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Abstract. We consider topological spaces A that have a computable type, which means
that any semicomputable set in a computable topological space which is homeomorphic
to A is computable. Moreover, we consider topological pairs (A4, B), B C A, which have
a computable type, which means the following: if S and T are semicomputable sets in
a computable topological space such that S is homeomorphic to A by a homeomorphism
which maps T to B, then S is computable. We prove the following: if B has a computable
type and A is obtained by gluing finitely many arcs to B along their endpoints, then
(A, B) has a computable type. We also examine spaces obtained in the same way by gluing
chainable continua.
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1. Introduction

A compact set S C R is semicomputable if its complement R \ S can be effectively
exhausted by rational open intervals. A compact set S C R is computable if it is
semicomputable and we can effectively enumerate all rational open intervals which
intersect S.

A semicomputable set need not be computable. There exists v > 0 such that
[0,7] is a semicomputable set which is not computable [20]. In fact, while each
nonempty computable set contains computable numbers (moreover, they are dense
in it), there exists a nonempty semicomputable set S C R which does not contain
any computable number [23].

The notions of a semicomputable set and a computable set can be naturally
defined in Euclidean space R™ as well as in more general ambient spaces — computable
metric spaces and computable topological spaces. While for a set .S in a computable
topological space X the implication

S semicomputable = S computable (1)
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does not hold in general, there are certain additional assumptions under which (1)
holds. Tt turns out that topology of S plays an important role in view of (1). More
specifically, there are topological spaces A such that (1) holds in any computable
topological space X whenever S is homeomorphic to A. We say that such an A has a
computable type. It is known that each sphere in Euclidean space has a computable
type; moreover, each compact manifold has a computable type [20, 13, 14, 18]. In
particular, each circle has a computable type. However, not only manifolds have
a computable type — the Warsaw circle also has a computable type. In fact, any
circularly chainable continuum which is not chainable has a computable type [12,
10, 16].

On the other hand, [0, 1] does not have a computable type. But if S is a set in
a computable topological space X and f : [0,1] — S is a homeomorphism such that
£(0) and f(1) are computable points (which is equivalent to saying that f({0,1}) is
a semicomputable set), then implication (1) holds. The following definition arises.
We say that a topological pair (4, B) (i.e., a pair of topological spaces such that
B C A) has a computable type if (1) holds whenever there exists a homeomorphism
f: A — S such that f(B) is a semicomputable set in X.

So ([0, 1],{0, 1}) has a computable type. Moreover, (B™, S"~!) has a computable
type, where B" is the unit closed ball and S™~! is the unit sphere in R™ [20, 13].
In fact, (M, M) has a computable type if M is a compact manifold with boundary
[14, 18]. Furthermore, if K is a continuum chainable from a to b, then (K, {a,b})
has a computable type [12, 10, 16].

A computable type of topological spaces called graphs has been investigated
in [15]. Amir and Hoyrup examined conditions under which a finite polyhedra
has a computable type (see [1]). Certain results regarding a computable type and
(in)computability of semicomputable sets can be found in [2, 6, 19, 17, 11, 8,24, 9, 7].

A general question is the following: if A is a topological space obtained from
topological spaces which have computable types (using some standard topological
construction), does A have a computable type? For example, if A; and A have
computable types, does A; X Ay have a computable type?

In this paper, we consider a topological space B and a space A obtained by gluing
finitely many arcs to B along their endpoints. In general, if B has a computable
type, A need not have a computable type. Take for example A = [0,1] and B =
{0,1}. But, we prove the following: if B has a computable type, then (A, B) has
a computable type. Actually, we prove a more general result involving circularly
chainable and chainable continua.

2. Preliminaries

In this section, we give some basic facts about computable metric and topological
spaces. See [22, 27, 25, 26, 4, 3, 12].

Let Kk € N, k > 1. A function f : N¥ — Q is said to be computable if there are
computable (i.e. recursive) functions a,b,c: N¥ — N such that

fla) = (-1 S
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for each € N*. A function f : N¥ — R is said to be computable if there exists a
computable function F : N*+1 — Q such that

|f(z) = F(z,9)] <277,

for each z € N¥, i € N.
For a set X, let F(X) denote the family of all finite subsets of X. A function
© : N — F(N) is called computable if the set

{(z,y) eN* |y € O(x)}

is computable and if there is a computable function ¢ : N — N such that

for each x € N.
From now on, let N — F(N), j — [j] be some fixed computable function whose
range is the set of all nonempty finite subsets of N.

2.1. Computable metric space

A triple (X, d, «) is said to be a computable metric space if (X, d) is a metric space,
and a = (o) is a sequence in X such that «(N) C X is dense in (X, d) and such
that the function N> — R, (i, j) + d(a;, a;) is computable.

For example, if d is the Euclidean metric on R", where n € N\ {0}, and « :
N — Q™ is some effective enumeration of Q", then (R™,d, a) is a computable metric
space.

Let (X,d,«) be a fixed computable metric space. For z € X and r > 0, let
B(x,r) denote the open ball in (X, d) with radius r centered at x.

