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Abstract. We consider topological spaces A that have a computable type, which means
that any semicomputable set in a computable topological space which is homeomorphic
to A is computable. Moreover, we consider topological pairs (A,B), B ⊆ A, which have
a computable type, which means the following: if S and T are semicomputable sets in
a computable topological space such that S is homeomorphic to A by a homeomorphism
which maps T to B, then S is computable. We prove the following: if B has a computable
type and A is obtained by gluing finitely many arcs to B along their endpoints, then
(A,B) has a computable type. We also examine spaces obtained in the same way by gluing
chainable continua.
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1. Introduction

A compact set S ⊆ R is semicomputable if its complement R \ S can be effectively
exhausted by rational open intervals. A compact set S ⊆ R is computable if it is
semicomputable and we can effectively enumerate all rational open intervals which
intersect S.

A semicomputable set need not be computable. There exists γ > 0 such that
[0, γ] is a semicomputable set which is not computable [20]. In fact, while each
nonempty computable set contains computable numbers (moreover, they are dense
in it), there exists a nonempty semicomputable set S ⊆ R which does not contain
any computable number [23].

The notions of a semicomputable set and a computable set can be naturally
defined in Euclidean space Rn as well as in more general ambient spaces – computable
metric spaces and computable topological spaces. While for a set S in a computable
topological space X the implication

S semicomputable ⇒ S computable (1)
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https://www.mathos.unios.hr/mc

c©2024 School of Applied Mathematics and Informatics, University of Osijek



2 Z. Iljazović and M. Jelić

does not hold in general, there are certain additional assumptions under which (1)
holds. It turns out that topology of S plays an important role in view of (1). More
specifically, there are topological spaces A such that (1) holds in any computable
topological space X whenever S is homeomorphic to A. We say that such an A has a
computable type. It is known that each sphere in Euclidean space has a computable
type; moreover, each compact manifold has a computable type [20, 13, 14, 18]. In
particular, each circle has a computable type. However, not only manifolds have
a computable type – the Warsaw circle also has a computable type. In fact, any
circularly chainable continuum which is not chainable has a computable type [12,
10, 16].

On the other hand, [0, 1] does not have a computable type. But if S is a set in
a computable topological space X and f : [0, 1]→ S is a homeomorphism such that
f(0) and f(1) are computable points (which is equivalent to saying that f({0, 1}) is
a semicomputable set), then implication (1) holds. The following definition arises.
We say that a topological pair (A,B) (i.e., a pair of topological spaces such that
B ⊆ A) has a computable type if (1) holds whenever there exists a homeomorphism
f : A→ S such that f(B) is a semicomputable set in X.

So ([0, 1], {0, 1}) has a computable type. Moreover, (Bn, Sn−1) has a computable
type, where Bn is the unit closed ball and Sn−1 is the unit sphere in Rn [20, 13].
In fact, (M,∂M) has a computable type if M is a compact manifold with boundary
[14, 18]. Furthermore, if K is a continuum chainable from a to b, then (K, {a, b})
has a computable type [12, 10, 16].

A computable type of topological spaces called graphs has been investigated
in [15]. Amir and Hoyrup examined conditions under which a finite polyhedra
has a computable type (see [1]). Certain results regarding a computable type and
(in)computability of semicomputable sets can be found in [2, 6, 19, 17, 11, 8, 24, 9, 7].

A general question is the following: if A is a topological space obtained from
topological spaces which have computable types (using some standard topological
construction), does A have a computable type? For example, if A1 and A2 have
computable types, does A1 ×A2 have a computable type?

In this paper, we consider a topological space B and a space A obtained by gluing
finitely many arcs to B along their endpoints. In general, if B has a computable
type, A need not have a computable type. Take for example A = [0, 1] and B =
{0, 1}. But, we prove the following: if B has a computable type, then (A,B) has
a computable type. Actually, we prove a more general result involving circularly
chainable and chainable continua.

2. Preliminaries

In this section, we give some basic facts about computable metric and topological
spaces. See [22, 27, 25, 26, 4, 3, 12].

Let k ∈ N, k ≥ 1. A function f : Nk → Q is said to be computable if there are
computable (i.e. recursive) functions a, b, c : Nk → N such that

f(x) = (−1)c(x)
a(x)

b(x) + 1
,
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for each x ∈ Nk. A function f : Nk → R is said to be computable if there exists a
computable function F : Nk+1 → Q such that

|f(x)− F (x, i)| < 2−i,

for each x ∈ Nk, i ∈ N.
For a set X, let F(X) denote the family of all finite subsets of X. A function

Θ : N→ F(N) is called computable if the set

{(x, y) ∈ N2 | y ∈ Θ(x)}

is computable and if there is a computable function ϕ : N→ N such that

Θ(x) ⊆ {0, . . . , ϕ(x)}

for each x ∈ N.
From now on, let N → F(N), j → [j] be some fixed computable function whose

range is the set of all nonempty finite subsets of N.

2.1. Computable metric space

A triple (X, d, α) is said to be a computable metric space if (X, d) is a metric space,
and α = (αi) is a sequence in X such that α(N) ⊆ X is dense in (X, d) and such
that the function N2 → R, (i, j) 7→ d(αi, αj) is computable.

For example, if d is the Euclidean metric on Rn, where n ∈ N \ {0}, and α :
N→ Qn is some effective enumeration of Qn, then (Rn, d, α) is a computable metric
space.

Let (X, d, α) be a fixed computable metric space. For x ∈ X and r > 0, let
B(x, r) denote the open ball in (X, d) with radius r centered at x.

Let i ∈ N and r ∈ Q, r > 0. We say that B(αi, r) is an (open) rational ball in
(X, d, α).

