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Abstract. Salkuyeh et al. (D.K. Salkuyeh, H. Aslani, Z.Z. Liang, An alternating positive
semi-definite splitting preconditioner for the three-by-three block saddle point problems,
Math. Commun. 26 (2021) 177-195) has recently established an alternating positive semi-
definite splitting (APSS) method for nonsymmetric block three-by-three nonsingular saddle
point problems arising from the Picard iteration method for a class of mixed finite element
scheme. In this work, we analyse the semi-convergence of the APSS method for solving a
class of nonsymmetric block three-by-three singular saddle point problems. The APSS in-
duced preconditioner is applied to improve the semi-convergence rate of the flexible GMRES
(FGMRES) method. Numerical results are designated to support the theoretical results.
These results show that the served preconditioner is efficient compared with FGMRES
without a preconditioner.
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1. Introduction

We are interested in solving the following large and sparse block three-by-three
saddle point system by iteration methods:A BT 0

B 0 CT

0 C 0

x
y
z

 =

 f
g
h

 , (1)

where A ∈ Rn×n, B ∈ Rm×n and C ∈ Rl×m. Here f ∈ Rn, g ∈ Rm and h ∈ Rl
are known and x = (x; y; z) is an unknown vector that has to be determined. The
coefficient matrix of system (1) is of order n = m + n + l. Many practical ap-
plications produce linear systems of the form (1); for example, the application of
the Picard iteration method for a class of mixed finite element scheme for station-
ary magnetohydrodynamic models [17] and the finite element method to solve the
time-dependent Maxwell equations having discontinuous coefficients in polyhedral
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domains with a Lipschitz boundary. References [26, 14] provide additional instances
and references therein.

The aim of the paper is to solve the following system:

Ax ≡

 A BT 0
−B 0 −CT
0 C 0

x
y
z

 =

 f
−g
h

 ≡ b, (2)

which is an equivalent form of (1). Note that the coefficient matrix in (1) is sym-
metric, however, A is nonsymmetric. Nevertheless, A has some good properties. For
instance, A is positive semi-definite. It means that A + AT is Symmetric Positive
Semi-Definite (SPSD). This property can greatly improve the performance of the
GMRES method for solving the system. Some other features are available in [20].

Consider the two-by-two block saddle point problem:

Ãx̃ ≡
(

Ã B̃T

−B̃ 0

)(
x̃
ỹ

)
=

(
f̃
g̃

)
≡ b̃. (3)

The matrix Ã ∈ Rp×p is assumed to be a Symmetric Positive Definite (SPD),
B̃ ∈ Rp×q with p > q is a matrix that rank(B) = r < q (i.e., B̃ is a rank-deficient
matrix), f̃ ∈ Rp and g̃ ∈ Rq. Thereby, linear system (3) leads to a two-by-two
singular saddle point problem. In the context of the two-by-two singular saddle
point problem, Bai [4] established the HSS method for a singular saddle point prob-
lem and also derived some conditions for guaranteeing the semi-convergence of the
HSS method. Li et al. [22] generalized the HSS method for solving non-Hermitian,
positive semi-definite and singular linear systems. They studied semi-convergence
analysis of the Generalized HSS (GHSS) method. In addition, an upper bound
for the semi-convergence factor was derived. In [12], a Generalized Preconditioned
Hermitian and skew-Hermitian splitting method (GPHSS) was considered to solve
singular saddle point problems. The semi-convergence of the GPHSS scheme was
proved under some conditions. In addition, the authors obtained the induced precon-
ditioner and discussed the eigenvalues of the preconditioned matrix. Then, the Local
Hermitian and skew-Hermitian (LHSS) method and the Modified LHSS (MLHSS)
method were established in [20]. They also gave the semi-convergence conditions.
Motivated by the Uzawa method, Chao et al. [11] designed the Uzawa-SOR method
for singular saddle point problems. Generalization of the Uzawa-SOR method was
investigated in [31]. The authors established the Uzawa-AOR scheme to solve (3).
The distribution of the eigenvalues of the iteration matrix and the semi-convergence
properties were given. Numerical results indicate that the Uzawa-AOR method out-
performs the Uzawa method [2], the parameterized Uzawa method [35], and the
Uzawa-SOR method [11]. Some other efficient methods for the singular saddle point
problem of the form (3) were studied in [24, 34, 33].

