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AN ARTIFICIAL NEURAL NETWORK MODEL SUPPORTED WITH
HYBRID MULTI-CRITERIA DECISION-MAKING APPROACHES TO
RANK LEAN TOOLS FOR A FOUNDRY INDUSTRY

Summary

The primary objective of this study is to optimise operating efficiency and minimise waste
within a core foundry shop through the application of lean manufacturing techniques. The
research emphasises the significance of Artificial Neural Networks (ANNSs) in aligning an expert
assessment matrix with lean tool rankings, particularly in addressing the challenges associated
with fuzzy logic-based leanness computation. The expert assessment matrix was constructed with
the entropy approach for generating weights and the TOPSIS ranking algorithm for evaluating
lean tools. The use of the TOPSIS technique resulted in a notable level of agreement, with a
percentage of 73.42%, and a corresponding level of disagreement of 26.57%, when compared to
the expert evaluation matrix developed for the assessment of lean tools. The expert assessment
matrix that was produced was utilised in the analysis of the efficacy of several lean tools inside a
foundry core manufacturing line. The research suggests the implementation of an automated
conveyor system for the transportation of several cores, which would lead to the optimisation of
floor space, enhanced safety measures, and more schedule flexibility. The findings of this study
reveal a significant decrease of 79.6% in non-value-added activities (NVA), a notable
improvement of 62.66% in process efficiency, a substantial reduction of 66.66% in waiting times,
a considerable decrease of 35% in personnel requirements, and a significant cost reduction of
45%. A three-month accident-free workplace demonstrated the efficacy of the safety strategy.

Key words: lean manufacturing, MCDM, process time, cost, safety, defect, productivity,
neural network, core station, foundry

1. Introduction

In the 1950s, Taiichi Ohno introduced the Toyota Production System (TPS), a revolutionary
manufacturing approach. Subsequently, in the late 1980s, the concept of lean manufacturing
emerged as a derivative of TPS, tailored to better suit Western manufacturing companies [ 1]. Recent
research has expanded the scope of waste reduction beyond the traditional areas and now
encompasses issues such as the underutilisation of skills and infrastructure [2,3]. Among the
methodologies explored, value stream mapping (VSM) has emerged as a highly effective technique
for identifying waste within an organisation's processes [4]. The adoption of lean principles, coupled
with appropriate training, has shown promising results in enhancing the performance of
manufacturing industries. While numerous lean tools (LTs) have been identified by researchers,
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organisations often face challenges in selecting the most suitable LTs for implementation [5]. The
integration of all these lean tools and techniques can be a lengthy and costly process for
manufacturing organisations. Consequently, there is a growing need for a systematic approach to
selecting and implementing lean concepts [6]. Recent studies have proposed frameworks that
incorporate industrial engineering and optimisation methods, offering a variety of lean tools to
choose from [7,8]. These frameworks provide a structured and data-driven approach to help
organisations make informed decisions about which lean tools to employ, streamlining the
implementation process and maximising the benefits of lean manufacturing principles.

This study offers a methodology that leverages value stream mapping and plant planning to
meet specific requirements. It involves the prioritisation and evaluation of lean tools using two
Multi-Criteria Decision-Making (MCDM) techniques: TOPSIS and entropy. Decision-making
inherently involves selecting the most appropriate course of action from a range of options.
Decision-makers are primarily tasked with harmonising competing objectives while working within
system constraints. In recent times, there has been growing interest in the application of artificial
neural networks (ANNSs) to aid decision-making processes. Neural networks excel at modelling
complex input-output relationships. The primary focus of this paper is to present a strategy-based
decision model founded on MCDM principles, while also validating the data using neural networks.
While the study acknowledges the potential of neural networks, it does not delve into the intricacies
of designing these networks. The proposed model is outlined in a comprehensive manner and is
elucidated through a case study, offering a practical illustration of its application.

The approach involves the evaluation of lean tools based on input parameters. In this
methodology, future rankings were generated using the proposed strategic model without
requiring direct input from decision-makers. It is worth noting that conventional decision-
making methods follow a similar process. Figure 1 illustrates the distinction between these
models and traditional decision-making approaches. Typically, multi-criteria decision-making
(MCDM) methods have been employed for the manual ranking of lean tools. However, in this
study, lean tools were ranked based on their ability to capture and handle complex, non-linear
relationships using artificial neural networks. In the case of ANNSs, the correct conclusions were
drawn by combining reasoning based on historical data and a well-structured neural network
model. The MATLAB NN toolbox was utilised for training the neural network. This innovative
method for ranking lean tools takes the results of MCDM models and uses them as the input
for ANNs. Moreover, the evaluation and modelling phases consider the past performance of
objects, enhancing the overall robustness of the approach.
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Fig. 1 The conceptual contrast between the proposed model and conventional procedures

In the assessment of an organisation's leanness, various methods were employed to
evaluate the criteria that influence its leanness. In this study, a significant approach involves
the utilisation of an artificial neural network in a hybrid multi-criteria decision-making
(MCDM) framework. This approach is particularly valuable due to the presence of uncertainty,
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imprecision, and ambiguity in scoring methods, necessitating a robust MCDM-based model [9-
11]. To assess leanness effectively, decision-makers play a crucial role by contributing
performance measures and ratings for different criteria. These criteria are essential for
evaluating the effectiveness of lean processes, and decision-makers often express their
assessments using linguistic factors [12-14]. In this study, an exploratory approach was taken
to understand the relationships between criteria, facilitators, and performance scores. This was
achieved by constructing a network that incorporates historical data and employs a neural
network for analysis. The Euclidean distance method was subsequently applied to assess the
organisation's level of leanness. Decision numbers provided by decision-makers were
transformed into decision variables and compared to linguistic categories. Furthermore, this
study goes beyond assessment by providing recommendations for enhancing areas with
identified potential for improvement. It examines key lean performance metrics, including
process time, cost, a work-in-progress (WIP) inventory, and defect rates, both before and after
implementing the leanness assessment method, to analyse production developments [15].