Let q : N → Q be some fixed computable function whose image is the set of all
positive rational numbers and let τ1, τ2 : N→ N be some fixed computable functions
such that {(τ1(i), τ2(i)) | i ∈ N} = N2. For i ∈ N we define

Ii = B(ατ1(i), qτ2(i)). (2)

Note that (Ii)i∈N is an enumeration of all rational balls. Every finite union of rational
balls will be called a rational open set. For j ∈ N we define

Jj =
⋃
i∈[j]

Ii.

Clearly, {Jj | j ∈ N} is the family of all rational open sets in (X, d, α).
Let S ⊆ X be a closed set in (X, d). We say that S is a computably enumerable

(c.e.) set in (X, d, α) if the set

{i ∈ N | Ii ∩ S 6= ∅}
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is a c.e. subset of N.
Let S ⊆ X be a compact set in (X, d). We say that S is a semicomputable set

in (X, d, α) if the set

{j ∈ N | S ⊆ Jj}

is a c.e. subset of N.
Finally, we say that S is a computable set in (X, d, α) if S is both c.e. and

semicomputable in (X, d, α).
These definitions do not depend on the choice of functions q, τ1, τ2 and ([j])j∈N.
It can be shown that a nonempty subset S of X is computable in (X, d, α) if

and only if S can be effectively approximated by a finite subset of {αi | i ∈ N} with
any given precision. More precisely, S is computable in (X, d, α) if and only if there
exists a computable function f : N→ N such that

dH(S, {αi | i ∈ [f(k)]}) < 2−k,

for each k ∈ N, where dH is the Hausdorff metric (see Proposition 2.6 in [14]).

2.2. Computable topological space

A more general ambient space is a computable topological space. The notion of a
computable topological space is not new, see e.g. [28, 29]. We will use the notion
of a computable topological space which corresponds to the notion of a SCT2 space
from [28] (which is an effective second countable Hausdorff space).

Let (X, T ) be a topological space and (Ii) a sequence in T such that the set
{Ii | i ∈ N} is a basis for T . A triple (X, T , (Ii)) is called a computable topological
space if there exist c.e. subsets C,D ⊆ N2 such that:

1. if i, j ∈ N are such that (i, j) ∈ C, then Ii ⊆ Ij ;

2. if i, j ∈ N are such that (i, j) ∈ D, then Ii ∩ Ij = ∅;

3. if x ∈ X and i, j ∈ N are such that x ∈ Ii ∩ Ij , then there is k ∈ N such that
x ∈ Ik and (k, i), (k, j) ∈ C,

4. if x, y ∈ X are such that x 6= y, then there are i, j ∈ N such that x ∈ Ii, y ∈ Ij
and (i, j) ∈ D.

Let (X, T , (Ii)) be a fixed computable topological space. We define Jj :=⋃
i∈[j] Ii.

We say that a closed set S in (X, T ) is computably enumerable in (X, T , (Ii)) if
{i ∈ N | S ∩ Ii 6= ∅} is a c.e. subset od N.

Furthermore, we say that S is semicomputable in (X, T , (Ii)) if S is a compact
set in (X, T ) and {j ∈ N | S ⊆ Jj} is a c.e. subset of N.

We say that S is computable in (X, T , (Ii)) if S is both c.e. and semicomputable
in (X, T , (Ii)).

The definition of a semicomputable set (and a computable set) does not depend
on the choice of the sequence ([j])j∈N.
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If (X, d, α) is a computable metric space, then (X, Td, (Ii)) is a computable topo-
logical space, where Td is a topology induced by the metric d and (Ii) are the se-
quences defined by (2) (see e.g. [18]). Clearly, S is c.e./semicomputable/computable
in (X, d, α) if and only if S is c.e./semicomputable/computable in (X, Td, (Ii)).

We say that x ∈ X is a computable point in (X, T , (Ii)) if {i ∈ N | x ∈ Ii} is a
c.e. subset of N.

The proofs of the following facts, which will be used frequently in this paper, can
be found in [18].

Theorem 1. Let (X, T , (Ii)) be a computable topological space. There exist c.e.
subsets C,D ⊆ N2 such that:

1. if i, j ∈ N are such that (i, j) ∈ C, then Ji ⊆ Jj;

2. if i, j ∈ N are such that (i, j) ∈ D, then Ji ∩ Jj = ∅;

3. if F is a finite family of nonempty compact sets in (X, T ) and A ⊆ N is a
finite subset of N, then for each K ∈ F there is iK ∈ N such that

(i) if K ∈ F , then K ⊆ JiK ;

(ii) if K,L ∈ F are such that K ∩ L = ∅, then (iK , iL) ∈ D;

(iii) if a ∈ A and K ∈ F are such that K ⊆ Ja, then (iK , a) ∈ C.

Proposition 1. Let (X, T , (Ii)) be a computable topological space and let S ⊆ X be
a semicomputable set in this space.

(i) If m ∈ N, then S \ Jm is a semicomputable set in (X, T , (Ii)).

(ii) If k ∈ N \ {0}, then the set {(j1, . . . , jk) ∈ Nk | S ⊆ Jj1 ∪ · · · ∪ Jjk} is c.e.

The proof of the following proposition can be found in [15].

Proposition 2. Let (X, T , (Ii)) be a computable topological space and let x0, . . . , xn∈
X. Then the following holds:

x0, . . . , xn are computable points ⇐⇒ {x0, . . . , xn} is a semicomputable set

⇐⇒ {x0, . . . , xn} is a computable set.

If (X, T , (Ii)) is a computable topological space, then the topological space (X, T )
need not be metrizable (see Example 3.2 in [18]). However, if S is a compact set in
(X, T ), then S, as a subspace of (X, T ), is a compact Hausdorff second countable
space, which implies that S is a normal second countable space and therefore it is
metrizable. This fact will be very important to us later and we will use it often.

Let A be a topological space. We say that A has a computable type if the follow-
ing holds: if (X, T , (Ii)) is a computable topological space and S a semicomputable
set in this space such that S and A are homeomorphic, then S is computable.

