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Abstract. In this paper, we provide some results pertaining to asymptotic behaviour as
ε −→ 0 of the finite-energy sequences of the one-dimensional Cahn-Hilliard functional

Iε0(u) =

∫ 1

0

(
ε2u′2(s) +W (u(s))

)
ds,

where u ∈ H1(0, 1), and where W is a multi-well potential endowed with a non-standard
integrability condition. We introduce a new class of finite-energy sequences, recover its
underlying geometric properties as ε −→ 0, and obtain the related a priori estimates.
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1. Introduction

We study asymptotic behaviour of the functional Iε0 : H1(0, 1) −→ R defined by

Iε0(u) :=

∫ 1

0

(
ε2u′2(s) +W (u(s))

)
ds, (1)

as a small parameter ε tends to zero, whereW is a non-negative continuous function
with suitable behaviour at infinity, which satisfies W (ζ) = 0 if and only if ζ ∈
{α1, α2, . . . , αl}, for some αi ∈ R, i = 1, . . . , l, with l ≥ 2 and αi 6= αj for i 6= j (in
short, W is the multi-well potential). Functional (1) (cf. [1, 18, 20, 21]) is known
as the Cahn-Hilliard functional (or the Modica-Mortola functional). To simplify
the notation, we often omit to relabel subsequences, and by ”a sequence (xε)” we
mean a sequence defined only for countably many ε = εn such that εn −→ 0 as
n −→ +∞. We say that (xε) is pre-compact in a metric spaceX if every subsequence
of (xε) admits a further subsequence which converges in X. We recall that we say
that a sequence (zε) in a metric space Z is a finite-energy sequence (or an FE
sequence for short) for a sequence of functionals F ε : Z −→ [0,+∞] if it holds that
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lim supε−→0 F
ε(zε) < +∞. In Section 2 (Section 3, Section 4 and Section 5, resp.)

of this paper, by (uε) we always denote a sequence of absolutely continuous functions
uε : J −→ R, where J ⊆ R is a non-empty bounded open interval (an arbitrary FE
sequence for (ε−1Iε0) in H1(0, 1), resp.), and use abbreviations mε := min{|uε(s)| :
s ∈ J}, Mε := max{|uε(s)| : s ∈ J}. Accordingly, throughout sections 2-5, the
expression ”an FE sequence” is reserved for an FE sequence (uε) for (ε−1Iε0), the
letter R0 stands for a real number which satisfies R0 > max{|αi| : i = 1, . . . , l} > 0,
while the letter M stands for a finite upper bound for the sequence (ε−1Iε0(uε)),
where ε > 0 is sufficiently small. As a consequence of the definitions above, FE
sequences for the rescaled functional (1) do not develop internally created small scale
oscillations, which makes them easier to handle (compare [25]-[38] for the study of
similar functionals with an internally created small oscillatory scale). Such singular
perturbation problems are studied within the framework of the gradient theory of

phase transitions. In the case of functional (1), where l = 2, the term
∫ 1

0
ε2|u′|2

penalizes rapid changes of the density u in (1) and plays the role of an interfacial
energy. A small positive quantity ε is the thickness of the transition layer separating
two different phases or states of u within the domain (0, 1). Different phases develop
as the result of the minimization process subject to a given mass constraint. As
we pass to the limit as ε −→ 0, optimal configurations described by geometric
properties of the minimizing sequence (uε) of (1) resemble more and more the optimal
configuration of the system subject to classical assumptions in the theory of phase
transitions, where it is assumed that the contact area between different phases of u is
concentrated on the interfacial surface of thickness zero. Similar types of functionals
appear in studying coherent solid-solid phase transformations and can be understood
as a simplified one-dimensional model for a phase transition at a martensite-austenite
interface (cf. [2, 22] and references therein). Extensive literature is available on
a wider subject, and our list of references is by no means complete, nor does it
attempt to cite the most important contributions (a more complete list is available
in, for instance, [2, 6, 23]). Although many authors studied asymptotic behaviour
of the functionals similar to (1), the analysis is usually done under rather strong
growth conditions on W (cf. [2, 4, 8, 17, 24, 39]). In particular, the commonly used
classical Fonseca-Tartar assumption (cf. [14]) requires thatW grows at least linearly
at infinity (in such a case we say that W is coercive). For such a choice of W , we
immediately deduce equi-integrability of (uε) in L1(0, 1) of an arbitrary FE sequence
(uε), which (by the Vitali convergence theorem) gives strong pre-compactness of
(uε) in L1(0, 1) as ε −→ 0. Such compactness result is the prerequisite for the
proof of Γ-convergence of (ε−1Iε0) on L1(0, 1) as ε −→ 0. One possibility of relaxing
the assumptions on W is to consider the case of W which satisfies a suitable non-
integrability condition ∫ +∞