Note that some partitioning techniques can be employed to represent the three-
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by-three coefficient matrix in (2) as:


A BT

... 0

B 0
... CT

· · · · · ·
... · · ·

0 C
... 0

 or


A

... BT 0

· · ·
... · · · · · ·

B
... 0 CT

0
... C 0

 ,

which are the standard two-by-two saddle point problem.

Many available preconditioning schemes for (3) can not be implemented for solv-
ing (1). This is because of different properties in two problems. Note that the matrix
A described in (2) is nonsingular if A is SPD and the matrices B and C are of full
row rank (see [18, 19, 28]). In recent years, many researchers have considered the
three-by-three saddle point problem. Huang et al. [20] arranged a block diagonal
preconditioner for solving the nonsingular system of the form (2). The exact and
inexact versions of the preconditioner were also studied. Then, in [10], the shift
splitting (SS) and the relaxed shift splitting (RSS) method were designed. Xie et
al. [30] considered three efficient preconditioners. The authors analyzed the eigen-
values of the corresponding preconditioned matrices. Aslani et al. [3] presented a
new method for solving (2) when A is SPD and B,C are full row rank matrices.
Convergence properties of the method were derived. Moreover, the spectral proper-
ties of the preconditioned matrix were discussed. Abdolmaleki et al. [1] proposed a
block three-by-three diagonal preconditioner from another way for (2). A suitable
estimation strategy for lower and upper bounds of eigenvalues of the preconditioned
matrix was considered. In [29], the authors proposed an exact parameterized block
SPD preconditioner and its inexact version for a class of block three-by-three saddle
point problems. They also estimated the eigenvalue bounds for the preconditioned
matrix.

In [21], Liang and Zhang proposed the Alternating Positive Semi-definite Split-
ting (APSS) iteration method for double saddle point problems. Using the idea of
[21], Salkuyeh et al. applied in [27] the APSS method for solving problem (2) and
proved its convergence. In the case of C being rank-deficient, the coefficient matrix
(2) is singular. Accordingly, linear system (2) is labeled as a singular three-by-three
saddle point problem. In this work, the three-by-three large, sparse, and singular
saddle point problem is considered and the semi-convergence analysis of the APSS
method is discussed.

The structure of this paper is as follows. The paper starts with a review of the
APSS method and its corresponding induced preconditioner. In Section 2, we focus
on the semi-convergence properties of the APSS method for solving (2). Uncon-
ditional semi-convergence for the APSS iteration method are derived in Section 3.
A strategy is given to estimate the parameter of the adopted method in Section 4.
Section 5 is devoted to giving some numerical tests to support the theoretical results.
Some succinct conclusions will be included at the end of the work.
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2. Review of the APSS method

Let us first give a brief overview of the APSS method. Consider the following
decomposition for the coefficient matrix A in (2):

A = A1 +A2, (4)

where

A1 =

 A BT 0
−B 0 0
0 0 0

 , A2 =

 0 0 0
0 0 −CT
0 C 0

 . (5)

Let α > 0 be a given parameter. Based on the decomposition (4), the following
splittings for the matrix A can be stated:

A = (αI +A1)− (αI − A2) = (αI +A2)− (αI − A1),

where I is the identity matrix of order n. Now, by using these splittings, the APSS
method can be written as{

(αI +A1)x(k+ 1
2 ) = (αI − A2)x(k) + b,

(αI +A2)x(k+1) = (αI − A1)x(k+ 1
2 ) + b,

where x(0) ∈ Rn is an initial guess. By eliminating x(k+
1
2 ), the iteration scheme can

be rewritten as the stationary form

xk+1 = Tαxk + f, (6)

with
Tα = (αI +A2)−1(αI − A1)(αI +A1)−1(αI − A2), (7)

and
f = 2α(αI +A2)−1(αI +A1)−1b.