Moreover, let A be a topological space and let B be a subspace of A. We say that
(A,B) has a computable type if the following holds: if (X, T , (Ii) is a computable
topological space, S and T semicomputable sets in this space and f : A → S a
homeomorphism such that f(B) = T , then S is computable.
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2.3. Chainable and circulary chainable continua

Let X be a set and C = (C0, . . . , Cm) a finite sequence of subsets of X. We say that
C is a chain in X if the following holds:

Ci ∩ Cj = ∅ ⇐⇒ 1 < |i− j|,

for all i, j ∈ {0, . . . ,m}.

Figure 1: Chain

We say that C is a circular chain in X if the following holds:

Ci ∩ Cj = ∅ ⇐⇒ 1 < |i− j| < m,

for all i, j ∈ {0, . . . ,m}.

Figure 2: Circular chain

Let A ⊆ X and a, b ∈ A. We say that C0, . . . , Cm covers A if A ⊆ C0 ∪ · · · ∪Cm,
and we say it covers A from a to b if also a ∈ C0 and b ∈ Cm.

Let (X, d) be a metric space. A (circular) chain C0, . . . , Cm is said to be a ε-
(circular) chain, for some ε > 0, if diamCi < ε, for each i ∈ {0, . . . ,m} and it is
said to be an open (circular) chain if every Ci is open in (X, d). In the same way we
define the notion of a compact (circular) chain.

A connected and compact metric space is called a continuum.
Let (X, d) be a continuum. We say that (X, d) is a (circulary) chainable con-

tinuum if for every ε > 0 there is an open ε-(circular) chain in (X, d) which covers
X.

Suppose a, b ∈ X. We say that (X, d) is a continuum chainable from a to b if for
every ε > 0 there is an open ε-chain C0, . . . , Cm which covers X from a to b.

We similarly define the notions of an open and a compact (circular) chain in a
topological space.

A topological space which is Hausdorff, connected and compact is called a con-
tinuum.

Let A and B be families of sets. We say that A refines B if for each A ∈ A there
is B ∈ B such that A ⊆ B.

Let X be a topological space which is a continuum. We say that X is a (circulary)
chainable continuum if for each open cover U of X there is an open (circular) chain
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C0, . . . , Cm in X which covers X and such that {C0, . . . , Cm} refines U . We similarly
define that X is a continuum chainable from a to b.

It follows easily that a metric space (X, d) is a (circulary) chainable continuum if
and only if topological space (X, Td) is a (circulary) chainable continuum. Moreover,
(X, d) is a continuum chainable from a to b if and only if (X, Td) is a continuum
chainable from a to b. See Section 3 in [10].

Remark 1. Let X and Y be topological spaces and let f : X → Y be a homeomor-
phism. Then it is easy to see that X is a (circularly) chainable continuum if and
only if Y is a (circularly) chainable continuum. Furthermore, if a, b ∈ X, then X is
a continuum chainable from a to b if and only if Y is a continuum chainable from
f(a) to f(b).

The proofs of the following facts can be found in [16].

Proposition 3. Let (X, d) be a continuum and a, b ∈ X. Then (X, d) is a chainable
continuum from a to b if and only if for each ε > 0 there is a compact ε-chain in
(X, d) which covers X from a to b.

Proposition 4. Let (X, d) be a continuum. Then (X, d) is a (circulary) chainable
continuum if and only if for each ε > 0 there is a compact ε-(circular) chain in
(X, d) which covers X.

Example 1. We have that [0, 1] (with the Euclidean metric) is a continuum chain-
able from 0 to 1. This can be easily concluded from Proposition 3. (Thus [0, 1] with
the Euclidean topology is a continuum chainable from 0 to 1.)

Similarly, the unit circle S1 in R2 is a circularly chainable continuum. However,
S1 is not a chainable continuum (see [5]).

A topological space homeomorphic to [0, 1] is called an arc. If A is an arc and
f : [0, 1] → A a homeomorphism, then we say that f(0) and f(1) are endpoints of
A (this definition does not depend on the choice of f).

If A is an arc with endpoints a and b, then by Example 1 and Remark 1 we have
that A is a continuum chainable from a to b.

A topological space homeomorphic to S1 is called a topological circle. By Ex-
ample 1 and Remark 1 each topological circle is a circularly chainable continuum
which is not chainable.

Example 2. Let

K = ({0} × [−1, 1]) ∪
{(

x, sin
1

x

)
| 0 < x ≤ 1

}
.

Let a = (0,−1) and b = (1, sin 1). It is known that K is a continuum chainable from
a to b. However, K is not an arc since K is not locally connected.

Furthermore, let

W = K ∪ ({0} × [−2,−1]) ∪ ([0, 1]× {−2}) ∪ ({1} × [−2, sin 1]).

The space W is called the Warsaw circle. It is known that W is a circularly chainable
continuum which is not chainable. Since W is not locally connected, W is not a
topological circle.
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3. Spaces with attached arcs

The following result was proved in [10] (Theorem 2): if (X, T , (Ii)) is a computable
topological space and K a semicomputable set in this space which, as a subspace of
(X, T ), is a continuum chainable from a to b, where a and b are computable points,
then K is a computable set in (X, T , (Ii)). In other words, if K is a continuum
chainable from a to b, then (K, {a, b}) has a computable type (note that by Propo-
sition 2, the condition that a and b are computable points is equivalent to the fact
that {a, b} is a semicomputable set).

Now we prove a more general result (the result from [10] follows from the following
result for S = {a, b} and L = ∅).

Proposition 5. Let (X, T , (Ii)) be a computable topological space. Suppose K, as
a subspace of (X, T ), is a continuum chainable from a to b, a, b ∈ X, a 6= b. Let
S ⊆ X be such that S ∩K = {a, b} and let L ⊆ X be a compact set in (X, T ) such
that L ∩K ⊆ {a, b} (see Figure 3). Suppose S and S ∪ L ∪K are semicomputable
sets in (X, T , (Ii)). Then K is a c.e. set in (X, T , (Ii)).