Let i € Nand r € Q, r > 0. We say that B(«;,r) is an (open) rational ball in
(X,d, ).

Let ¢ : N — Q be some fixed computable function whose image is the set of all
positive rational numbers and let 7,75 : N — N be some fixed computable functions
such that {(71 (i), 72(i)) | i € N} = N2, For i € N we define

I; = B(ar, (3), ra(i))- (2)

Note that (I;);en is an enumeration of all rational balls. Every finite union of rational
balls will be called a rational open set. For j € N we define

Jj = U I.
i€[4]

Clearly, {J; | j € N} is the family of all rational open sets in (X, d, @).
Let S C X be a closed set in (X, d). We say that S is a computably enumerable
(c.e.) set in (X,d, ) if the set

{’LENlIlﬂS#@}
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is a c.e. subset of N.
Let S C X be a compact set in (X, d). We say that S is a semicomputable set
in (X,d, a) if the set
jeN|sc)

is a c.e. subset of N.

Finally, we say that S is a computable set in (X,d,«) if S is both c.e. and
semicomputable in (X, d, «).

These definitions do not depend on the choice of functions ¢, 71, 72 and ([5]),en-

It can be shown that a nonempty subset S of X is computable in (X,d, ) if
and only if S can be effectively approximated by a finite subset of {«; | i € N} with
any given precision. More precisely, S is computable in (X, d, @) if and only if there
exists a computable function f: N — N such that

d (S {ai | i € [f(R)]}) <27F,

for each k € N, where dy is the Hausdorff metric (see Proposition 2.6 in [14]).

2.2. Computable topological space

A more general ambient space is a computable topological space. The notion of a
computable topological space is not new, see e.g. [28, 29]. We will use the notion
of a computable topological space which corresponds to the notion of a SCT, space
from [28] (which is an effective second countable Hausdorff space).

Let (X,T) be a topological space and (I;) a sequence in 7 such that the set
{I; | i € N} is a basis for 7. A triple (X, T, (I;)) is called a computable topological
space if there exist c.e. subsets C, D C N? such that:

1. if 4,j € N are such that (i,j) € C, then I; C Ij;
2. if 4, j € N are such that (¢, j) € D, then I; N I; = 0;

3. if x € X and ¢,j € N are such that x € I; N I;, then there is £ € N such that
x € I, and (k,14), (k,j) € C,

4. if x,y € X are such that = # y, then there are 4, j € N such that x € I;, y € I;
and (i,7) € D.

Let (X,7,(I;)) be a fixed computable topological space. We define J; :=
Uier i

We say that a closed set S in (X, 7)) is computably enumerable in (X, T, (I;)) if
{ieN|SNI; #0} is a ce. subset od N.

Furthermore, we say that S is semicomputable in (X, T, (I;)) if S is a compact
set in (X,7) and {j e N| S C J;} is a c.e. subset of N.

We say that S is computable in (X, 7, (I;)) if S is both c.e. and semicomputable
in (X, 7. (I)).

The definition of a semicomputable set (and a computable set) does not depend
on the choice of the sequence ([j]);en-
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If (X,d, a) is a computable metric space, then (X, 7g, (I;)) is a computable topo-
logical space, where Ty is a topology induced by the metric d and (I;) are the se-
quences defined by (2) (see e.g. [18]). Clearly, S is c.e./semicomputable/computable
in (X,d,a) if and only if S is c.e./semicomputable/computable in (X, Tq, (I;)).

We say that z € X is a computable point in (X, 7,([;)) if {i e N|x € I;} is a
c.e. subset of N.

The proofs of the following facts, which will be used frequently in this paper, can
be found in [18].

Theorem 1. Let (X, T,(l;)) be a computable topological space. There exist c.e.
subsets C,D C N2 such that:

1. ifi,j € N are such that (4,j) € C, then J; C J;;
2. ifi,j € N are such that (i,j) € D, then J; N J; = 0;

3. if F is a finite family of nonempty compact sets in (X,T) and A C N is a
finite subset of N, then for each K € F there is ix € N such that

(1) if K € F, then K C J;,;
(i1) if K,L € F are such that KN L =0, then (ix,ir) € D;
(7i1) ifa € A and K € F are such that K C J,, then (ix,a) € C.

Proposition 1. Let (X, T, (I;)) be a computable topological space and let S C X be
a semicomputable set in this space.

(1) If m €N, then S\ Jp, is a semicomputable set in (X, T, (I;)).
(i4) If k € N\ {0}, then the set {(j1,...,jx) ENF | S C J;, U---UJ; } is c.e.
The proof of the following proposition can be found in [15].

Proposition 2. Let (X, T, (I;)) be a computable topological space and let xg, . . ., x, €
X. Then the following holds:

Zo, .-, &n are computable points <= {xo,...,x,} is a semicomputable set

<~ {x0,...,xn} is a computable set.

If (X, T, (I;)) is a computable topological space, then the topological space (X, T)
need not be metrizable (see Example 3.2 in [18]). However, if S is a compact set in
(X, T), then S, as a subspace of (X,7), is a compact Hausdorff second countable
space, which implies that S is a normal second countable space and therefore it is
metrizable. This fact will be very important to us later and we will use it often.