Similarly to the Hermitian and Skew-Hermitian splitting (HSS) iteration method
[5], if we set

M̃α =
1

2α
(αI +A1)(αI +A2), Ñα =

1

2α
(αI − A1)(αI − A2),

then A = M̃α − Ñα and

Tα = M̃α
−1Ñα = I − M̃α

−1A.

From now on, we use Mα = (αI +A1)(αI +A2) as the APSS preconditioner since
the pe-factor 1

2α has no effect on the preconditioned matrix. So, the saddle point

system (2) can be preconditioned from the left asMα
−1Ax =Mα

−1b. In this case,
we have

Mα
−1Ax = (I −Mα

−1Nα)x =Mα
−1b, (8)

where
Nα = (αI − A1)(αI − A2) = αI.αI − α(A1 +A2) +A1A2. (9)
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3. The semi-convergence of the APSS iteration method

In this section, we will analyze the semi-convergence properties of the APSS iteration
method for solving the double saddle point problem (2). First, let us give some
related definitions, lemmas and theorems.

Definition 1. The iteration method (6) is said to be semi-convergent if for any ini-
tial guess x(0), the iteration sequence {x(k)} produced by (6) converges to a solution
x(∗) of (2). Moreover,

x(∗) = (I − Tα)Df + [I − (I − Tα)D(I − Tα)]x(0),

where (I − Tα)D denotes the Drazin inverse of (I − Tα) [8].

Definition 2. The index of A is the smallest nonnegative integer i such that

rank(Ai) = rank(Ai+1),

and it is expressed by the expression i = index(D).

Theorem 1 ([7]). The iteration method (6) is semi-convergent if and only if

index(I − Tα) = 1 and ϑ(Tα) < 1,

where
ϑ(Tα) ≡ max{|λ| : λ ∈ σ(Tα), λ 6= 1} < 1,

in which ϑ(Tα) is called the pseudo-spectral radius of Tα.

Lemma 1 (Kellogg’s lemma, [25]). If A ∈ Cn×n is positive semi-definite, then∥∥(αI +A)−1(αI −A)
∥∥
2
≤ 1,

for all α > 0. Moreover, if A ∈ Cn×n is positive definite, then∥∥(αI +A)−1(αI −A)
∥∥
2
< 1,

for all α > 0.

Remark 1. For the saddle point matrix of the form

A =

 A BT 0
−B 0 −CT
0 C 0

 ,

if A is singular, we can easily see that at least one of the sets null(BT ) ∩ null(C)
and null(CT ) is nontrivial, i.e., the dimension of one of the two sets is at least one.

Noticing that

(αI − A1)(αI +A1)−1 = (αI +A1)−1(αI − A1), (10)

(αI − A2)(αI +A2)−1 = (αI +A2)−1(αI − A2), (11)
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it is easy to see that the matrix Tα is similar to

Lα = (αI +A1)−1(αI − A1)(αI +A2)−1(αI − A2). (12)

Now, since the matrices A1 and A2 are both positive semi-definite, then using Kel-
logg’s lemma we have

‖Lα‖2 ≤ ‖(αI +A1)−1(αI − A1)‖2‖(αI +A2)−1(αI − A2)‖2 ≤ 1.

Thus, it holds that Lαx = x if and only if L∗
αx = x, for any x ∈ Cn×n [4]. As a

result, the index of (I − Lα) is equal to 1. Eventually, since two similar matrices
have the same index, we see that

index(I − Tα) = 1. (13)

Next, we give the conditions for ϑ(Tα) < 1.