Proof. Since K is compact, it is metrizable. Let d be the metric on K which induces
the topology on K, i.e., the relative topology on K in (X, T ).

Figure 3: S ∪L∪K: the grey set is S, the union of the short straight lines is L and the arc whose
endpoints lie is S is K.

Since X is Hausdorff, there are Ua, Ub ∈ T such that a ∈ Ua, b ∈ Ub and
Ua ∩ Ub = ∅.

Assume that (S ∪ L) \ (Ua ∪ Ub) 6= ∅. The sets K and (S ∪ L) \ (Ua ∪ Ub) are
disjoint and compact in (X, T ). Namely, since K ∩ (S ∪ L) = {a, b} and a, b /∈
(S ∪ L) \ (Ua ∪ Ub), the sets K and (S ∪ L) \ (Ua ∪ Ub) are disjoint. We have that
(S ∪L) \ (Ua ∪Ub) is compact in (X, T ) because it is closed and contained in S ∪L
(which is compact).

By Theorem 1 there exists µ ∈ N such that

(S ∪ L) \ (Ua ∪ Ub) ⊆ Jµ and K ∩ Jµ = ∅ (3)

(this can also be easily concluded from the fact that (X, T ) is Hausdorff). Let us
denote

S′ = (S ∪ L ∪K) \ Jµ.
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By (3) we have (S ∪ L) \ Jµ ⊆ Ua ∪ Ub and therefore

S′ = (S \ Jµ) ∪ (L \ Jµ) ∪K = A ∪B ∪ L1 ∪ L2 ∪K,

where A = (S \Jµ)∩Ua, B = (S \Jµ)∩Ub, L1 = (L\Jµ)∩Ua and L2 = (L\Jµ)∩Ub.
By Proposition 1 the set S′ is semicomputable in (X, T , (Ii)).

We claim that A and B are semicomputable sets in (X, T , (Ii)). Namely, S\Jµ =
A ∪ B and A and B are open in S \ Jµ. Since these sets are disjoint, they are also
closed in S \ Jµ. The fact that S \ Jµ is compact now implies that A and B are
compact in (X, T ). It follows that there exist α, β ∈ N such that

A ⊆ Jα, B ⊆ Jβ and Jα ∩ Jβ = ∅.

Then A = (S \Jµ)\Jβ and B = (S \Jµ)\Jα, i.e., A and B are semicomputable sets
in (X, T , (Ii)). In a similar way we conclude that L1 and L2 are compact in (X, T ).

So S′ is a semicomputable set and

S′ = A ∪B ∪ L1 ∪ L2 ∪K,

where A and B are semicomputable, L1 and L2 are compact, (A∪L1)∩(B∪L2) = ∅
and a ∈ A, b ∈ B (note that (3) and a, b ∈ K imply a /∈ Jµ and b /∈ Jµ).

We get the same conclusion if (S ∪ L) \ (Ua ∪ Ub) = ∅. Namely, we can define
S′ = S ∪ L ∪K and then

S′ = A ∪B ∪ L1 ∪ L2 ∪K,

where A = S ∩ Ua, B = S ∩ Ub, L1 = L ∩ Ua and L2 = L ∩ Ub. Similarly as
before, we conclude that A and B are semicomputable, L1 and L2 are compact,
(A ∪ L1) ∩ (B ∪ L2) = ∅ and a ∈ A, b ∈ B.

Let C and D be the subsets of N2 from Theorem 1 and let f : N→ N be a fixed
computable function such that Ii = Jf(i) for each i ∈ N (such a function certainly
exists).

Suppose i ∈ N is such that Ii ∩K 6= ∅. We claim that there exists x ∈ Ii ∩K,
x 6= a, b. Namely, if Ii ∩K ⊆ {a, b}, then Ii ∩K is finite and therefore closed in K.
Also, Ii ∩K is open in K. Together with the fact that K is connected, we have that
Ii ∩ K = K. Since K is finite and Hausdorff, it is discrete, which contradicts the
fact that K is connected and card(K) ≥ 2.

So, there exists x ∈ Ii ∩ (K \ {a, b}). Choose r so that

0 < r < min{d(a, x), d(b, x)}

and
B(x, r) ⊆ Ii ∩K ⊆ Ii = Jf(i). (4)

Furthermore, since (K, d) is a continuum chainable from a to b, there is a compact
r-chain K0, . . . ,Kn in (K, d) which covers K and such that a ∈ K0 and b ∈ Kn.

Let p ∈ {0, . . . , n} be such that x ∈ Kp. Because of (4) and diam(Kp) < r, we
have Kp ⊆ Ii, hence

Kp ⊆ Jf(i). (5)
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Since r < d(x, a), d(x, b), we have p 6= 0, n.

Let us denote

F = A ∪ L1 ∪K0 ∪ . . . ∪Kp−1 and G = B ∪ L2 ∪Kp+1 ∪ . . . ∪Kn.

Note that

S′ = F ∪Kp ∪G. (6)

We claim that F and G are disjoint. Obviously, A ∩ B = ∅ and since A ⊆ S,
A ⊆ Ua and S∩K = {a, b} (by the assumption of the theorem), we have A∩K ⊆ {a}.
However, a /∈ Kj , for j ∈ {p+1, . . . , n} because a ∈ K0, p+1 ≥ 2 and K0, . . . ,Kn is
a chain, so A∩Kp+1 = ∅, . . . , A∩Kn = ∅. Similarly, B∩K0 = · · · = B∩Kp−1 = ∅.
Moreover, A ∩ L2 = ∅ because L2 ⊆ Ub and A ⊆ Ua. Similarly, B ∩ L1 = ∅. Hence
F ∩G = ∅.

The sets F , Kp and G are compact in (X, T ), F and G are disjoint and we have
(5), so according to Theorem 1, there are u, v, w ∈ N such that F ⊆ Ju, Kp ⊆ Jv,
G ⊆ Jw, (u,w) ∈ D and (v, f(i)) ∈ C. It follows from (6) that S′ ⊆ Ju ∪ Jv ∪ Jw.
By the definitions of F and G we have A ⊆ Ju and B ⊆ Jw.