Let A be a topological space. We say that A has a computable type if the follow-
ing holds: if (X, T, (I;)) is a computable topological space and S a semicomputable
set in this space such that S and A are homeomorphic, then S is computable.

Moreover, let A be a topological space and let B be a subspace of A. We say that
(A, B) has a computable type if the following holds: if (X, T, ({;) is a computable
topological space, S and T semicomputable sets in this space and f : A — S a
homeomorphism such that f(B) =T, then S is computable.
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2.3. Chainable and circulary chainable continua

Let X be a set and C = (Cy,...,C ) a finite sequence of subsets of X. We say that
C is a chain in X if the following holds:

CinCj=0 < 1<|i—jl,

for all i,5 € {0,...,m}.

Figure 1: Chain

We say that C is a circular chain in X if the following holds:
CiNCj=0 < 1<|i—j|<m,

for all 4,5 € {0,...,m}.

|
My

> -
/ ¢\ h)
Figure 2: Circular chain

Let AC X and a,b € A. We say that Cy,...,C,, covers Aif A C CoU---UCyy,,
and we say it covers A from a to b if also a € Cy and b € C,,.

Let (X,d) be a metric space. A (circular) chain Cy,...,Cy, is said to be a e
(circular) chain, for some € > 0, if diam C; < ¢, for each i € {0,...,m} and it is
said to be an open (circular) chain if every C; is open in (X, d). In the same way we
define the notion of a compact (circular) chain.

A connected and compact metric space is called a continuum.

Let (X,d) be a continuum. We say that (X,d) is a (circulary) chainable con-
tinuum if for every e > 0 there is an open e-(circular) chain in (X, d) which covers
X.

Suppose a,b € X. We say that (X, d) is a continuum chainable from a to b if for
every € > 0 there is an open e-chain Cy, ..., C,, which covers X from a to b.

We similarly define the notions of an open and a compact (circular) chain in a
topological space.

A topological space which is Hausdorff, connected and compact is called a con-
tinuum.

Let A and B be families of sets. We say that A refines B if for each A € A there
is B € B such that A C B.

Let X be a topological space which is a continuum. We say that X is a (circulary)
chainable continuum if for each open cover U of X there is an open (circular) chain
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Co, ..., Cy, in X which covers X and such that {Cy,...,Cy,} refines Y. We similarly
define that X is a continuum chainable from a to b.

It follows easily that a metric space (X, d) is a (circulary) chainable continuum if
and only if topological space (X, Ty) is a (circulary) chainable continuum. Moreover,
(X,d) is a continuum chainable from a to b if and only if (X,73) is a continuum
chainable from a to b. See Section 3 in [10].

Remark 1. Let X and Y be topological spaces and let f: X — Y be a homeomor-
phism. Then it is easy to see that X is a (circularly) chainable continuum if and
only if Y is a (circularly) chainable continuum. Furthermore, if a,b € X, then X is
a continuum chainable from a to b if and only if Y is a continuum chainable from

f(a) to f(b).
The proofs of the following facts can be found in [16].

Proposition 3. Let (X,d) be a continuum and a,b € X. Then (X,d) is a chainable
continuum from a to b if and only if for each € > 0 there is a compact e-chain in
(X, d) which covers X from a to b.

Proposition 4. Let (X,d) be a continuum. Then (X,d) is a (circulary) chainable
continuum if and only if for each € > 0 there is a compact e-(circular) chain in
(X,d) which covers X.

Example 1. We have that [0,1] (with the Euclidean metric) is a continuum chain-
able from 0 to 1. This can be easily concluded from Proposition 3. (Thus [0,1] with
the Fuclidean topology is a continuum chainable from 0 to 1.)

Similarly, the unit circle S* in R? is a circularly chainable continuum. However,
St is mot a chainable continuum (see [5]).

A topological space homeomorphic to [0, 1] is called an arc. If A is an arc and
f:[0,1] = A a homeomorphism, then we say that f(0) and f(1) are endpoints of
A (this definition does not depend on the choice of f).

If A is an arc with endpoints a and b, then by Example 1 and Remark 1 we have
that A is a continuum chainable from a to b.

A topological space homeomorphic to S! is called a topological circle. By Ex-
ample 1 and Remark 1 each topological circle is a circularly chainable continuum
which is not chainable.

Example 2. Let

K = ({0} x [—1,1})U{(w,sini> 0<a< 1}.

Let a = (0,—1) and b = (1,sin1). It is known that K is a continuum chainable from
a tob. However, K is not an arc since K is not locally connected.
Furthermore, let

W= KU ({0} x [~2,—1]) U (0,1] x {~2}) U ({1} x [~2,sin1]).