Theorem 2. Suppose that A ∈ Rn×n is symmetric positive definite, B ∈ Rm×n is
full row rank, and C ∈ Rl×m is rank-deficient. Then, for decomposition (4) of the
matrix A, the pseudo-spectral radius of Tα is less than one, i.e., ϑ(Tα) < 1,∀α > 0.

Proof. First of all, note that the matrix αI − A2 is non-singular, and equalities
(10) and (11) hold. Hence, the matrix Tα is similar to

Pα = (αI +A2)−1(αI − A2)(αI +A1)−1(αI − A1),

So, ϑ(Tα) = ϑ(Pα). Let x ∈ Cn be any eigenvector of the matrix Pα and λ the
eigenvalue of matrix Pα corresponding to eigenvector x, i.e., Pαx = λx. Without
loss of generality, we assume that ‖x‖2 = 1. Now, we prove the theorem according
to the following four cases:

Case 1. x ∈ null(A1) ∩ null(A2). So, we have A1x = A2x = 0 and it follows that

(αI +A1)x = (αI − A1)x =⇒ x = (αI +A1)−1(αI − A1)x, (14)

and
(αI +A2)x = (αI − A2)x =⇒ x = (αI +A2)−1(αI − A2)x. (15)

By combining (14) and (15), we have Pαx = x. Thus, λ = 1.

Case 2. x ∈ null(A2), but x /∈ null(A1). It means that A1x 6= 0 and A2x = 0.
From Pαx = λx, by easy computations we can obtain

λx = (αI +A1)−1(αI − A1)x. (16)

Since A1 is positive semi-definite, it follows from Kellogg’s lemma that

‖(αI +A1)−1(αI − A1)‖2 ≤ 1.

Therefore |λ| ≤ 1. In what follows, we further prove that |λ| < 1 for any α > 0. We
will argue it by contradiction. If |λ| = 1, then there exists θ ∈ (−π, π] such that

(αI − A1)(αI +A1)−1x = eıθx. (17)
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If we set Vα = (αI − A1)(αI +A1)−1, then we can rewrite (17) as follows:

Vαx = eıθx.

It then follows that

‖Vαx‖2 = ‖x‖2. (18)

Now, letting

w := (u; v; p) = (αI +A1)−1x, with u ∈ Cn, v ∈ Cm, and p ∈ Cl,

we get

‖(αI − A1)w‖2 = ‖(αI +A1)w‖2. (19)

From (19), it holds that

w∗(A1 +A∗
1)w = 0,

or equivalently, (
u∗ v∗ p∗

)A 0 0
0 0 0
0 0 0

u
v
p

 = 0,

which leads to u = 0 due to the symmetric positive definiteness of A. On the one
hand, from (17) we have

(αI − A1)w = eıθ(αI +A1)w,

which givesαI −A −BT 0
B αI 0
0 0 αI

 0
v
p

 = eıθ

αI +A BT 0
−B αI 0
0 0 αI

 0
v
p

 ,

and so −BT vαv
αp

 = eıθ

BT v
αv
αp

 .

It leads to 
BT v = −eıθBT v, (20)

αv = eıθαv, (21)

αp = eıθαp. (22)

Here, if BT v = 0, then we see that v = 0, because B is a full row rank matrix.
It can be immediately concluded that A1x = 0, which contradicts the assumption
x /∈ null(A1). Thereby, from (20) it holds eıθ = −1. Substituting the equality
eıθ = −1 into (21) and (22) results in v = 0 and p = 0, respectively. So w = 0.
Consequently, we have x = (αI +A1)w = 0, which contradicts the fact that x is an
eigenvector. Therefore, |λ| < 1.
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Case 3. x ∈ null(A1), but x /∈ null(A2). So, we have

A1x = 0 =⇒ (αI +A1)x = αx =⇒ (αI +A1)−1x =
1

α
x.

Hence, using A1x = 0 and the above equation, we get

Pαx = α(αI +A2)−1(αI − A2)(αI +A1)−1x

= (αI +A2)−1(αI − A2)x.

