrix is instru-
mental in quantifying the performance of our Wi-Fi-based
localization method, providing information on its precision,
recall, and overall accuracy in distinguishing between different
zones within the industrial environment. Through this detailed
breakdown, we can assess the model’s strengths in correctly
identifying specific areas and identify any potential areas
for improvement in its predictive capabilities. The results
presented in the Confusion matrix indeed reflect the training
of our Neural Network model indicating that rather good
localization accuracy in Industrial IoT environment can be
obtained from observing the strength of the Wi-Fi signal from
nearby access points.
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For future work, transitioning towards employing TinyML
presents an exciting avenue to explore [50]. TinyML enables
the deployment of trained neural network models directly onto
low-power edge devices, significantly reducing the computa-
tional and energy requirements. This shift could revolutionize
the application of our Wi-Fi-based localization method by
embedding the capability directly into edge devices deployed
within the industrial environment. By integrating TinyML,
we can leverage the lightweight and efficient models that
run directly on edge devices, facilitating real-time localiza-
tion without the need for constant communication with a
centralized server or the use of high-performance computing
resources. Such an approach not only promises to enhance the
scalability and efficiency of our localization solution but also
opens new possibilities for its application in scenarios where
immediate data processing on the device is crucial.

V. CONCLUSION

This study presents a framework for the indoor localization
of devices within Industrial Internet of Things (IIoT) environ-
ments, leveraging variations in wireless signal strength. Lo-
cation estimation is achieved through Wi-Fi scanning, which
collects data on nearby access points, including SSID, MAC
address, and RSSI. Neural Networks (NN) were applied as the
machine learning methodology for determining the device’s
position based on changes in signal strength. Evaluation of
the collected data demonstrates that signal strength measure-
ments, specifically RSSI values from Wi-Fi, can accurately
pinpoint the location of a device with up to 98.6% accuracy.
Future endeavors will focus on extending the duration of
signal strength data collection to deepen understanding of its
fluctuations. In addition, alternative machine learning algo-
rithms will be explored. Furthermore, the machine learning
models implemented will be deployed on microcontrollers to
assess the precision of real-time device localization. Finally,
exploring the usage of TinyML will allow the deployment of
trained neural network models directly onto low-power edge
devices, significantly reducing the computational and energy
requirements, which is planned for future work.

REFERENCES

[1] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. M. 
Barnaghi, and A. P. Sheth, “Machine learning for internet of things 
data analysis: A survey,” CoRR, vol. abs/1802.06305, 2018. [Online]. 
Available: http://arxiv.org/abs/1802.06305

[2] A. Willig, K. Matheus, and A. Wolisz, “Wireless technology in industrial 
networks,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1130–1151, 2005.

[3] V. C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges of 
wireless sensor networks in smart grid,” IEEE Transactions on Industrial 
Electronics, vol. 57, no. 10, pp. 3557–3564, 2010.

[4] C. Laoudias, A. Moreira, S. Kim, S. Lee, L. Wirola, and C. Fischione, “A 
survey of enabling technologies for network localization, tracking, and 
navigation,” IEEE Communications Surveys Tutorials, vol. 20, no. 4, 
pp. 3607–3644, 2018.

[5] M. Collotta, A. Lo Cascio, G. Pau, and G. Scatá, “Smart localization 
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