The space W is called the Warsaw circle. It is known that W is a circularly chainable
continuum which is not chainable. Since W is not locally connected, W is not a
topological circle.
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3. Spaces with attached arcs

The following result was proved in [10] (Theorem 2): if (X, 7T, (I;)) is a computable
topological space and K a semicomputable set in this space which, as a subspace of
(X,T), is a continuum chainable from a to b, where a and b are computable points,
then K is a computable set in (X, 7T, (l;)). In other words, if K is a continuum
chainable from a to b, then (K, {a,b}) has a computable type (note that by Propo-
sition 2, the condition that a and b are computable points is equivalent to the fact
that {a,b} is a semicomputable set).

Now we prove a more general result (the result from [10] follows from the following
result for S = {a,b} and L = ().

Proposition 5. Let (X, T,(I;)) be a computable topological space. Suppose K, as
a subspace of (X,T), is a continuum chainable from a to b, a,b € X, a # b. Let
S C X be such that SN K = {a,b} and let L C X be a compact set in (X, T) such
that LN K C {a,b} (see Figure 8). Suppose S and SU LU K are semicomputable
sets in (X, T,(I;)). Then K is a c.e. set in (X, T, (I;)).

Proof. Since K is compact, it is metrizable. Let d be the metric on K which induces
the topology on K, i.e., the relative topology on K in (X, T).

—

Figure 3: SULU K : the grey set is S, the union of the short straight lines is L and the arc whose
endpoints lie is S is K.

Since X is Hausdorff, there are U,,U, € T such that a € U,, b € U, and
U,NU, = 0.

Assume that (SUL)\ (U, UUp) # 0. The sets K and (SU L)\ (U, UU,) are
disjoint and compact in (X, 7). Namely, since K N (S UL) = {a,b} and a,b ¢
(SUL)\ (U, UUyp), the sets K and (SU L)\ (U, UU,) are disjoint. We have that
(SUL)\ (U, UUy) is compact in (X, T) because it is closed and contained in SU L
(which is compact).

By Theorem 1 there exists p € N such that

(SUL)\ (U, UUy) CJ,and KNJ, =0 (3)

(this can also be easily concluded from the fact that (X,7) is Hausdorff). Let us
denote

S"=(SULUK)\ J,.
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By (3) we have (SUL)\ J, € U, UU, and therefore
S"'=(S\J,)U(L\J,)UK=AUBUL UL UK,

where A = (S\ J,)NUq, B = (S\J,)NUs, L1 = (L\ J,)NUq and Ly = (L\ J,) NUp.
By Proposition 1 the set S’ is semicomputable in (X, T, (I;)).

We claim that A and B are semicomputable sets in (X, 7, (/;)). Namely, S\ J, =
AU B and A and B are open in S\ J,,. Since these sets are disjoint, they are also
closed in S\ J,. The fact that S\ J, is compact now implies that A and B are
compact in (X, 7). It follows that there exist «, 8 € N such that

AC J,, BCJgand J,NJz=0.

Then A = (S\J,)\Jg and B = (S\ J,)\ Ja, i.e., A and B are semicomputable sets
in (X,7T,(I;)). In a similar way we conclude that Ly and Lo are compact in (X, 7).
So S’ is a semicomputable set and

S'=AUBUL, ULy UK,

where A and B are semicomputable, L; and Ly are compact, (AUL;)N(BULy) =
and a € A, b € B (note that (3) and a,b € K imply a ¢ J, and b ¢ J,).

We get the same conclusion if (SU L)\ (U, UU,) = 0. Namely, we can define
S’ =SU LUK and then

S'=AUBUL, ULy, UK,

where A = SNU,, B=SNnU,, L1 = LNU, and Ly = LN U, Similarly as
before, we conclude that A and B are semicomputable, L; and Lo are compact,
(AUL;)N(BULy)=0and a € A, be B.

Let C and D be the subsets of N? from Theorem 1 and let f : N — N be a fixed
computable function such that I; = Jy(;) for each i € N (such a function certainly
exists).

Suppose ¢ € N is such that I; N K # (). We claim that there exists z € I; N K,
x # a,b. Namely, if I; N K C {a, b}, then I; N K is finite and therefore closed in K.
Also, I; N K is open in K. Together with the fact that K is connected, we have that
I; N K = K. Since K is finite and Hausdorff, it is discrete, which contradicts the
fact that K is connected and card(K) > 2.

So, there exists x € I; N (K \ {a,b}). Choose r so that

0 < r < min{d(a,z),d(b,z)}

and
B($,’/‘)QIZQK§IZ=J)¢(2) (4)

Furthermore, since (K, d) is a continuum chainable from a to b, there is a compact
r-chain Ky, ..., K, in (K,d) which covers K and such that a € Ky and b € K.
Let p € {0,...,n} be such that € K. Because of (4) and diam(K),) < r, we
have K, C I;, hence
Ky C Jrg). (5)
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Since r < d(z,a),d(z,b), we have p # 0, n.
Let us denote

F=AUL UKoU...UK, 1and G=BULy UKy U...UK,.