Therefore, using the fact that Pαx = λx, the positive semi-definiteness of A2 and
Kellogg’s lemma, gives

|λ| ≤ ‖Pαx‖ ≤ ‖(αI +A2)−1(αI − A2)‖2 ≤ 1. (23)

Moreover, we claim that |λ| = 1 never happens. By contradiction, we assume that
|λ| = 1. So, there exists θ ∈ (−π, π] so that

(αI − A2)x = eıθ(αI +A2)x,

which is equivalent to 
αx1 = eıθαx1, (24)

αx2 + CTx3 = eıθ(αx2 − CTx3), (25)

−Cx2 + αx3 = eıθ(Cx2 + αx3). (26)

From Eq. (24), either eıθ = 1 or x1 = 0. First, suppose that eıθ = 1. From A1x = 0,
we have {

Ax1 +BTx2 = 0, (27)

Bx1 = 0. (28)

Substituting x1 = −A−1BTx2, which is deduced from (27) into (28), givesBA−1BTx2 =
0, consequently, x2 = 0, and then by (27), x1 = 0. Now, from Eq. (25), we have
CTx3 = 0. Thus, A2x = 0, which contradicts the assumption. Therefore, eıθ = 1
never happens. Now, we discuss x1 = 0. Clearly, the assumption A1x = 0, gives A BT 0

−B 0 0
0 0 0

 0
x2
x3

 =

BTx2
0
0

 = 0.

Since B has full row rank, we deduce that x2 = 0. Substituting x2 = 0 into (26)
gives x3 = 0. So, x = (x1;x2;x3) = 0, which is impossible. Thereupon, |λ| = 1 is
unacceptable.

Case 4. x /∈ null(A1), x /∈ null(A2). For this case, we have A1x 6= 0 and A2x 6= 0.
If we define Qα = (αI +A2)−1(αI −A2) and Vα = (αI +A1)−1(αI −A1), we can
see that Pα = QαVα. Since Qα is a unitary matrix, we see that ‖Qα‖2 = 1. On
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the other hand, since A1 is a positive semi-definite matrix from Kellogg’s lemma,
we have ‖Vα‖2 ≤ 1 for any α > 0. It leads to

‖Pα‖2 ≤ ‖Qα‖2‖Vα‖2 = ‖Vα‖2 ≤ 1, ∀α > 0.

Thus, |λ| ≤ 1. In what follows, we further prove that |λ| < 1, for any α > 0. We will
argue it by contradiction. If |λ| = 1, then there exists θ ∈ (−π, π] such that

Pαx = eıθx,

which is equivalent to
Vαx = eıθQ∗

αx. (29)

Consequently,
‖Vαx‖2 = ‖x‖2. (30)

Substituting Vα into (30) and using the change of variable

w := (u; v; p) = (αI +A1)−1x, with u ∈ Cn , v ∈ Cm and p ∈ Cl,

gives
‖(αI − A1)w‖2 = ‖(αI +A1)w‖2. (31)

From (31), it holds
w∗(A1 +A∗

1)w = 0,

or equivalently, (
u∗ v∗ p∗

)A 0 0
0 0 0
0 0 0

u
v
p

 = 0,

which leads to u = 0 due to the symmetric positive definiteness of A. On the one
hand, from (29) we have

(αI − A1)w = eıθQ∗
α(αI +A1)w,

which results inαI −A −BT 0
B αI 0
0 0 αI

 0
v
p

 = eıθQ∗
α

αI +A BT 0
−B αI 0
0 0 αI

 0
v
p

 .

So −BT vαv
αp

 = eıθQ∗
α

BT v
αv
αp

 .