0

√
V (ξ)dξ = +∞, (2)

where V : [0,+∞) −→ [0,+∞) is defined by V (ξ) := min{W (ζ) : |ζ| = ξ}. In
a relatively recent paper [18], Leoni obtained, under the non-integrability assump-
tion (2), strong pre-compactness of FE sequences (uε) for (ε−1Iε0) (equipped with

the mass constraint
∫ 1

0
uε = m, or, equivalently, with the normality property intro-

duced in Definition 1, (i)) in L1(0, 1) as ε −→ 0, by showing that such FE sequences
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are bounded in L∞(0, 1) as ε −→ 0 (cf. Theorem 1.3 in [18]). As a typical ex-
ample of W which satisfies (2) (

∫
R

√
W (ζ)dζ < +∞, resp.), we consider W such

that for 0 ≤ q ≤ 2 (q > 2, resp.) and R0 > max{|αi| : i = 1, . . . , l}, it holds
that c0

|ζ|q ≤ W (ζ) ≤ C0

|ζ|q for every |ζ| ≥ R0, where 0 < c0 ≤ C0 < +∞. In this

paper, we adopt a similar strategy, with particular emphasis placed on the opti-
mality of the assumptions on W . We always assume that W satisfies W (ζ) = 0
iff ζ ∈ {α1, α2, . . . , αl}, W ≥ 0. If no additional properties of W are assumed, we
refer to such W as an arbitrary multi-well potential. Furthermore, if 0 < ρ < 1,
we introduce the non-integrability condition

∫ +∞
0

V ρ(ξ)dξ = +∞, which is essential
to our setting. In particular, our assumptions on W allow for consideration of the
case lim infξ−→+∞ V (ξ) = 0 and/or lim supξ−→+∞ V (ξ) = +∞. These assumptions
constitute a non-standard behaviour of W as infinity, and are not covered well in
the literature. We refer to the case of 0 < ρ < 1

2 (ρ > 1
2 , resp.) as the subcritical

case (the supercritical case, resp.). Since the critical case ρ = 1
2 is already covered