Note that
S"=FUK,UG. (6)

We claim that F' and G are disjoint. Obviously, AN B = ) and since A C S,
A CU,and SNK = {a,b} (by the assumption of the theorem), we have ANK C {a}.
However, a ¢ K, for j € {p+1,...,n} because a € Ky, p+1 > 2 and Ko, ..., K, is
a chain, so ANK,11 =0, ..., ANK, = 0. Similarly, BNKy=---=BNK,_1 =0.
Moreover, AN Ly = () because Ly C U, and A C U,. Similarly, BN L; = (). Hence
FnG=0.

The sets F, K, and G are compact in (X, T), F and G are disjoint and we have
(5), so according to Theorem 1, there are u,v,w € N such that F C J,, K, C J,,
G C Jy, (u,w) € D and (v, f(i)) € C. Tt follows from (6) that S’ C J, U J, U Jy.
By the definitions of F' and G we have A C J, and B C J,,.

So, if ¢ € N is such that I; N K # (), then there exist u, v, w € N such that:

(i) " C JyUJyU Jy:
(if) A C Jy;
(ili) B C J;

(iv) (u,w) € D;

(v) (v, f(3)) €C.

Let Q be the set of all (i,u, v, w) € N* for which statements (i)-(v) hold.

We have proved the following: if 4 € N is such that I; N K # (), then there exist
u,v,w € N such that (i, u,v,w) € Q.

Conversely, let us suppose that ¢ € N is such that there exist u,v,w € N such
that (i, u,v,w) € Q. We claim that I, N K # 0.

Suppose the opposite, i.e., I; N K = (). Since J, C I; by (v), we have J, N K = (),
and since by (i) it holds K C J,UJ,UJ,,, we have K C J,UJ,,. Because A C J,, it
holds a € J,, and because B C J,,, it holds b € J,,. So, the sets .J, and .J,, are open
in (X, T), they are disjoint, their union contains K and each of them intersects K.
This implies that K is not connected, which is impossible. Therefore, I; N K # ().

So we have:

I; N K # 0 if and only if there exist u,v,w € N such that (i,u,v,w) € Q.  (7)
Since S’, A and B are semicomputable sets, by Proposition 1 we have that  is

a c.e. set. It follows now from (7) that the set {i € N | I, N K # 0} is c.e. Hence K
is a ce. set in (X, T, (I;))- O
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Let 0 : N2 = N and 1 : N — N be some fixed computable functions such that
{(¢(4,0),...,0(4,n(4))) | 7 € N} is the set of all nonempty finite sequences in N.
Instead of o(7, j) we will write (i); and j instead of (5). So {((4)o;---, (7)) [ j € N}
is the set of all nonempty finite sequences in N.

The function N — F(N), i — {(j)o, - .-, (j)7}, is computable and its range is the
set of all nonempty finite subsets of N. Therefore, we may assume (without any loss
of generality) that

for each j € N.
Let (X, T,(I;)) be a computable topological space. Let C and D be from Theo-
rem 1.
For [ € N we define
Hl = (J(l)oa ey J(l)f)

We say that H; is a formal circular chain if the following holds:
()i, (1);) € D for all 4,5 € {0,...,1} such that 1 < |i — j| <.

Note that this is a property of the number I. (More precisely, we can say that “I
represents a formal circular chain”; it is possible that H; = H;/, [ represents a formal
circular chain, but I’ does not — so H; is a formal circular chain and H; is not.)

The following proposition can be proved similarly to propositions 32 and 34
in [12].

Proposition 6. 1. The set {{ € N|H,; is a formal circular chain} is c.e.

2. Let S be a semicomputable set in (X, T, (I;)). Then the set {leN|H; covers S}

18 C.e.

Lemma 1. Let (K,d) be a connected metric space. Suppose € > 0 and Cy,...,Cp,
are open sets in (K, d) which cover K, whose diameters are less than € and such
that C; N C; =0 for each i,j € {0,...,m} such that |t — j| > 1. Then there exists
an open e-chain in (K, d) which covers K.

Proof. Let
v=min{i € {0,...,m} | C; #0}

and

w =max{i € {0,...,m} | C; # 0}.

Then the finite sequence C,,...,C,, covers K. We claim that C,,...,C, is an
open e-chain in (K, d). It suffices to prove that C; # 0 for each i € {v,...,w} and
C;NCiyq1 # 0 for each i € {v,...,w—1}.

Suppose C; = ) for some i € {v,...,w}. By definition of v and w we have C,, # ()
and Cpy # 0,50 v <i<w. Let U =C,U---UC;_1 and V = Cjz1 U--- UCy.
Then U and V are disjoint open sets in (K, d). Since K = C,U---UC}, and C; = 0,
we have K = U UV and U # (§, V # (. This means that (U, V) is a separation of
(K, d), which is impossible since (K, d) is connected.

Similarly, we see that C; N C;yq1 # 0 for each i € {v,...,w —1}. So Cy,...,Cy
is an open e-chain in (K, d) which covers K. O
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Now, we have a result similar to Proposition 5.

Proposition 7. Let (X, T, (I;)) be a computable topological space. Suppose K, as
a subspace of (X, T), is a continuum which is circulary chainable but not chainable,
and let a € X. Let S C X be such that SN K = {a} and let L C X be a compact
set in (X,T) such that LN K C {a} (see Figure 4). If S and SU LUK are
semicomputable sets in (X, T, (L)), then K is c.e. in (X, T, (I;)).