The above equality can be rewritten as

(αI − A2)

−BT vαv
αp

 = eıθ(αI +A2)

BT v
αv
αp

 .
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It leads to αI 0 0
0 αI CT

0 −C αI

−BT vαv
αp

 = eıθ

αI 0 0
0 αI −CT
0 C αI

BT v
αv
αp

 ,

which implies that 
BT v = −eıθBT v, (32)

αv + CT p = eıθ(αv − CT p), (33)

−Cv + αp = eıθ(Cv + p). (34)

If BT v = 0, then we can easily see that v = 0. IIt can be immediately concluded that
A1x = 0, which contradicts the consideration x /∈ null(A1). Thereby, from (32) it
holds eıθ = −1. Substituting the identity eıθ = −1 into (33) and (34), derives v = 0
and p = 0, respectively. So w = 0. Consequently, we have x = (αI + A1)w = 0,
which contradicts the fact that x is a non-zero vector. Therefore, |λ| < 1.

In summary, from cases 1-4, we see that ϑ(Tα) < 1.

Theorem 3. Suppose that the assumptions of Theorem 2 hold. Then, the APSS
iteration method (6) is semi-convergent for any α > 0.

Proof. The proof immediately follows from Eq. (13) and Theorem 2.

4. Estimation strategy for the parameter α

Finding the optimal parameter α of the APSS method is generally difficult. In this
section, we adopt an appropriate strategy for estimating α in the APSS method,
which has been studied by Cao [9].

Notably, from (8) it is anticipated that Mα is as close as possible to A when
Nα ≈ 0. In this way, having Eq. (9) in mind, the function

Ψ(α) = α‖I‖F · α‖I‖F − α (‖A1‖F + ‖A2‖F ) + ‖A1‖F ‖A2‖F
= (n+m+ l)α2 − α (‖A1‖F + ‖A2‖F ) + ‖A1‖F ‖A2‖F
= nα2 − α (‖A1‖F + ‖A2‖F ) + ‖A1‖F ‖A2‖F

can be characterized. Minimizing Ψ(α) with respect to α leads to the estimation
parameter αest set to

αest =
‖A1‖F + ‖A2‖F

2n
.

Since the matrix A is SPD (in this case, A1 6= 0), one can conclude that αest > 0.
In the following section, the efficiency of this choice will be verified.
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5. Numerical experiments

To test the efficiency of the APSS preconditioner, we conduct some numerical tests.
We provide two examples, and in each example, symmetric diagonal scaling for the
matrix A is used initially. In order to do this, the coefficient matrix A is replaced
by the matrix D− 1

2AD− 1
2 , in which D = diag(‖A1‖2, . . . , ‖An‖2). In addition, the

jth column of the matrix A is represented by Aj .
For all examples, a zero vector was used as the initial guess, and the iteration

was terminated once

Res =

∥∥b−Ax(k)
∥∥
2

‖b‖2
≤ 10−7,

or the specified number of iteration steps, maxit = 2000, was exceeded. Note that
x(k) stands for the computed solution at the kth iteration. The right-hand side
vector b was chosen such that the exact solution of (2) was a vector of all ones.

In what follows, we apply complete version of the FGMRES method with the
right preconditioning technique in conjunction with the APSS preconditioner Mα.
For the APSS preconditioner, we need to solve two SPD linear systems including
αI+A+ 1

αB
TB and α2I+CCT as subtasks. To solve these linear systems, we employ

the Conjugate Gradient (CG) method without preconditioning and the iteration is
stopped when the residual 2-norm is reduced by a factor of 103 or the maximum
number of inner iiterations reaches 200.

In the tables below, we use “CPU”, “IT” and “RES” to represent the elapsed
CPU time to converge in second, iteration counts and relative residual, respectively.
In addition, degree of freedom (DOF) is defined as DOF = n+m+ l = n. Finally,
a dagger (†), means that more than the maximum number of iterations is needed to
converge. All examples are performed in Matlab-R2019a. All numerical results
are obtained by means of a laptop with the following features:

intel (R), Core(TM) i5-8265U, CPU @ 1.60 GHz, 8 GB.