So, if i ∈ N is such that Ii ∩K 6= ∅, then there exist u, v, w ∈ N such that:

(i) S′ ⊆ Ju ∪ Jv ∪ Jw;

(ii) A ⊆ Ju;

(iii) B ⊆ Jw;

(iv) (u,w) ∈ D;

(v) (v, f(i)) ∈ C.

Let Ω be the set of all (i, u, v, w) ∈ N4 for which statements (i)-(v) hold.

We have proved the following: if i ∈ N is such that Ii ∩K 6= ∅, then there exist
u, v, w ∈ N such that (i, u, v, w) ∈ Ω.

Conversely, let us suppose that i ∈ N is such that there exist u, v, w ∈ N such
that (i, u, v, w) ∈ Ω. We claim that Ii ∩K 6= ∅.

Suppose the opposite, i.e., Ii ∩K = ∅. Since Jv ⊆ Ii by (v), we have Jv ∩K = ∅,
and since by (i) it holds K ⊆ Ju∪Jv∪Jw, we have K ⊆ Ju∪Jw. Because A ⊆ Ju, it
holds a ∈ Ju, and because B ⊆ Jw, it holds b ∈ Jw. So, the sets Ju and Jw are open
in (X, T ), they are disjoint, their union contains K and each of them intersects K.
This implies that K is not connected, which is impossible. Therefore, Ii ∩K 6= ∅.

So we have:

Ii ∩K 6= ∅ if and only if there exist u, v, w ∈ N such that (i, u, v, w) ∈ Ω. (7)

Since S′, A and B are semicomputable sets, by Proposition 1 we have that Ω is
a c.e. set. It follows now from (7) that the set {i ∈ N | Ii ∩K 6= ∅} is c.e. Hence K
is a c.e. set in (X, T , (Ii)).
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Let σ : N2 → N and η : N → N be some fixed computable functions such that
{(σ(j, 0), . . . , σ(j, η(j))) | j ∈ N} is the set of all nonempty finite sequences in N.
Instead of σ(i, j) we will write (i)j and j instead of η(j). So {((j)0, . . . , (j)j) | j ∈ N}
is the set of all nonempty finite sequences in N.

The function N→ F(N), i 7→ {(j)0, . . . , (j)j}, is computable and its range is the
set of all nonempty finite subsets of N. Therefore, we may assume (without any loss
of generality) that

[j] = {(j)0, . . . , (j)j}

for each j ∈ N.
Let (X, T , (Ii)) be a computable topological space. Let C and D be from Theo-

rem 1.
For l ∈ N we define

Hl = (J(l)0 , . . . , J(l)l).

We say that Hl is a formal circular chain if the following holds:

((l)i, (l)j) ∈ D for all i, j ∈ {0, . . . , l} such that 1 < |i− j| < l.

Note that this is a property of the number l. (More precisely, we can say that “l
represents a formal circular chain”; it is possible that Hl = Hl′ , l represents a formal
circular chain, but l′ does not – so Hl is a formal circular chain and Hl′ is not.)

The following proposition can be proved similarly to propositions 32 and 34
in [12].

Proposition 6. 1. The set {l ∈ N | Hl is a formal circular chain} is c.e.

2. Let S be a semicomputable set in (X, T , (Ii)). Then the set {l∈N |Hl covers S}
is c.e.

Lemma 1. Let (K, d) be a connected metric space. Suppose ε > 0 and C0, . . . , Cm
are open sets in (K, d) which cover K, whose diameters are less than ε and such
that Ci ∩ Cj = ∅ for each i, j ∈ {0, . . . ,m} such that |i − j| > 1. Then there exists
an open ε-chain in (K, d) which covers K.

Proof. Let
v = min{i ∈ {0, . . . ,m} | Ci 6= ∅}

and
w = max{i ∈ {0, . . . ,m} | Ci 6= ∅}.

Then the finite sequence Cv, . . . , Cw covers K. We claim that Cv, . . . , Cw is an
open ε-chain in (K, d). It suffices to prove that Ci 6= ∅ for each i ∈ {v, . . . , w} and
Ci ∩ Ci+1 6= ∅ for each i ∈ {v, . . . , w − 1}.

Suppose Ci = ∅ for some i ∈ {v, . . . , w}. By definition of v and w we have Cv 6= ∅
and Cw 6= ∅, so v < i < w. Let U = Cv ∪ · · · ∪ Ci−1 and V = Ci+1 ∪ · · · ∪ Cw.
Then U and V are disjoint open sets in (K, d). Since K = Cv ∪ · · · ∪Cw and Ci = ∅,
we have K = U ∪ V and U 6= ∅, V 6= ∅. This means that (U, V ) is a separation of
(K, d), which is impossible since (K, d) is connected.

Similarly, we see that Ci ∩ Ci+1 6= ∅ for each i ∈ {v, . . . , w − 1}. So Cv, . . . , Cw
is an open ε-chain in (K, d) which covers K.
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Now, we have a result similar to Proposition 5.

Proposition 7. Let (X, T , (Ii)) be a computable topological space. Suppose K, as
a subspace of (X, T ), is a continuum which is circulary chainable but not chainable,
and let a ∈ X. Let S ⊆ X be such that S ∩K = {a} and let L ⊆ X be a compact
set in (X, T ) such that L ∩ K ⊆ {a} (see Figure 4). If S and S ∪ L ∪ K are
semicomputable sets in (X, T , (Ii)), then K is c.e. in (X, T , (Ii)).

Proof. Firstly, since K is not chainable, we have cardK ≥ 2.
Similary as before, let d be the metric on K which induces the topology on K,

i.e., the relative topology on K in (X, T ).

Figure 4: S ∪ L ∪ K: the grey set is S, the union of the short straight lines is L and the circle
above S is K.