To investigate the effectiveness of lean management practices within an organisation, the
following research objectives were addressed: (1) present a hybrid MCDM TOPSIS and
entropy framework for choosing and ranking lean tools; (2) assess the order of lean tools
produced by the hybrid TOPSIS and entropy approaches; and (3) show the value of efficacy of
the projected case study by applying it to the foundry manufacturing industry. The following
sections present the literature review, methodology, and case study implementation. The
improvements are then illustrated by making comparisons between the current and future state
of VSM, after which conclusions and proposals for further study are presented.

2. Review of literature

Previous studies have primarily examined production within organisations and have
explored critical factors related to lean implementation from a manufacturing perspective.
These studies have paved the way for the research opportunity addressed in this study.

By methodically identifying and eliminating waste (any activity that consumes resources
without providing consumer value), the lean concept intends to provide manufacturers with a
new competitive edge [16—18]. Therefore, unlike mass production, which takes advantage of
economies of scale, lean production is customer-centric. In order to maximise profits,
companies should follow the lead of Hu et al., 2015 [19] and create a company culture that
prioritises the needs of customers [20]. Since this is the case, many businesses of varying sizes
and scopes are attempting to adopt lean manufacturing practices, which aim to change labour-
intensive production with systems that are more valued, adaptable, and productive [21].

Lean manufacturing has demonstrated success in many organisations which has made it
more appealing to small and medium enterprises (SME) worldwide. Consequently, numerous
organisations have adopted lean manufacturing techniques to enhance their production and
efficiency [22]. The use of JIT, Kanban, Hoshin, and 5S among other lean tools has been shown
to boost productivity and quality in numerous cases of lean deployment in small and medium
business units (SMB) [23]. Based on a series of case studies conducted by Panizzolo et al. (2012),
it has been found that using lean methodologies in Indian small and medium enterprises (SMEs)
can greatly improve their manufacturing performance. This is particularly relevant for SMEs in
developing countries. [23]. Upadhye et al. (2010) described the significant steps in an Indian SME
to implement lean philosophy in order to increase its efficiency and effectiveness [24]. The
company recognised that the implementation of lean tools, such as 5S and SMED, would lead to
improvements as a result of adhering to the lean philosophy. Similarly, numerous analyses have
revealed the advantages enjoyed by small enterprises employing lean methods and equipment.
Grewal (2008) observed a 33.18% decrease in cycle time, an 81.5% decrease in switch time, an
81.4% decrease in lead time, and a 1.41% decrease in value added time in a small company
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located near Ludhiana that implemented VSM [25]. In addition, Matt and Rauch (2013)
implemented a study to aid small businesses in northern Italy in implementing lean production
[26]. Dora et al. (2013) found that the implementation of lean practices in European SME food
processors is low and still evolving [27]. The study revealed a staggering productivity increase of
over 25% across all products. Various additional studies demonstrate the unexplored capacity of
small businesses and the efficacy of lean methodology in small and medium-sized enterprises
(SMESs). Minimisation of cycle time, set-up time, lead time, and delivery time can reduce the
amount of space used, product quality, and cost [28]. Consequently, the importance of lean
implementation in SMBs is now widely recognised. Multiple international studies have found
surprisingly low success rates for lean initiatives in SMBs. In addition, Thomas et al. (2014)
claimed that lean and Six Sigma edges in the United Kingdom are advancing slowly [29]. In
reality, only 4% to 6% of small businesses transition to lean organisations. The LM concept tools
promote job safety and reduce the causes of accidents in the workplace at various levels [30]. J.
Furman et al. (2021) suggest that the use of proper LM tools to control waste in one place can
reduce waste in other places as well [31]. The study found that previous research had commonly
utilised selection methods for lean tools by examining the associations between either lean tools
and performance metrics, lean tools and waste reduction, or all together [32-33].

2.1 Review of literature on artificial neural networks

A neural network is an effective tool for making predictions using nonlinear models, but
it can be challenging to determine the optimal network layout. The best network structure has
been sought using an evolutionary algorithms technique. Au et al. (2008) observed basic
connected neural network models and other estimating models [34]. Chambers and Campbell
(2002) proposed a method for modelling system components using ANNs [35].
A comprehensive system was constructed by linking artificial neural network (ANN) meta
models, and simulation was employed to instruct the ANN to function as a unified and versatile
processing unit. Golmohammadi (2011) introduced a model for multi-criteria decision-making
using a feed-forward neural network and fuzzy logic [36]. A correlation between input and
output was established by training the model using neural networks and assigning weights to
various criteria, enabling the model to make judgments.

The ranking of the options is dependent on the weights assigned by the decision-makers.

Ciurana et al. (2008) proposed a method for the selection of machine tools within a
manufacturing company [37]. The selection of appropriate questionnaires will have an effect on
both the process and the expansion of the organisation. In order to find the best tool for the
organisation, neural networks have been deployed and, for the purpose of forecasting lumpy
demand, In their study, Gutierrez et al. (2008) created a neural network model to compare its results
with those obtained using the usual time sequence approach. The researchers found that the neural
network model outperformed traditional methods, as stated in their conclusion [38]. In order to
estimate manufacturing costs for a novel single disc brake design, Cavalieri et al. (2003) evaluated
parametric and artificial neural network (ANN) approaches [39]. The outcome suggests that ANNs
appear to strike a better balance between accuracy and development cost than other methods [40].