Proof. Firstly, since K is not chainable, we have card K > 2.
Similary as before, let d be the metric on K which induces the topology on K,
i.e., the relative topology on K in (X, 7).

Figure 4: SUL U K: the grey set is S, the union of the short straight lines is L and the circle
above S is K.

Let
S =SULUK. (8)

By assuming the proposition S’ and S are semicomputable and L is compact.
Clearly, a € S and
(SUL)NK = {a}. (9)

Since (K, d) is not chainable, there exists ¢y > 0 such that there exists no open
€o-chain in (K, d) which covers K. Since K is compact and for each z € K and € > 0
there is j € N such that z € J; and diam(J; N K) < ¢, there are ay, ..., a, € N such
that

K C | Ja,
=0
and .
diam(J,, N K) < 30 for each i € {0,...,m}. (10)

Let A > 0 be a Lebesgue number of the open cover
{Jag NK, ..., Jo, NK} (11)

of (K,d).
Since S U L is compact in (X, T), there exists a € N such that

SULgJ@mmdmmu@mK)<%. (12)
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Namely, choose r € R such that 0 < r < 2. The sets SU L and K \ B(a,r) are
disjoint by (9) and they are clearly compact. Thus there exists @ € N such that

SULC J, and (K \ B(a,r)) N J, = 0.

It follows that J, N K C B(a,r) and so diam(J, N K) <2r < 9 < 2.

Let C and D be as in Theorem 1 and let f : N — N be a computable function
such that I; = Jg;) for each i € N,

Suppose ¢ € N is such that I; N K # (). Then there exists z € I; N K such
that « # a. Otherwise, we would have I; N K = {a}, which would imply that {a}
is open in K; however, this is impossible since {a} is closed, K is connected and
card(K) > 2.

Since x € I; N K, thereis 0 < r < min{%d(a, x), A} such that

Now, since (K, d) is a circulary chainable continuum, there exists a compact 7-
circular chain Ky, ..., K, in (K,d) which covers K. For each I € {1,...,n} the
finite sequence K, ..., Ky, Ko,...,K;_1 is also an r-circular chain which covers K,
so we may assume a € K. Furthermore, without loss of generality, we may assume
that @ ¢ K; for j # 0. Indeed, we have a ¢ K; for each j ¢ {n,0,1} since
Ky, ..., K, is a circular chain and so we can replace Kj,..., K, by the circular
chain K, UKoU Ky, Ko, ...,K,_1 (which is an r-circular chain if Ko, ..., K, is an
g-circular chain).

Let p € {0,...,n} be such that z € K. It follows from (13) and diam(K,) < r
that

K, C I = Jy). (14)

Since r < d(z,a), one has p # 0.
For each j € {0,...,n} we have diam(Kj;) < A, so there exists k; € {0,...,m}
such that
K; C oy, (15)

(recall that A is a Lebesgue number of the open cover (11)).
For each j € {1,...,n} we have a ¢ K; and it follows from (9) that

(SUL)NK; =0.

Also, for all 4,5 € {0,...,n} such that 1 < |j —j'| < n we have K; N K, = (). Using
this, (14), (12), (15) and Theorem 1 we conclude that there are ug,...,u,,u € N
such that

K; C Jy,, for each j € {0,...,n},

SULC J,,

(uj,uj) € Dforall j,j' €{0,...,n} such that 1 < |j —j'| <n
(u,uj) € D for each j € {1,...,n},

(up, f(2)) € C and (u,a) €C,
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(uj,ar,) € C, for each j € {0,...,n}.

By (8) we have S" = SULUJ;_, K;, which implies S’ C J, U Jyy U--- U Jy,,.
Choose [ € N so that (({)o,...,(I);) = (uo,...,u,). Then the following holds:

(1 S/CUHIUJU,
(il) S C Ju;

(iii) H, is a formal circular chain;

(v) 1<p<Tland ((1),, f(i)) € C;
(vi) (u, @) €

(vii) for each j € {0,...,1} there exists j' € {0,...,m} such that ((1);,a;) € C.

)
)
)
(iv) (u,(1);) € D, for each j € {1,...,1}
)
)

Let Q be the set of all (i,l,u,p) € N* such that (i)-(vii) hold. We have proved
the following: if ¢ € N is such that I; N K # (), then there exist [, u,p € N such that
(i,1,u,p) € .

Conversely, let us suppose that ¢ € N is such that there exist [, u, p € N such that
(i,1,u,p) € Q. So statements (i)-(vii) hold. We want to prove that I; N K # 0.