Let
S′ = S ∪ L ∪K. (8)

By assuming the proposition S′ and S are semicomputable and L is compact.
Clearly, a ∈ S and

(S ∪ L) ∩K = {a}. (9)

Since (K, d) is not chainable, there exists ε0 > 0 such that there exists no open
ε0-chain in (K, d) which covers K. Since K is compact and for each z ∈ K and ε > 0
there is j ∈ N such that z ∈ Jj and diam(Jj ∩K) < ε, there are a0, . . . , am ∈ N such
that

K ⊆
m⋃
i=0

Jai

and
diam(Jai ∩K) <

ε0
3

, for each i ∈ {0, . . . ,m}. (10)

Let λ > 0 be a Lebesgue number of the open cover

{Ja0 ∩K, . . . , Jam ∩K} (11)

of (K, d).
Since S ∪ L is compact in (X, T ), there exists α ∈ N such that

S ∪ L ⊆ Jα and diam(Jα ∩K) <
ε0
3

. (12)
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Namely, choose r ∈ R such that 0 < r < ε0
8 . The sets S ∪ L and K \ B(a, r) are

disjoint by (9) and they are clearly compact. Thus there exists α ∈ N such that

S ∪ L ⊆ Jα and (K \B(a, r)) ∩ Jα = ∅.

It follows that Jα ∩K ⊆ B(a, r) and so diam(Jα ∩K) ≤ 2r ≤ ε0
4 < ε0

3 .
Let C and D be as in Theorem 1 and let f : N → N be a computable function

such that Ii = Jf(i) for each i ∈ N.
Suppose i ∈ N is such that Ii ∩ K 6= ∅. Then there exists x ∈ Ii ∩ K such

that x 6= a. Otherwise, we would have Ii ∩K = {a}, which would imply that {a}
is open in K; however, this is impossible since {a} is closed, K is connected and
card(K) ≥ 2.

Since x ∈ Ii ∩K, there is 0 < r < min{ 12d(a, x), λ} such that

B(x, r) ⊆ Ii ∩K ⊆ Ii = Jf(i). (13)

Now, since (K, d) is a circulary chainable continuum, there exists a compact r-
circular chain K0, . . . ,Kn in (K, d) which covers K. For each l ∈ {1, . . . , n} the
finite sequence Kl, . . . ,Kn,K0, . . . ,Kl−1 is also an r-circular chain which covers K,
so we may assume a ∈ K0. Furthermore, without loss of generality, we may assume
that a /∈ Kj for j 6= 0. Indeed, we have a /∈ Kj for each j /∈ {n, 0, 1} since
K0, . . . ,Kn is a circular chain and so we can replace K0, . . . ,Kn by the circular
chain Kn ∪K0 ∪K1,K2, . . . ,Kn−1 (which is an r-circular chain if K0, . . . ,Kn is an
r
3 -circular chain).

Let p ∈ {0, . . . , n} be such that x ∈ Kp. It follows from (13) and diam(Kp) < r
that

Kp ⊆ Ii = Jf(i). (14)

Since r < d(x, a), one has p 6= 0.
For each j ∈ {0, . . . , n} we have diam(Kj) < λ, so there exists kj ∈ {0, . . . ,m}

such that
Kj ⊆ Jakj

(15)

(recall that λ is a Lebesgue number of the open cover (11)).
For each j ∈ {1, . . . , n} we have a /∈ Kj and it follows from (9) that

(S ∪ L) ∩Kj = ∅.

Also, for all j, j′ ∈ {0, . . . , n} such that 1 < |j− j′| < n we have Kj ∩Kj′ = ∅. Using
this, (14), (12), (15) and Theorem 1 we conclude that there are u0, . . . , un, u ∈ N
such that

Kj ⊆ Juj
, for each j ∈ {0, . . . , n},

S ∪ L ⊆ Ju,

(uj , uj′) ∈ D for all j, j′ ∈ {0, . . . , n} such that 1 < |j − j′| < n

(u, uj) ∈ D for each j ∈ {1, . . . , n},

(up, f(i)) ∈ C and (u, α) ∈ C,
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(uj , akj ) ∈ C, for each j ∈ {0, . . . , n}.

By (8) we have S′ = S ∪ L ∪
⋃n
j=0Kj , which implies S′ ⊆ Ju ∪ Ju0

∪ · · · ∪ Jun
.

Choose l ∈ N so that ((l)0, . . . , (l)l) = (u0, . . . , un). Then the following holds:

(i) S′ ⊆
⋃
Hl ∪ Ju;

(ii) S ⊆ Ju;

(iii) Hl is a formal circular chain;

(iv) (u, (l)j) ∈ D, for each j ∈ {1, . . . , l};

(v) 1 ≤ p ≤ l and ((l)p, f(i)) ∈ C;

(vi) (u, α) ∈ C;

(vii) for each j ∈ {0, . . . , l} there exists j′ ∈ {0, . . . ,m} such that ((l)j , aj′) ∈ C.

Let Ω be the set of all (i, l, u, p) ∈ N4 such that (i)-(vii) hold. We have proved
the following: if i ∈ N is such that Ii ∩K 6= ∅, then there exist l, u, p ∈ N such that
(i, l, u, p) ∈ Ω.

Conversely, let us suppose that i ∈ N is such that there exist l, u, p ∈ N such that
(i, l, u, p) ∈ Ω. So statements (i)-(vii) hold. We want to prove that Ii ∩K 6= ∅.

Suppose the opposite, i.e. Ii ∩ K = ∅. So Jf(i) ∩ K = ∅ and by (v) we have
J(l)p ⊆ Jf(i). This implies that J(l)p ∩K = ∅. It follows from (i) that K ⊆

⋃
Hl∪Ju

and therefore

K ⊆ J(l)0 ∪ . . . ∪ J(l)p−1
∪ J(l)p+1

∪ . . . ∪ J(l)l ∪ Ju,

i.e.,
K ⊆ J(l)p+1

∪ . . . ∪ J(l)l ∪ (J(l)0 ∪ Ju) ∪ J(l)1 . . . ∪ J(l)p−1
.