Example 1. Consider the two-dimensional leaky lid-driven cavity problem:{
−∆u +∇p = 0, in Ω,

∇ · u = 0, in Ω,
(35)

in which suitable boundary conditions are applied on the side and bottom points. u
and p symbolize the velocity vector field and the pressure scalar field, respectively. In
addition, ∆ and ∇ refer to the vector Laplacian in R2 and the gradient, respectively.
This problem is called the Stokes problem. For the saddle point problem (2), the
matrices A and B come from the Stokes problem. To obtain these matrices, we use
the IFISS package by Elman et al. [15]. The stablized Q1 − P0 and Q2 − P1 finite
element method (FEM) is employed to discretize the Stokes equation (35). The grid
parameters are chosen as h = 1

8 ,
1
16 , . . . ,

1
256 , for all uniform or stretched grid points.

Now, the matrix C is taken to be of the form:

C =

(
C1

C2

)
=

C1

c1
c2

 ∈ R(l+2)×m,
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where C1 =
(

diag{1, 3, 5, . . . , 2l − 1} randn(l,m− l)
)
∈ Rl×m, and c1 =

(
eT , 0T

)
C1,

c2 =
(

0T , eT
)
C1, e

T =
(

1, 1, 1, . . . , 1
)
∈ R l

2 . Note that l = m − 2. Here,
randn(l,m− l) is a normally distributed random matrix of order l ×m− l.

This example is a technical variant of Example 1 in [29].
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Figure 1: Eigenvalue distributions of A and M−1
α A (from the left to the right) for h = 1

16
for

Example 1.
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The results are given in tables 1-4. From these tables, we can observe that the
FGMRES method in conjunction with the APSS preconditioner Mα is strongly
more efficient than the FGMRES without a preconditioner. As we can see from
Figure 1, the preconditionerMα is efficient to cluster the eigenvalues of the original
coefficient matrix. Another observation which can be posed here is that the number
of iterations of the FGMRES method in conjuction with the APSS preconditioner
remains almost constant as the problem size increases, whereas this is not the case
for FGMRES without preconditioning.

Prec. h(DOF ) 1
8

(286) 1
16

(1086) 1
32

(4222) 1
64

(16638) 1
128

(66046) 1
256

(263166)

I

IT 49 103 552 188 474 1492
CPU 0.0416 0.0600 0.4866 0.5810 4.1456 135.3632
RES 2.2e-08 9.9e-08 1.0e-07 9.3e-08 9.8e-08 1.1e-07

Mα

αest 0.0396 0.0201 0.0101 0.0051 0.0025 0.0013
IT 11 13 11 9 10 11

CPU 0.0795 0.1009 0.0915 0.1807 0.6871 6.6438
RES 9.9e-08 4.6e-08 8.9e-08 3.1e-08 2.3e-08 6.6e-08

Table 1: Numerical results for FGMRES to solve Example 1 with Q1−P0 FEM on uniform
grids.

Prec. h(DOF ) 1
8

(286) 1
16

(1086) 1
32

(4222) 1
64

(16638) 1
128

(66046) 1
256

(263166)

I

IT 48 133 93 187 406 974
CPU 0.0391 0.0625 0.1089 0.5716 3.5570 118.1586
RES 3.2e-08 7.5e-08 9.9e-08 9.9e-08 9.9e-08 1.0e-07

Mα

αest 0.3962 0.2001 0.1011 0.0051 0.0025 0.0013
IT 11 13 7 7 7 9

CPU 0.0739 0.0846 0.0807 0.1851 0.5726 8.6066
RES 6.4e-08 3.5e-08 3.1e-08 6.5e-08 9.0e-08 3.1e-08

Table 2: Numerical results for FGMRES to solve Example 1 with Q1−P0 FEM on stretched
grids.