in [18], our results should be primarily viewed as an expansion of the considerations
in [18] (cf. Remark 3). While the author of [18] is focussed on compactness results,
in this paper we mostly confine ourselves to proving some a priori estimates for a
class of FE sequences as ε −→ 0. In doing so, we follow, as far as possible, the
line of reasoning in Theorem 1.3 in [18]. However, we have not been able to use
the aforementioned a priori estimates to recover compactness results for general FE
sequences (compare Theorem 4). Instead, we offer a weaker conclusion, expressed in
terms of control of oscillations of FE sequences at infinity as ε −→ 0. The relevance
of such a conclusion can be inferred by comparison with the classical analysis of
weakly (but not strongly) convergent sequences in Lp spaces. Indeed, by the Kaku-
tani theorem (the Banach-Alaoglu theorem, resp.), sequences bounded in Lp, where
1 < p < +∞ (L∞, resp.), are weakly (weakly*, resp.) sequentially pre-compact
(cf. [7]). Generally speaking, there are two effects which prevent weakly convergent
sequences to be strongly convergent: oscillation and concentration. Young measures
and their variants provide the apparatus for studying oscillations in a weakly conver-
gent sequence (cf. [5] or [23]), while H-measures and their variants are a tool which
can capture concentrations in such a sequence (cf. [3, 40, 41]). The fundamental the-
orem of Young measures and the fundamental theorem of H-measures both require
boundedness of the sequence in Lp norm (or in some similar, suitably chosen norm).
In the case when a priori bounds in some norm are not available, it is necessary to
look for a new approach to describe asymptotic behaviour of sequences as ε −→ 0
(cf. Remark 1). In this paper, we propose such an approach, and show how it can be
applied to analyse certain underlying asymptotic properties of FE sequences of the
one-dimensional Cahn-Hilliard functional ε−1Iε0 , where W is a multi-well potential
endowed with the aforementioned non-integrability condition. The main technical
tool in the proofs of our results is the area formula (cf. [19], Theorem 3.65, p. 100) and
the reverse Hölder inequality. In geometric terms, the easiest case for comparison
between the classical approach and our approach is the case p = +∞. Let us con-
sider a sequence (uε) in L∞(0, 1). If the sequence (uε) is bounded in L∞(0, 1), we can
apply Young measures or H-measures to study its asymptotic properties as ε −→ 0.
In the case when such a sequence is unbounded in L∞(0, 1), given sufficiently large
R > 0, we can consider lim supε−→0 ‖card{|uε|←(·)}‖L∞(R,+∞) as a quantity which
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measures oscillation and concentration of the sequence (uε) at infinity as ε −→ 0.
Such a quantity illustrates how often |uε| takes values greater than R, and therefore
provides some information about the frequency of oscillation of |uε| above the level
R. As we pass to the limit superior as R tends to +∞, we capture the behaviour
of the sequence at infinity. More precisely, in Definition 2, we extend this reasoning
from the case q = +∞ to the case of finite q, including q < 0 and 0 < q < 1.
Although some a priori estimates in this paper are obtained under the assumption
0 < ρ < 1, we deal mostly with the subcritical case. In particular, we focus on FE
sequences which are not a priori bounded in L∞(0, 1) as ε −→ 0. We mention that
in this paper, the expression ”regularity” that pertains to the behaviour of an FE
sequence (uε) is reserved for a specific boundedness property in terms of L∞-norm as
ε −→ 0 (cf. Definition 1), and not to the smoothness property of (uε), which is more
commonly the case in the literature (however, cf. Theorem 2 and Corollary 1, which
provide the connection between L∞-bounds and the smoothness property). To this
end, in Section 2, we introduce the notation and terminology, including a new con-
cept designed to capture asymptotic behaviour of a sequence of functions at infinity
(cf. Definition 2). In Section 3 (and Section 4), we present a priori estimates for
(u′ε) (and (uε), respectively), as ε −→ 0 (cf. Lemma 1, Theorem 2, Corollary 1 and
Corollary 2) (cf. Corollary 3, Theorem 3 and Theorem 4, resp.), where (uε) is a suit-
ably chosen class of FE sequences for (ε−1Iε0). Lemma 1, Theorem 2 and Theorem 3
deal with the asymptotic properties of FE sequences which satisfy the condition of
Definition 1(i), and which are not bounded in L∞(0, 1) as ε −→ 0. Theorem 4 and
Corollary 4 show that, subject to the appropriate integrability assumption on W
and the conditions of Definition 1(i), and Definition 2, FE sequences are actually
bounded in L∞(0, 1) and strongly pre-compact in L1(0, 1) as ε −→ 0. Theorem 4
is the core regularity result of the paper, and its corollaries can be viewed as an
Lq-version of Theorem 1.3 in [18] (cf. Remark 3). We were not able to find these
results in widely available sources. In the appendix, we included some technical
results used throughout the paper.

2. Notation and terminology

Following [2], we consider a compact metric space (K, d) (the space of patterns),
which is the set of all measurable mappings x : R −→ [−∞,+∞] (modulo equiv-
alence λ-almost everywhere, where λ is the one-dimensional Lebesgue measure),
endowed with the metric d defined by

d(x1, x2) :=

∞∑
k=1

1

2kαk
|
∫
R

yk

( 2

π
arctanx1 −

2

π
arctanx2

)
dλ|,

where (yk) is a sequence of bounded functions which are dense in L1(R), such that
the support of yk is a subset of (−k, k), with αk := ‖yk‖L1 + ‖yk‖L∞ . As shown
in [2], p. 806, Lp

loc(R) continuously embeds in K for every p ∈ [1,+∞]. The notation
C(K) (C0(R), resp.) stands for the space of all continuous real functions on K (the
space of all continuous real functions on R which vanish at infinity, resp.), whose
dual is identified with the space of all real Radon measures on K (all real bounded
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Radon measures on R, resp.), denoted by M(K) (Mb(R), resp.), endowed with the
corresponding weak-star topology. By P(K) (P(R), resp.) we denote the set of all
probability measures inM(K) (Mb(R), resp.). By L∞w∗(Ω;M(K)) (L∞w∗(Ω;Mb(R)),
resp.) we denote the dual of L1(Ω;C(K)) (L1(Ω;C0(R)), resp.), where Ω ⊆ R is
a measurable set such that 0 < λ(Ω) < +∞. The set of all K-valued (R-valued,
resp.) Young measures on Ω denoted by YM(Ω;K) (L∞w∗(Ω;P(R)), resp.) is the
set of all ν ∈ L∞w∗(Ω;M(K)) (ν ∈ L∞w∗(Ω;Mb(R)), resp.) such that νs ∈ P(K)
(νs ∈ P(R), resp.) for almost every s ∈ Ω, where ν(s) := νs, s ∈ Ω, and it is
always endowed with the weak-star topology of L∞w∗(Ω;M(K)) (L∞w∗(Ω;Mb(R)),
resp.). The elementary Young measure associated to a measurable map u : Ω −→ K
(u : Ω −→ R, resp.) is the mapping δu : Ω −→ M(K) (δu : Ω −→ Mb(R), resp.)
given by δu(s) := δu(s), s ∈ Ω. Besides the fundamental theorem of Young measures
which involves R-valued Young measures (cf. [5] or [16]), we use the version of the
theorem which involves K-valued Young measures (cf. [2]). The main advantage of
the introduction of the notion of K-valued Young measures comes from the fact that
compactness of YM((0, 1);K) is guaranteed by compactness ofK (such compactness
fails in the case of R-valued Young measures). By uxω we denote the restriction
of the function u : Ω −→ R on the set ω ⊂ Ω, by Imu we denote the image of
the function u, while by u←(ξ) we denote the pre-image of ξ with respect to u,
i.e., u←(ξ) := {s ∈ Ω : u(s) = ξ}. For simplicity of the notation, if q > 0 is