Suppose the opposite, i.e. I; N K = 0. So Js; N K = 0 and by (v) we have
Jay, € Jy@i)- This implies that Jg) NK = (. It follows from (i) that K € |JH;UJ,
and therefore

K C J(l)g U...u J(l)p_l U J(l)

p+1

@] ~-UJ(l)TUJu,

ie.,

K C J(l)p+1 U...U J(l)T U (J(l)o Udu) U J(l)1 LU J(l)p,l-
It follows that K is the union of the following sets:
(T, VKD, -y (Jay N KD, ((Tayy NK) U (Ju N K)), (Jy, N K, ... (Jay,, NK).
16
Let M be the union of the following sets:
(J(l)p+1 N K), ceey (J(Z)T N K), (J(l)o N K), (J(l)l N K), RN (J(l)p71 n K) (17)
By (vi) we have J, C J,, so J,N K C J, N K and it follows from (12) that
. €0
diam(J,, N K) < 3 (18)
In the same way, using (vii) and (10), we conclude that

diam(J), N K) < 3 (19)

for each j € {0,...,1}.
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We claim that
(Jiyo NK)N (Ju N K) # 0. (20)

Otherwise, if J, N K and J;y, N K are disjoint, then J, N K is disjoint with each
of the sets in (17) (this follows from (iv)) and thus J,, N K and M are disjoint. By
the definition of M we have K = M U (J, N K) and this means that (M, J, N K)
is a separation of K: M and J, N K are clearly open in K, J, N K is nonempty
since a € J, by (ii) and M is nonempty since M = ) implies K = J, N K and this,
together with (18), implies that there exists a (trivial) open €gp-chain in K which
covers K which is impossible by the choice of €.
So (20) holds. Using this, (20), (18) and (19) we conclude that

diam ((J(Z)OQK)U(JUQK)) < €§0+E§O < €g. (21)

Let us consider the finite sequence of sets in (16). Nonadjacent sets in this
sequence are disjoint, which follows from (iii) and (iv). These sets are open in K
and their diameters, by (19) and (21), are less than ey. It follows from Lemma 1
that there exists an open €g-chain in K which covers K, but this is impossible by
the choice of €.

Hence, I; N K # 0.

We have proved the following;:

I;NK #0 & there exist [,u,p € N such that (,1,u,p) € Q. (22)

It is not hard to conclude that € is a c.e. set (see e.g. the proofs of propositions
32 and 34 in [12]). Now (22) implies that the set {i € N | I; N K # 0} is c.e. and
thus K is a c.e. set in (X, T, (I);). O

The following result generalizes both Proposition 5 and Proposition 7.

Theorem 2. Let (X, T,(1;)) be a computable topological space and let S C X be
a computable set in (X, T, (I;)). Suppose (Ko,{ao,bo}),. .. (Kn,{an,bn}) is a finite
sequence of pairs, where each K;, as a subspace of (X,T), is either a continuum
chainable from a; to b;, where a;,b; € K; are such that a; # b;, or a continuum
which is circulary chainable, but not chainable, where a;,b; € K; are such that
a; = bz

Suppose the following holds:

(1) K;nNS ={ai,b;} for eachi € {0,...,n};
(t4) K;NK; €8S foralli,je{0,...,n} such thati # j.

Let
T=SUKyU---UK,.

See Figure 5. Suppose T is a semicomputable set in (X, T,(I;)). Then T is com-
putable.
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ouy

V=l
<

Figure 5: The set T': the grey set is S.

g

Proof. Let i € {0,...,n}. Let
L=JxK;.
JFi

Then T'= SULU K; and so we have that S and T = SU LU K; are semicomputable
sets. It follows from (i) and (ii) that L N K; C {a;,b;} and this, together with (i)
and propositions 5 and 7, implies that the set K; is c.e. in (X, T, (I;)).

Therefore T', as a finite union of c.e. sets, is also a c.e. set. Together with the
fact that T is semicomputable, T" is computable. O

Let X be a topological space and let F be a partition of the set X. Let p : X — F
be a (unique) function such that = € p(x) for each x € X (such a p will be called
the quotient map). We topologize F by declaring that V C F is open if p~1(V) is
open in X. This topology is called the quotient topology and F, with this topology,
is called a quotient space of X. Clearly, p: X — F is a continuous surjection.

Remark 2. The following facts are well-known (see e.g. [21]).

(i) Let F be the partition of [0,1] given by F = {{z} | 0 <2 < 1}U{{0,1}}. If
we take the Fuclidean topology on [0,1] and the quotient topology on F, then
F is homeomorphic to the unit circle S'.

(#3) Let X andY be topological spaces such that X is compact andY is Hausdorff.
Let f : X — Y be a continuous surjection. Let X/f = {f~*({y}) |y € Y}.
Then X/ f (the given quotient topology) and Y are homeomorphic.

Suppose A and B are topological spaces, C' is a subspace of B and f: C — A
is a function. Let us consider the topological space A LI B — the disjoint union of A
and B, ie, AUB = (Ax {1})U(B x {2}) (we identify A with A x {1} and B with
B x {2}), the topology on AU B given by U C ALl B is open if U N A is open in A
and U N B is open in B.

We have the partition F of AU B given by

F={{a}[ac A\ f(O)}U{{a}Uf " ({a}) |ae fIC)}U{{b} |be B\C}

Then F, together with the quotient topology, is called an adjunction space obtained
by adjoining A and B by way of f. This adjunction space is denoted by AU B.
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Example 3. Let X be a Hausdorff space and let A, B and C be compact sets in
X such that ANB =C. Let f: C — A be defined by f(x) = x. Then AUy B is
homeomorphic to AU B.