Prec. h(DOF ) 1
8
(254) 1

16
(958) 1

32
(3710) 1

64
(14590) 1

128
(57854) 1

256
(230398)

I

IT 51 130 186 253 947 †

CPU 0.0391 0.0653 0.1494 0.6904 7.8228
RES 8.8e-08 9.0e-08 9.8e-08 9.9e-08 1.0e-07

Mα

αest 0.0419 0.0214 0.0108 0.0054 0.0027 0.0013
IT 11 14 13 10 12 12

CPU 0.0737 0.0771 0.0978 0.2462 1.0375 9.0643
RES 3.5e-08 2.6e-08 7.7e-08 7.3e-08 5.8e-08 9.0e-08

Table 3: Numerical results for FGMRES to solve Example 1 with Q2−P1 FEM on uniform
grids.
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Prec. h(DOF ) 1
8
(254) 1

16
(958) 1

32
(3710) 1

64
(14590) 1

128
(57854) 1

256
(230398)

I

IT 55 131 121 198 512 1137
CPU 0.0380 0.0782 0.1123 0.5466 4.1606 129.2754
RES 6.5-08 1.0e-07 1.0e-07 9.5e-08 9.9e-08 1.0e-07

Mα

αest 0.4195 0.0214 0.0108 0.0054 0.027 0.014
IT 11 13 8 9 9 10

CPU 0.0732 0.0722 0.0833 0.2363 0.9544 10.7704
RES 9.6e-08 9.5e-08 9.8e-08 2.1e-08 4.2e-08 8.0e-08

Table 4: Numerical results for FGMRES to solve Example 1 with Q2 − P1 FEM on
stretched grids.

Example 2. Consider a technical modification of Example 1 in [20, 30] as follows:

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2p2×2p2 ,

B = (I ⊗ F F ⊗ I) ∈ Rp
2×2p2 ,

and

C =

(
C1

C2

)
=

C1

c1
c2

 ∈ R(p2+2)×p2 ,

where

C1 = E ⊗ F ∈ Rp
2×p2 ,

and

c1 =
(
eT , 0T

)
C1, c2 =

(
0T , eT

)
C1, eT =

(
1, 1, 1, . . . , 1

)
∈ R

p2

2 ,

where

T =
1

h2
· tridiag(−1, 2,−1) ∈ Rp×p, F =

1

h
· tridiag(0, 1,−1) ∈ Rp×p,

and E = diag
(
1, p+ 1, 2p+ 1, . . . , p2 − p+ 1

)
in which the Kronecker product is

denoted by ⊗, while the discretization mesh size is represented by h = 1/(p+ 1).

Table 5 reports the result of FGMRES method and the FGMRES in conjunction
with the proposed preconditioner Mα with respect to IT, CPU and RES. As seen,
the suggested preconditioner requires significantly less iteration numbers and CPU
time than FGMRES without a preconditioner. We also see that the number of
iterations of FGMRES without preconditioning increases drastically by increasing
the size of the problem, whereas for FGMRES with the preconditionerMα increases
moderately. Figure 2 displays the eigenvalues of the original cofficient matrix and
the preconditioned matrix. It can be seen that the proposed preconditioner works
well in eigenvalue clustering.
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Figure 2: Eigenvalue distributions of A and M−1
α A (from the left to the right) for h = 1

16
for

Example 2.

Prec. p(DOF ) 8 (258) 16 (1026) 32 (4098) 64 (16386) 128 (65538)

I

IT 659 1999 † † †
CPU 0.1371 0.5270
RES 9.9e-08 1.0e-07

Mα

αest 0.0434 0.0219 0.0110 0.0055 0.0027
IT 13 14 15 17 27

CPU 0.0700 0.0857 0.1448 0.5156 2.5788
RES 2.4e-08 3.6e-08 4.5e-08 8.3e-08 7.3e-08

Table 5: Numerical results for FGMRES to solve Example 2.

6. Conclusion

In this paper, the APSS method was employed to solve a class of nonsymmetric
three-by-three singular saddle point problems. We have applied the induced pre-
conditioner, Mα, to improve the semi-convergence rate, when it is conjugated with
FGMRES. We have proved that if C is rank-deficient, the APSS method is uncon-
ditionally semi-convergent. Numerical tests prove our theoretical claims.
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