Numerous articles outline the application of integrated frameworks for the prioritising of
lean tools, which are considered an MCDM issue. The frameworks employ MCDM techniques,
including FAHP, fuzzy TOPSIS (FTOPSIS), and a fuzzy decision-making trial and evaluation
laboratory (FDEMATEL) [5], [41-43]. Due to their ease of calculation, triangular fuzzy
numbers (TFNs) are often employed in research [44].

2.2 Literature-identified knowledge gaps

In literature, the results of AHP and FAHP are compared with FTOPSIS, VIKOR and,
PROMETHEE or other combinations of these techniques for industry. Researchers have
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utilised TOPSIS and COPRAS methodologies to optimise LT decision problems using a single-
phased approach without any validation. The assessment of different frameworks for a lean tool
for this problem was innovative in this study that used entropy TOPSIS and which was validated
using an ANN approach. ANNs can capture non-linear relationships in data. In this
investigation, the complexity was idealised as more of a cause-and-effect type for the multiple
factors considered. The study focuses on the ranking of lean tools that can be effectively used
for enhancing the process outcomes. Thus, the research outcome will be achieved by mapping
the appropriate lean tools for improving the desired outcome of the factors investigated.

Artificial neural networks (ANNSs) excel at capturing non-linear relationships within data.
In this study, the complexity of the relationships was conceptualised as predominantly cause-
and-effect for the multiple factors under consideration. The primary objective of this research
was to prioritise and rank lean tools that can be effectively employed to enhance process
outcomes. Consequently, the research aims to provide valuable insights by identifying the most
suitable lean tools for improving the desired outcomes associated with the investigated factors.

The novelty of our work lies in the validation of the lean tools ranked by TOPSIS using
artificial neural networks (ANNs), which are then mapped for the purpose of process
improvement.

3. Methodology

The methodology was implemented after reviewing the research literature, interviewing
experts, and surveying the managers in a foundry at the core shop and moulding division.
Decision-making criteria were identified through the brainstorming method. The steps are
illustrated in Figure 2 and are explained as follows.

Identifving and evaluating critenia through
brain storming and literature

‘ Determine interdepended relationship
between criteria

‘ Calculate the criterion weight using
Entropy method

Conduct TOPSIS method using the
weights calculated by Entropy

| Rank the lean tools
L]
Collect decision maker data and determine

the input and output parameters

—| Tsxs&m Adonuz J

| Determine the training and test datasets

| Create the artificial neural network |
¥
| Train the Network |4—

Does network
training completed

SH0MIAN] TRINSN] [RHIIY

| Optimum network solution

Fig. 2 The research methodology
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Step 1: Identifying and evaluating criteria through brainstorming and literature

Determining the criteria is one of the most crucial aspects of decision-making models.
Important aspects and characteristics of ranking lean tools include the selection of criteria, the
design, and the lean tools as inputs to the decision-making model that has a direct impact on
the efficiency of the model.

The selection of criteria and lean tools for ranking processes vary based on their
objectives. In our case study, the foundry organisation utilised brainstorming as a method to
determine the criteria that align with its strategic objectives. Therefore, decision-makers in the
core shop and moulding division met and recorded the decision values which influence the
process and the selection of an appropriate lean tool. The following criteria were identified:
process time [C1], cost [C2], defects [C3], safety [C4] and quality [C5].

Step 2: Determining the interdependence of the criteria

Next, to account for the interdependence among the criteria, it became essential to establish
a precise network structure that reflects these relationships. This network structure was constructed
through a second round of brainstorming, primarily based on the following relationships: process
time, cost, and defect rates may be influenced by factors such as productivity and safety
considerations. Figure 3 visually represents the mapping of the interdependent structure of the
criteria and lean tools. For the purpose of this study and implementation in the core shop, a selection
of lean tools (LT) was identified. These lean tools include 5S (LT1), Value Stream Mapping (LT2),
Just-in-Time (LT3), Kanban (LT4), Kaizen (LT5), Continuous Flow (LT6), Poka-yoke (LT7), Pull
System (LT8), Setup Reduction (LT9), Standardised Work (LT10), Total Productive Maintenance
(LT11), Cellular Manufacturing (LT12), and Jidoka (LT13).

‘ Rank of Lean tools ‘

Process time Cost Defects Safety Productivity

LTl LT2 LT3 LT4 LT3 LT6 L17 LT8 LTS LT10 LTl LT12 LT13

Fig. 3 Interdependent structure of criteria and lean tools

Step 3: Determining the weights of the criteria by the entropy technique

In contrast, Shannon's entropy emerges as a highly recommended method for determining
criterion weights due to its efficiency in enhancing the reliability and precision of decision-
making, all without the need for intricate modelling. This is unlike objective weighting
techniques such as surveys, Delphi, or AHP, which can introduce subjective biases into index
weights. The use of Shannon's entropy offers a more objective approach. As pointed out by Li
et al., objective fixed weight methods like entropy have the advantage of mitigating human-
induced disturbances. This is because they rely on information inherent in the indexes
themselves, establishing index weights based on existing data [45]. Consequently, the
application of entropy, in combination with the TOPSIS method, contributes to a substantial
improvement in the reliability and accuracy of lean tool ranking, aligning the results more
closely with factual information [46].