Indeed, we have the obvious function g : AUB — AUB and we have that (AUB)/g
and AU B are homeomorphic by Remark 2. However, (AUB)/g= AUy B.

Remark 3. If A and B are topological spaces, C is a closed subspace of B and
f:C — A s a continuous function, we can identify A with an obvious subspace of
AUy B: this subspace is the image of A by the composition

A AuB-Zs AUy B,

where i is the inclusion, and p the quotient map. It is not hard to check (see [21])
that this subspace is actually homeomorphic to A.

Suppose n € N and Iy, ..., I, is the finite sequence of topological spaces defined
by I; = [0,1] for each i € {0,...,n}. Fori € {0,...,n} let I, = {0,1}. We have
the subspace dly U ... U dI, of the disjoint union Iy U ... U I,.

Let A be a topological space and let f : Iy U ... U dI, — A be any function.
Consider the adjunction space

AUs (IoU...UT,). (23)

Suppose A has a computable type. Does (23) then has a computable type? The
following simple example shows that in general the answer is negative.

Example 4. Let A = {0,1}. Then A has a computable type (see Proposition 2).
Let f : {0,1} — A be the identity and let us consider the adjunction space A Uy
[0,1]. By Ezxample 3 AUy [0,1] is homeomorphic to [0,1] and [0,1] does not have a
computable type (recall that there exists v > 0 such that [0,7] is semicomputable but
not computable). So AUy [0,1] does not have a computable type.

Nevertheless, we have the following result.

Theorem 3. Let A be a topological space, let Iy, ..., I, be such that I; = [0,1] for
each i € {0,...,n} and let f: Iy U...UdI, — A be a function. Suppose A has a
computable type. Then

(AUy (IoU...UI,),A)

has a computable type (where A is identified with a subspace of AUy (IgU...UI,)
as in Remark 8).

Proof. Suppose (X, T, (I;)) is a computable topological space and T and S are
semicomputable sets in this space such that there exists a homeomorphism g : AUy
(IpU...UI,) — T which maps A to S. More precisely, we have g(p(i(A)) = S, where
i: A— AU(IoU...UI,) is the inclusion and p : AL(IoU. . .UT,) — AUs(IoU. . .UI,) is
the quotient map. We will identify A and I; with corresponding images by inclusions

A—)Au(Iou...UIn) and Il—>A|_J(Io|_]L|In)
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We want to prove that T is a computable set in (X, 7, (I;)). In order to apply
Theorem 2, we have to show that T" “looks like” as in Figure 5. For that purpose,
we have to show that AUy (IpU ... U I,) “looks like” as in Figure 5 (since g is
homeomorphism).

We have that T is a Hausdorff space (as a subspace of (X, 7)), so AUy (LoU. ..UT,)
is also a Hausdorff space. Obviously, AU (IoUl...UI,) is compact.

Let i € {0,...,n}. Then p(;) is compact in AUy (IoU...UI,). Since p is a
surjection, we have

AUy (IoU...UIL) =p(A) Up(I1) U--- Up(ln).

By the definition of an adjunction space we have that p is injective on I; \ {1} and p
maps the points 0,1 € I; to the same point in the adjunction space AUs ([oU...U1,)
if and only if f(0) = f(1). So the function

plr, + Ii = p(I;)

is a continuous surjection which is either injective (in particular, p(0) # p(1)) or it
is injective on I; \ {1} and p(0) = p(1). In the first case, we have that p|;, is a home-
omorphism (since I; is compact and p(I;) is Hausdorff), so p(I;) is homeomorphic
to [0,1]. In the second case, it follows from Remark 2 that p(I;) is homeomorphic
to St. Hence, p(I;) is either an arc or a topological circle.

The function f is continuous since dlyLl. . .1101, is a discrete space and this space
is also closed in Iy U...U I,. So, as noted earlier, A and p(A) are homeomorphic.
Furthermore, p(A) and S are homeomorphic (the homeomorphism is a restriction of
g) and it follows that A and S are homeomorphic. This, together with the fact that
A has a computable type, implies that S is computable in (X, T, (I;)).

We have that AUy (IoU...UT,) is the union of the sets p(A4), p(Io), ..., p(In).
For each i € {0,...,n} there exist x;,y; € p(A) such that p(I;) N p(A) = {x;,y:}
and p(I;) is either an arc with endpoints x; and y;, x; # y;, or p(I;) is a topological
circle and z; = y;. Furthermore, if 7,7 € {0,...,n} are such that ¢ # j, then
p(Li) Np(I;) € p(A).

From this and the fact that g : AUy (JoU...UI,) — T is a homeomorphism, we
conclude that for the finite sequence (Kj,{a;,bi})o<i<n defined by K; = g(p(I;)),
a; = g(x;), b; = g(y;) we have T = SUK U- - -UK,, and the assumptions of Theorem
2 hold. Thus, by Theorem 2, T' is computable. O
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