It follows that K is the union of the following sets:

(J(l)p+1
∩K), . . . , (J(l)l ∩K), (((J(l)0 ∩K)∪ (Ju ∩K)), (J(l)1 ∩K), . . . , (J(l)p−1

∩K).
(16)

Let M be the union of the following sets:

(J(l)p+1
∩K), . . . , (J(l)l ∩K), (J(l)0 ∩K), (J(l)1 ∩K), . . . , (J(l)p−1

∩K). (17)

By (vi) we have Ju ⊆ Jα, so Ju ∩K ⊆ Jα ∩K and it follows from (12) that

diam(Ju ∩K) <
ε0
3
. (18)

In the same way, using (vii) and (10), we conclude that

diam(J(l)j ∩K) <
ε0
3

(19)

for each j ∈ {0, . . . , l}.
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We claim that
(J(l)0 ∩K) ∩ (Ju ∩K) 6= ∅. (20)

Otherwise, if Ju ∩ K and J(l)0 ∩ K are disjoint, then Ju ∩ K is disjoint with each
of the sets in (17) (this follows from (iv)) and thus Ju ∩K and M are disjoint. By
the definition of M we have K = M ∪ (Ju ∩K) and this means that (M,Ju ∩K)
is a separation of K: M and Ju ∩ K are clearly open in K, Ju ∩ K is nonempty
since a ∈ Ju by (ii) and M is nonempty since M = ∅ implies K = Ju ∩K and this,
together with (18), implies that there exists a (trivial) open ε0-chain in K which
covers K which is impossible by the choice of ε0.

So (20) holds. Using this, (20), (18) and (19) we conclude that

diam
(
(J(l)0 ∩K) ∪ (Ju ∩K)

)
<
ε0
3

+
ε0
3
< ε0. (21)

Let us consider the finite sequence of sets in (16). Nonadjacent sets in this
sequence are disjoint, which follows from (iii) and (iv). These sets are open in K
and their diameters, by (19) and (21), are less than ε0. It follows from Lemma 1
that there exists an open ε0-chain in K which covers K, but this is impossible by
the choice of ε0.

Hence, Ii ∩K 6= ∅.
We have proved the following:

Ii ∩K 6= ∅ ⇔ there exist l, u, p ∈ N such that (i, l, u, p) ∈ Ω. (22)

It is not hard to conclude that Ω is a c.e. set (see e.g. the proofs of propositions
32 and 34 in [12]). Now (22) implies that the set {i ∈ N | Ii ∩K 6= ∅} is c.e. and
thus K is a c.e. set in (X, T , (I)i).

The following result generalizes both Proposition 5 and Proposition 7.

Theorem 2. Let (X, T , (Ii)) be a computable topological space and let S ⊆ X be
a computable set in (X, T , (Ii)). Suppose (K0, {a0, b0}), . . . (Kn, {an, bn}) is a finite
sequence of pairs, where each Ki, as a subspace of (X, T ), is either a continuum
chainable from ai to bi, where ai, bi ∈ Ki are such that ai 6= bi, or a continuum
which is circulary chainable, but not chainable, where ai, bi ∈ Ki are such that
ai = bi.

Suppose the following holds:

(i) Ki ∩ S = {ai, bi} for each i ∈ {0, . . . , n};

(ii) Ki ∩Kj ⊆ S for all i, j ∈ {0, . . . , n} such that i 6= j.

Let
T = S ∪K0 ∪ · · · ∪Kn.

See Figure 5. Suppose T is a semicomputable set in (X, T , (Ii)). Then T is com-
putable.



16 Z. Iljazović and M. Jelić

Figure 5: The set T : the grey set is S.

Proof. Let i ∈ {0, . . . , n}. Let

L =
⋃
j 6=i

Kj .

Then T = S∪L∪Ki and so we have that S and T = S∪L∪Ki are semicomputable
sets. It follows from (i) and (ii) that L ∩ Ki ⊆ {ai, bi} and this, together with (i)
and propositions 5 and 7, implies that the set Ki is c.e. in (X, T , (Ii)).

Therefore T , as a finite union of c.e. sets, is also a c.e. set. Together with the
fact that T is semicomputable, T is computable.

Let X be a topological space and let F be a partition of the set X. Let p : X → F
be a (unique) function such that x ∈ p(x) for each x ∈ X (such a p will be called
the quotient map). We topologize F by declaring that V ⊆ F is open if p−1(V ) is
open in X. This topology is called the quotient topology and F , with this topology,
is called a quotient space of X. Clearly, p : X → F is a continuous surjection.

Remark 2. The following facts are well-known (see e.g. [21]).

(i) Let F be the partition of [0, 1] given by F = {{x} | 0 < x < 1} ∪ {{0, 1}}. If
we take the Euclidean topology on [0, 1] and the quotient topology on F , then
F is homeomorphic to the unit circle S1.

(ii) Let X and Y be topological spaces such that X is compact and Y is Hausdorff.
Let f : X → Y be a continuous surjection. Let X/f = {f−1({y}) | y ∈ Y }.
Then X/f (the given quotient topology) and Y are homeomorphic.

Suppose A and B are topological spaces, C is a subspace of B and f : C → A
is a function. Let us consider the topological space A tB – the disjoint union of A
and B, i.e., AtB = (A×{1})∪ (B ×{2}) (we identify A with A×{1} and B with
B × {2}), the topology on A tB given by U ⊆ A tB is open if U ∩A is open in A
and U ∩B is open in B.

We have the partition F of A tB given by

F = {{a} | a ∈ A \ f(C)} ∪ {{a} ∪ f−1({a}) | a ∈ f(C)} ∪ {{b} | b ∈ B \ C}.