Step 4: Entropy weight calculation

The entropy weight method is a good way to work out the importance of the different
criteria for TOPSIS computation. This method was originally derived from thermodynamics
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and later applied to information systems. Information entropy encompasses the unpredictability
of communication signals. Similar to the objective of fixed weight methods, the entropy weight

method calculates the index's weight based on the information volume. The normalising of the
available decision matrix

xij

ml'] = Z'fznxij (1)

The entropy of each index is calculated using equation (2).
n
1 . .

E; =amzi=Pi] InPjj=1..n (2)
The assessment of the degree of deviation of essential information for each criterion

Dj=1-E; j=1..n 3)
where Dj measures the grade of deviance of critical data for the jth criteria.
The calculation of the criteria’s entropy weight

. Dj
wj =t @

where wj is the importance weight of the jth criteria.

Step 5: TOPSIS (Technique for Order Performance by Similarity to Ideal Solution)
1. Yoon and Hwang created TOPSIS in 1981. The chosen option should be closest to the ideal
solution and farthest from the negative-perfect solution [47].

2. Chen's fuzzy TOPSIS process is similar to the standard one and can be stated as a series of
steps [48].
3. Rank alternatives in descending order of preference - c;.

) . e a;; bijj cjj "
The linear scale transformation is: 7;; = ( <, lf,%),cj = maxc;; (5)
R B L
To avoid the effect of the index dimension and its range of change on the assessment results,
the original matrix must be normalised to ensure that all the characteristics are in the same

format and have the same value. In this way, normalised numbers can be calculated.
The Jahanshahloo et al. formula [49] is:

7y - ©)

a \/Z?zl((aij)2+ (ciy)*) ' JZ?=1 20y JZ?=1((aij)2+ (ciy)”)

where X;; = (ai i bij,cij ) are the elements of the decision matrix.

Construct the weighted normalised decision matrix.

In this section, a set of weights of » indicators wj= {v; =1, 2, . . ., n}, where wj > 0 is
applied to compute the weighted normalised decision matrix
VU = W]X fl]']= 1,2,m,l = 1,2,3 - (7)

Determine the fuzzy ideal and fuzzy negative-ideal solutions.

The positive ideal solution contains the optimal values of every characteristic from the
weighted normalised choice matrix, whereas the negative ideal solution has the worst values
determined as follows:
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A = (G55, ... )
A== (1,95, 93} )
where, " = (1,1,1) and 7, = (0,0,0),j = 1,2,3,..........m

Calculate the separation measure.

After computing the distance between each option and the positive and negative ideal
solutions, the separation value is calculated.

Ideal Separation:  S;" = Y7L, s(Dy;, /) i=12,ucnu..n (10)
Negative —ideal Separation: S; = Z;"zls(ﬁij, 17]-") i=12,..n (11)

where S(ﬁi i ﬁf) and s(ﬁl- I 17]-_) are distance measurements calculated with the vertex
method:

~ ~ 2 2 2
Ay 59) = 0= )"+ (= 98) + (x5 = 9] 12

%y = (xfxfxd), 3= byl vd)

Calculate the relative closeness to the ideal solution.
The closeness coefficients of each alternative are calculated by

; S;

“T G

0<c <1 i=123...n, (13)

ci=1if A;= A* ¢ =0if 4;= A~

Finally, the alternatives can be ranked based on the closeness coefficients, in which the best
alternative is the one with the highest value.

Step 6: Neural network structure

Traditionally, multi-criteria decision-making (MCDM) has been a manual process for
ranking lean tools. However, this research departs from the conventional approach by assessing
the ranking based on how effectively artificial neural networks (ANNSs) can capture and retain
complex information. In the case of artificial neural networks, achieving the correct results
involves the fusion of logical reasoning, historical data, and a well-designed neural network
model. The MATLAB Neural Network toolbox was utilised for simulating the network in this
research. Several strategic factors come into play, including the selection of input variables, the
network architecture, and the volume of training data, all of which significantly impact the
accuracy of neural leanness assessment network forecasts. Key considerations in neural
network modelling encompass the size of input nodes, the presence of hidden layers, hidden
neurons, training rules, training rates, and stop criteria for training. For most scenarios, a single
hidden layer sufficed, although increasing the number of hidden layer units proved
advantageous [50]. Selecting the optimal architecture was the first step in building the neural
network model. Backpropagation emerged as the most prominent neural network architecture
for pattern recognition [51]. Figure 4 illustrates the overall architecture of backpropagation,
comprising three parallel layers. To advance a backpropagation model, a training set of input
and output data patterns was essential. The first layer included input variables, while the second
layer(s) housed processing units known as hidden nodes, and the third layer contained output
variables. Weighted connections linked these layers, and these weights were estimated through
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training or manual initialisation. The correct outcome was attained by manually initialising the
weights and iteratively adjusting them towards the target.

Neural network training consisted of two stages. In the first stage of backpropagation
training, the network received an input sequence, and the resulting activity propagated to the
output nodes. The programme compared the actual output with the expected output from the
training dataset. This comparison generated an error signal for each neuron in the output layer.
During the subsequent reverse phase, these error signals were propagated back through the
network to adjust the layer weights. This process was repeated until the difference between the
actual and expected outputs fell within an acceptable range [52]. The objective of this approach
was to identify fault value systems for all network weights using gradient descent. We used a
well-liked activation function called the rectified linear unit (ReLU). For negative inputs, it
returns zero; for positive inputs, it returns the input value.

Hidden
Input Layer
Layer Output

Layer

Fig. 4 The structure of the neural network

Step 7: Application of the neural network for the ranking of lean tools
The application stages are presented in the following sections. Figure 5 shows the detailed
structure of the neural network:

Y, %

LTs Z; , v %&g\:{‘t‘
LTo y %‘?\\\%‘
LT10 SUBNNNN

LT11
LT12

LT13

Fig. 5 Proposed network architecture

Input variable

The decision-makers’ chosen data were combined to create the input data for ranking the
lean tools. In order to prepare these data for future ranking, logic was used to merge them. The
data collected cannot be combined using any predefined logic. Through experimenting or
repetitions, the ideal combination was found. The data used affect both the training time and
precision. In this study, the data collected utilised to calculate the organisation's level of
leanness was created by integrating the five most recent evaluation results. Since the data set
was small, to improve output, a larger data set was used which can help the model generalise
better because it provides more diverse examples for training. In this investigation, the data set
was repeatedly used three times for better accuracy in prediction. The training time and
accuracy depend on the input data. Figure 6.a shows the input dataset:
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Fig. 6.a Input data

Target value

The output was a set of data combined in the same fashion as the input data. Both input
and output are fed during back propagation training. Error was generated and neuronal weights
were derived based on these data. Itis a 13 by 1 matrix, representing static data of 1 and samples
of 13 elements of input data that have been clubbed. Figure 6.b shows the target values:
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Fig. 6.b Target value

Step 8: Neural network architecture

The network is constructed after determining the input values and target variables and

specifying their requirements.

The number of levels and network type are the key factors in this case. Here, two layers
are used. Finding the ideal weight combination requires a significant amount of calculation

when there are more factors and multifaceted networks present.

Figure 6.c illustrates the network layers, including the input and neuron quantities used
for training the dataset. The output dataset consisted of the ranking of lean tools.

Hidden Layer

Output Layer

Fig. 6.c Network layers
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In this situation, feed forward backpropagation is the most common learning technique
that can deal with these problems. Consequently, this model uses feed-forward backpropagation
learning. TRANSLIM was chosen as the training function. Two layers were chosen as the
number of layers. Figure 6 illustrates the multi-layered network with the TRANSIG transfer
function as the first layer and the PURELIN transfer function as the second layer. The second
layer will be used to converge towards the intended output since the first layer will be used to
determine the pattern of the model. The network architecture parameters are shown in Figure 7.
A two-layer feed-forward network can effectively address multidimensional mapping problems
when provided with continuous input and a sufficient number of neurons in the hidden layer.
In this model, 10 neurons were suitable for small data sets, but this depends on the complexity
of the task and the nature of the data. Using a small number of neurons (e.g., 10) can lead to a
simpler model. Simpler models are less prone to overfitting, which is a common concern when
dealing with small data sets.

% Create Network or Data - X
Network Data
Name
network1
Network Properties
Network Type: Feed-forward backprop =
Input data: (Select an Input)
Target data: (Select a Target)
Training function: TRAINLM o
Adaption learning function: LEARNGDM
Performance function: MSE d
Number of layers: 2
Properties for: |Layer 1 ~
Number of neurons: |10
Transfer Function: TANSIG  ~
O View % Restore Defaults
@ Help £% Create @ Close

Fig. 7 Parameters to train the network

Step 9: Training and testing

The challenge in emerging neural networks is identifying the optimal training point at
which the neural network produces optimal results. Usually, a neural network that has been
trained to give the lowest number of errors when faced with the training data set is not
generalisable. The required information must be divided into two separate groups for this
function to work. The training set is the collection of data used to train the neural network. The
second group is the test set, which is periodically examined to determine the error rate. The
network producing the fewest errors on the test set is preserved. After the network is structured,
training can occur. The linguistic factors provided by the decision-makers make up the training
data. Seventy percent of the available data is used to train the model as shown in Figure 8. In
the test phase, the effectiveness of the network is assessed by contrasting the outcomes of cases
from the non-training set with the actual assessments of scores given by the decision-makers.
After the data have been validated, they are used to determine the leanness of the organisation.

Step 10: Validation

In order to evaluate the lean tools for the criteria, the model was evaluated by simulating
the network for the entire database. The data used to evaluate and test the criteria are shown in
Figure 8. Here 13 samples taken randomly from 15 data sets and 80% of the data set are used
for training and the remaining 20% of the data set is used for validation and testing with each
10% respectively.
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Fig. 8 Validate and test data

4. Case study

The research study was conducted at a core shop division of a foundry in the southern
portion of Tamil Nadu, India. It produces a wide variety of castings for the Indian and
international market, including pump housings, valves, engine heads for automobiles, gear box
housing, and pressure plates. Product quality and demand in India help it maintain market
leadership.

Phase I: Development of current state mapping and existing plant layout

Preliminary visits included direct remarks and interviews with case workers. Due to
needless conveyance and movement, the shop floor of the company lacked an efficient process
flow. In addition, unplanned continuous production regardless of demand may result in the
overproduction of products that become obsolete. Figure 9 depicts the layout of the core shop,
which is an integral part of the foundry. Depending on needs, a wide range of cores ranging
from 1 kg to 4.5 kg are manufactured here. Mixing sand, filling a shooter with sand, shooting
the shooter, core cleaning, pasting, painting, baking, and finally storing the core are the
sequence of operations required. Material flow, layout details, and operating times are recorded
by engaging with the management, managers, and workers. Local inspection gathers cycle time
(CT), shifts, and operators.