Then F , together with the quotient topology, is called an adjunction space obtained
by adjoining A and B by way of f . This adjunction space is denoted by A ∪f B.
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Example 3. Let X be a Hausdorff space and let A, B and C be compact sets in
X such that A ∩ B = C. Let f : C → A be defined by f(x) = x. Then A ∪f B is
homeomorphic to A ∪B.

Indeed, we have the obvious function g : AtB → A∪B and we have that (AtB)/g
and A ∪B are homeomorphic by Remark 2. However, (A tB)/g = A ∪f B.

Remark 3. If A and B are topological spaces, C is a closed subspace of B and
f : C → A is a continuous function, we can identify A with an obvious subspace of
A ∪f B: this subspace is the image of A by the composition

A
i−→ A tB p−→ A ∪f B,

where i is the inclusion, and p the quotient map. It is not hard to check (see [21])
that this subspace is actually homeomorphic to A.

Suppose n ∈ N and I0, . . . , In is the finite sequence of topological spaces defined
by Ii = [0, 1] for each i ∈ {0, . . . , n}. For i ∈ {0, . . . , n} let ∂Ii = {0, 1}. We have
the subspace ∂I0 t . . . t ∂In of the disjoint union I0 t . . . t In.

Let A be a topological space and let f : ∂I0 t . . . t ∂In → A be any function.
Consider the adjunction space

A ∪f (I0 t . . . t In). (23)

Suppose A has a computable type. Does (23) then has a computable type? The
following simple example shows that in general the answer is negative.

Example 4. Let A = {0, 1}. Then A has a computable type (see Proposition 2).
Let f : {0, 1} → A be the identity and let us consider the adjunction space A ∪f
[0, 1]. By Example 3 A ∪f [0, 1] is homeomorphic to [0, 1] and [0, 1] does not have a
computable type (recall that there exists γ > 0 such that [0, γ] is semicomputable but
not computable). So A ∪f [0, 1] does not have a computable type.

Nevertheless, we have the following result.

Theorem 3. Let A be a topological space, let I0, . . . , In be such that Ii = [0, 1] for
each i ∈ {0, . . . , n} and let f : ∂I0 t . . . t ∂In → A be a function. Suppose A has a
computable type. Then

(A ∪f (I0 t . . . t In), A)

has a computable type (where A is identified with a subspace of A ∪f (I0 t . . . t In)
as in Remark 3).

Proof. Suppose (X, T , (Ii)) is a computable topological space and T and S are
semicomputable sets in this space such that there exists a homeomorphism g : A∪f
(I0t. . .tIn)→ T which maps A to S. More precisely, we have g(p(i(A)) = S, where
i : A→ At(I0t. . .tIn) is the inclusion and p : At(I0t. . .tIn)→ A∪f (I0t. . .tIn) is
the quotient map. We will identify A and Ii with corresponding images by inclusions

A→ A t (I0 t . . . t In) and Ii → A t (I0 t . . . t In).
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We want to prove that T is a computable set in (X, T , (Ii)). In order to apply
Theorem 2, we have to show that T “looks like” as in Figure 5. For that purpose,
we have to show that A ∪f (I0 t . . . t In) “looks like” as in Figure 5 (since g is
homeomorphism).

We have that T is a Hausdorff space (as a subspace of (X, T )), so A∪f (I0t. . .tIn)
is also a Hausdorff space. Obviously, A t (I0 t . . . t In) is compact.

Let i ∈ {0, . . . , n}. Then p(Ii) is compact in A ∪f (I0 t . . . t In). Since p is a
surjection, we have

A ∪f (I0 t . . . t In) = p(A) ∪ p(I1) ∪ · · · ∪ p(In).

By the definition of an adjunction space we have that p is injective on Ii \ {1} and p
maps the points 0, 1 ∈ Ii to the same point in the adjunction space A∪f (I0t. . .tIn)
if and only if f(0) = f(1). So the function

p|Ii : Ii → p(Ii)

is a continuous surjection which is either injective (in particular, p(0) 6= p(1)) or it
is injective on Ii \{1} and p(0) = p(1). In the first case, we have that p|Ii is a home-
omorphism (since Ii is compact and p(Ii) is Hausdorff), so p(Ii) is homeomorphic
to [0, 1]. In the second case, it follows from Remark 2 that p(Ii) is homeomorphic
to S1. Hence, p(Ii) is either an arc or a topological circle.

The function f is continuous since ∂I0t. . .t∂In is a discrete space and this space
is also closed in I0 t . . . t In. So, as noted earlier, A and p(A) are homeomorphic.
Furthermore, p(A) and S are homeomorphic (the homeomorphism is a restriction of
g) and it follows that A and S are homeomorphic. This, together with the fact that
A has a computable type, implies that S is computable in (X, T , (Ii)).

We have that A ∪f (I0 t . . . t In) is the union of the sets p(A), p(I0), . . . , p(In).
For each i ∈ {0, . . . , n} there exist xi, yi ∈ p(A) such that p(Ii) ∩ p(A) = {xi, yi}
and p(Ii) is either an arc with endpoints xi and yi, xi 6= yi, or p(Ii) is a topological
circle and xi = yi. Furthermore, if i, j ∈ {0, . . . , n} are such that i 6= j, then
p(Ii) ∩ p(Ij) ⊆ p(A).

From this and the fact that g : A∪f (I0 t . . .t In)→ T is a homeomorphism, we
conclude that for the finite sequence (Ki, {ai, bi})0≤i≤n defined by Ki = g(p(Ii)),
ai = g(xi), bi = g(yi) we have T = S∪K0∪· · ·∪Kn and the assumptions of Theorem
2 hold. Thus, by Theorem 2, T is computable.
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[8] M. Čelar, Z. Iljazović, Computability of products of chainable continua, Theory
Comput. Syst. 65(2021), 410–427.
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[13] Z. Iljazović, Co-c.e. spheres and cells in computable metric spaces, Log. Methods
Comput. Sci. 7(2011), 1–21.
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