Core sand filler in hopper
Curr sand —————
mixing area '// \ - \ == T
~o_aA ~

)
Core Cleaning .{ Core Painting
and Pasting

Core Shoot = &)
Operators v v

Core
Shooter 1 8 hnot(-l 2

_Aa
9
D

Yy

S <

Core Cleaning
¢ = )

Pattern Storage
.| (Core and Molding)

Small Core Storage Racks

Fig. 9 Existing layout of core shop

Figure10 shows the current stream mapping of the current layout where process time and
NVA time are derived. The discovered waste is excess work in the process inventory, according
to the plant layout, current state mapping, and observations, the underutilisation of people,
unnecessary motion, waiting for the core to arrive at the respective station, core defects due to
poor handling, and a longer lead time.
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Fig. 10 Current stream mapping of core station

Cost calculation before implementing lean tools
Manpower utilised in each shop is shown in Table 1.

Table 1 Details of manpower utilised in core shop [Before Implementation]

S. No. Station No. of manpower
1 Sand Mixing 1

Sand filling

Core shooter

Carrying core from shooter to other station

Cleaning and pasting

Painting

Oven

Moving to core from oven to storage

Cost of manpower per day was Rs 800/-

No. of manpower was 20 per day

Total cost = cost of manpower x No. of manpower X month x year

Total cost =800 x 20 x 30 x 12 = Rs 5,760,000/-

RIS N | |W(N
— NN AW (Ww

5. Result and discussion

The hierarchical structure of four criteria used to rank 13 lean tools is represented in
Figure 3. The lean tools (LT1 to LT13) are located at the base of the hierarchy, while the criteria
used to rank the lean tools are located in the middle. On a scale from 1 to 9, the criteria and
alternatives are assessed. Table 2 shows the details of the decision-makers. Table 3 displays the
linguistic factors and ratings for the alternatives and criterion. The calculated normalised,
weighted normalised matrix and ideal solutions using TOPSIS is shown in Tables 4, 5, and 6.

Table 2 Details of decision-makers

Decision-makers Designation Area of expertise Years of experience
DM1 VP Manufacturing 20
DM2 Director Manufacturing 18
DM3 Sr Manager Manufacturing and Design 15
DM4 Professor Industrial engineering 22
DM5 Professor Manufacturing engineering 20

The pairwise comparison of criteria to assess the leanness was analysed by Saaty’s method
shown in Table 3 [53].
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Table 3 Linguistic factors and ratings for the alternatives and criteria by Saaty

Description Values
Equal importance 1
Less importance 3
Essential or strong importance 5
Important 7
Very important 9
Intermediate values 2,4,6,8

5.1 Calculate the normalised decision matrix

Table 4 Entropy weights and normalised matrix with reference to process time

Entropy weights 0.22754 0.12577 | 0.34273 | 0.09471 | 0.20924
Lean tools DM1 DM?2 DM3 DM4 DMS5
5S 0.076923 | 0.14548 | 0.07352 | 0.17747 | 0.16984
VSM 0.23077 0.14548 | 0.22056 | 0.17747 | 0.16984
JIT 0.30769 0.3637 | 0.29409 | 0.35494 0.3963
Kanban 0.38462 0.3637 | 0.36761 [ 0.35494 | 0.50952
Kaizen 0.23077 | 0.21822 | 0.14704 | 0.17747 | 0.28307
Continuous flow 0.38462 | 0.21822 | 0.36761 | 0.17747 0.3963
Poka-yoke 0.30769 | 0.21822 | 0.29409 | 0.26621 | 0.16984
Pull system 0.07692 | 0.14548 | 0.07352 | 0.26621 | 0.11323
Set up reduction 0.38462 0.3637 | 0.51465 | 0.35494 | 0.16984
Standard works 0.38462 0.3637 | 0.36761 | 0.35494 | 0.28307
TPM 0.15385 | 0.29096 | 0.07352 | 0.26621 | 0.16984
Cellular manufacturing 0.15385 | 0.21822 | 0.14704 | 0.17747 | 0.28307
Jidoka 0.23077 0.3637 | 0.22056 | 0.35494 | 0.16984

5.2 Calculate the weighted normalised decision matrix

Table 5 Weighted normalised matrix with reference to process time

Lean tools DM1 DM2 DM3 DM4 DMS5
5S 0.017503 0.0183 0.0252 0.01681 0.035537
VSM 0.05251 0.0183 0.0756 0.01681 0.035537
JIT 0.070013 0.04574 0.10079 0.03362 0.08292
Kanban 0.087516 0.04574 0.12599 0.03362 0.10661
Kaizen 0.05251 0.02745 0.0504 0.01681 0.059229
Continuous flow 0.087516 0.02745 0.12599 0.01681 0.08292
Poka-yoke 0.070013 0.02745 0.10079 0.02521 0.035537
Pull system 0.017503 0.0183 0.0252 0.02521 0.023691
Set up reduction 0.087516 0.04574 0.17639 0.03362 0.035537
Standard works 0.087516 0.04574 0.12599 0.03362 0.059229
TPM 0.035006 0.0366 0.0252 0.02521 0.035537
Cellular manufacturing 0.035006 0.02745 0.0504 0.01681 0.059229
Jidoka 0.05251 0.04574 0.0756 0.03362 0.035537

Table 6 Ideal solution

Decision-makers DM1 DM2 DM3 DM4 DM5
Positive ideal solution 0.087516 0.04574 | 0.17639 0.03362 0.10661
Negative ideal solution 0.017503 0.0183 0.0252 0.01681 0.023691

The ranking of lean tools of the process time criteria is listed in Table 7 based on the
performance score.
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Table 7 Performance score and rank of lean tools with reference to process time

Lean tools [LT] Performance score Rank
5S 0.060492 2
VSM 0.32102 6
JIT 0.58441 9
Kanban 0.75047 13
Kaizen 0.28613 5
Continuous flow 0.69133 11
Poka-yoke 0.46636 8
Pull system 0.042724

Set up reduction 0.70531 12
Standard works 0.65573 10
TPM 0.14257 3
Cellular manufacturing 0.246 4
Jidoka 0.35413 7

5.3 Assessment over MCDM approaches

With reference to the calculated results, the ranking of lean tools obtained from the
entropy - TOPSIS methodology for the process time is LT8 >LT1 >LT11>LTI12 >LT5 >LT2
>LT13 >LT7 >LT3 >LT10 >LT6 >LT9 >LT4. TOPSIS ranks the pull system (LT8) highest
with a closeness value of 0.042 and Kanban (L T4) last with 0.75. Table 8 shows the ranking of
lean tools on other criteria. The objective of the pull system is to manufacture goods only in
response to consumer demand. This particular methodology effectively mitigates the issue of
overproduction and significantly curtails the building of surplus inventory. Kanban serves as a
tool for effectively managing and controlling the flow of work-in-progress.

Table 8 Ranking of lean tools based on criteria

Cost LTI2>LT8>LTI1>LT3>LT5>LT2>LT6>LT7>LTI10>LTl>LT9>LTI3>LT4
Defects LT10>LT3>LT6>LTI12>LT9>LT4>LT5>LT11>LT13>LT7>LT2>LTI1>LTS8
Safety LT8>LT12>LT11>LT1>LT5>LT3>LT2>LTI3>LTI0>LT9>LT7>LT6>LT4
Quality LT6>LT12>LT3>LT7>LT4>LT2>LT13>LT10>LT5>LT1>LTI1>LT9>LT§

5.4 Improving the designed input and output
The neural network's inputs and outputs are unique, but there are hidden issues. These
errors might affect training and test performance.

After modifying the inputs and outputs of the model, the mean squared error (MSE)
values for both the training and test results decreased after eight samples.

5.5 Under fitting

A training and validation loss that keeps declining at the end of the plot is another sign of
an underfit model. This shows that the model can still learn more and that the training process
was stopped too soon. Figure 11.a shows the gap between training and validation which
indicates the curve is underfit.
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5.6 Over fitting

Overfitting is when a model learns the training data set, including statistical noise, too
well. To fit a model that is more flexible, we must estimate a greater quantity of parameters.
"Overfitting the data" means these advanced models follow mistakes or noise too closely.
Figure 11.a illustrates the overfit curve. The more sensitive a model is to the training data, the
less well it generalises to new data, increasing generalisation error. Overfitting is evident when:

1. The training loss keeps going down, but the validation loss has reached its lowest
point and is now going up.

2. Nonetheless, an overfitting model is not always undesirable. In effect, it signifies
that the model has derived every possible learning signal.

5.7 Optimal fit

The learning algorithm sought the best match. Generally, the model's training loss is less
than its validation loss. Training and validation loss learning curves should differ. The optimum
fit is when training loss stabilises. Figure 11.c shows the optimal fit curve.

1. The validation loss plot approaches a point of stability.
2. The generalisation gap is negligible (nearly zero in an ideal situation).

Overfitness is likely with continued optimal training. The example plot below illustrates
the case of an optimal fit, presuming that a global minimum of the loss function has been
identified. In the majority of instances, the neural network prediction closely matches the actual
value. A few values were not as near as others due to the decision-makers' lean tool selections.
Given that the learning rate of the artificial neural network is between 99.5% and 99.3%, these
errors may be disregarded. The ANN estimates were more accurate, according to this study.
Calculating the projected MAPE and correlation coefficient shows the prediction models'
accuracy (R). RMSE is the fit and regression standard errors. RMSE implies fit. Figure 12.a
and Fig. 12.b display the ANN model's regression analysis.
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Fig. 12 Correlation between ANN prediction and the actual ranking of lean tools:

The 0.99 correlation coefficient indicates great agreement between the experiment and
the model. RMSE and MAPE were satisfactory and consistent with the ANN's learning and
testing stages. The model's correctness is supported by reasonable agreement between the
anticipated and the experimental results.

The assessment of the rankings of lean tools based on the entropy TOPSIS approaches
reveal 73.42% concurrency and 26.57% non-concurrency in the results.

Table 9 Testing and validation error

S. No. Epoch R MSE
Training Validation Training Validation
1 100 0.99966 0.99977 2.06512¢-3 7.31176e-4
2 115 0.99993 0.99995 3.53979¢-4 8.79101e-4

5.8 Performance of the model

Using MATLAB, the training, validation, and testing data sets were predicted. The
training data-set metrics are superior to the validation data-set metrics, which are superior to
the test data-set metrics. These variations reflect the impact of these sets of data on the model's
training. The training data set was used to modify the network's weights and bias, the
validation data set was used to halt training before overfitting occurs, and the test data set had
no impact whatsoever on the training procedure. As expected, the metrics of the cross-
validation experiment are comparable to the metrics of the validation data set. They achieved
an impressive R? value of 0.9997 and RMSE of 0.0008 for the best architecture on their
validation data set as shown in Table 9. Back-propagation learning constructed the feed-
forward single hidden layer network. The network was provided with input and output vectors
for supervised learning. During network training and testing, back-propagation learning with
the decision-makers' value of lean tools was applied. According to the results, the model can
rate lean tools successfully.
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5.9 Comparison of ranks obtained from ET and ANN

Figure 13 shows a comparison of the ranks obtained from ET and ANN, where a small
difference was observed.
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Fig. 13 Comparison of ranks obtained from ET and ANN.
a. Process time, b. Cost, c. Defects, d. Safety, e. Quality

6. Phase II: Proposed layout and future state VSM

When examining lean tools such as continuous flow (L6), the pull system (L8), standard
work (L10), and cellular manufacturing (L12), it is crucial to acknowledge that their efficacy is
contingent upon the particular manufacturing environment and objectives. An instance of a
proficient production technique is the implementation of a conveyor system which enables the
seamless and efficient execution of uninterrupted, large-scale manufacturing processes. On the
other hand, alternative methodologies such as the pull system, cellular manufacturing, and work
standards place higher emphasis on minimising waste and improving efficiency. As a result,
these techniques are considered highly suitable for many production scenarios and are
particularly relevant to the present investigation. The use of a conveyor system within the
central station serves to mitigate the superfluous transportation of materials, personnel, and
machinery. The implementation of a conveyor system at all stations results in a decrease in the
number of operators required as well as their movements and work-in-progress inventory. The
modified layout is shown in Figure 14.
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Fig. 15 Future state VSM of the modified layout

Manpower utilised in each shop after installation of the conveyor is shown in Table 10

Table 10 Details of manpower utilized in core shop [After Implementation]

S. No. Station No. of manpower

1 Sand mixing
Sand filling
Core shooter

Carrying core from shooter to other station

Cleaning and pasting

Painting

Oven

X (I[N || W[
D |k [k | DN [ D[ | ek | ek

Moving to core from oven to storage
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Cost calculation of post implementation

Cost of manpower per day is Rs 800/-

No. of manpower is 11

Total cost = cost of manpower x No. of manpower x month X year
Total cost =800 x 11 x 30 x 12 =Rs. 3,168,000/-

Cost Savings = (5,760,000 — 3,168,000) = Rs. 2,592,000/-
Percentage of Cost saving = 45%

Following the adjusted layout, a future state value stream map (VSM) was formulated, as
illustrated in Figure 15. These modifications were made based on an analysis of the newly
established state. In this envisioned future state, notable improvements are evident. Specifically,
there was a substantial reduction in lead time, decreasing from 99,418 seconds to 36,820
seconds (equivalent to a 62.66% reduction), and a significant decrease in non-value-added
(NVA) time, which declined from 2,510 seconds to 510 seconds (representing a remarkable
79.6% reduction).

The results from post-implementation of lean practices have been meticulously
documented within the VSM of the future state. A comparative analysis between the current
and future states demonstrates substantial improvements:

e Non-value-added time process time decreased from 25.33 minutes to 8.66 minutes,
marking a 65.56% reduction.

e  Process time fell from 18.63 minutes to 7.26 minutes, reflecting a 61.03% decrease.

e  Work-in-progress (WIP) waiting time decreased from 300 seconds to 100 seconds, a
66.66% reduction.

Furthermore, there was a commendable reduction in manpower, decreasing from 20 to
13 employees (a 35% reduction), resulting in annual cost savings of Rs. 3,168,000/-. These
outcomes underscore the enhanced performance of the core shop. Notably, the defect rate
witnessed a decrease, and the post-implementation of the roller conveyor system resulted in
zero accidents over the past three months, signifying a positive safety record and approach.

In summary, conveyor systems and pull systems work together in lean manufacturing by
optimising material flow, reducing waste, minimising WIP, and aligning production with
customer demand. While conveyor systems facilitate the physical movement of materials, pull
systems provide the logic and control to ensure that production remains efficient and responsive
to changes in demand. Together, they contribute to a more agile and efficient manufacturing
environment.

7. Conclusion

This research study shows two distinct multi-criteria decision-making (MCDM)
techniques, namely entropy and TOPSIS, to assist a foundry core division within a
manufacturing organisation in the selection of lean tools. The results of post-lean
implementation have demonstrated remarkable enhancements, including a substantial reduction
in non-value-added activities (NVA) by 79.6%, a notable improvement in process efficiency
by 61.03%, a significant reduction in waiting times by 62.66%, a 35% decrease in workforce
requirements, and a commendable cost reduction of 45%. In addition to these positive findings,
the study proposes additional recommendations. (a) the incorporation of material handling
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equipment designed to simultaneously transport multiple cores; (b) the optimisation of floor
space to enhance safety measures; and (c) the replacement of obsolete machinery with modern
alternatives. The adaptability of this framework is contingent upon the expertise and knowledge
of the experts involved, as their insights contribute significantly to its effectiveness. The study
also highlights the utility of artificial neural networks (ANNSs), particularly when aligning data
from decision-makers with the ranking of lean tools. ANNs serve as a potent analytical tool in
this context, given their effectiveness in addressing the repetitiveness associated with fuzzy
logic leanness computation. Future research can explore the applicability of various MCDM
techniques across diverse sectors to validate the generalisability of the findings. Furthermore,
prospective studies may leverage simulation and cost-benefit analyses to corroborate the
obtained results. To handle uncertainty within the decision-making environment and assign
appropriate weights to each criterion, further research could explore the integration of hybrid
neuro-MCDM models.
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