arbitrary, we define ‖u‖Lq(Ω) :=
( ∫

Ω
|u(s)|qds

) 1
q

, where u : Ω −→ R is a measurable

function. We recall that in the case q = +∞, the uniform norm of such a function
u is defined by ‖u‖L∞(Ω) := inf{α ≥ 0 : λ{s ∈ Ω : u(s) > α} = 0}, and that

‖ · ‖Lq(Ω) is a norm iff q ∈ [1,+∞]. By cardS we denote the cardinality of a set S.

Throughout the paper, we assume that every Sobolev function u ∈ W1,p(0, 1), where
1 ≤ p ≤ +∞, is already replaced by its absolutely continuous representative (cf. [9],
Theorem 1, p. 163). If a measurable function ψ : [0,+∞) −→ [0,+∞) belongs
to L1

loc(ρ,+∞), where ρ ≥ 0, we define lim infξ−→+∞ ψ(ξ) := lim infξ−→+∞ ψ⋆(ξ)
(lim supξ−→+∞ ψ(ξ) := lim supξ−→+∞ ψ⋆(ξ), resp.), where ψ⋆ denotes the precise
representative of ψ (cf. [9], p. 46), which is well-defined for every ξ ∈ (ρ,+∞). By
C0,θ[0, 1], where 0 < θ < 1, we denote the set of all θ-Hölder continuous functions
on [0, 1] (cf. [19], p. 335). If the number 0 < σ < 1 is given, by σ′ we denote its dual
number according to the equality 1

σ + 1
σ′ = 1, whereby −∞ < σ′ < 0. We complete

this section by introducing some definitions related to the asymptotic properties of
a sequence of functions (uε) as ε −→ 0.

Definition 1. Consider a sequence (uε) in C(J), where J ⊆ R is a non-empty
bounded open interval. We say that the sequence (uε) is:

(i) normal on J if there exists a sequence (cε) in J such that (uε(cε)) is bounded,

(ii) regular on J if it is a bounded sequence in L∞(J); otherwise, we say that (uε)
is non-regular on J , which means that there exists a subsequence of (uε) (not
relabeled) such that limε−→0Mε = +∞.

In the language of Definition 1, the regularity means that the sequence (uε) does
not exhibit any leakage to infinity as ε −→ 0. In particular, the regularity implies
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that (by continuity of uε) there exists a large enough R > 0 such that for a sufficiently
small ε0 > 0 and for every 0 < ε ≤ ε0 we get ‖card{|uε|←(·)}‖L∞(R,+∞) = 0. On the
other hand, in the following definition, we introduce a more general tail condition
in terms of the pre-images of the sequence (uε), which allows controlled oscillation
and concentration of a sequence (uε) to occur at infinity as ε −→ 0, and which is
designed to study asymptotic behaviour of FE sequences (uε) as ε −→ 0.

Definition 2. Consider q ∈ (0,+∞] (q ∈ (−∞, 0), resp.) and a sequence of ab-
solutely continuous functions uε : J −→ R, where J ⊆ R is a non-empty bounded
open interval. We define Dε(R) := (min{max{mε, R},Mε},Mε] and we set

Uq(J) := lim sup
R−→+∞

lim sup
ε−→0

‖card{|uε|←(·)}‖Lq(Dε(R)) (3)(
Uq(J) := lim sup

R−→+∞
lim sup
ε−→0

∫
Dε(R)

(card{|uε|←(ξ)})qdξ, resp.
)
. (4)

We say that the sequence (uε) is q-upper pre-oscillatory (or q-UPO) on J if it holds
that Uq(J) < +∞. In the case of J = (0, 1), we say that (uε) is a q-upper pre-
oscillatory (or q-UPO) sequence, and we write Uq instead of Uq([0, 1]).

We note that in (3) (and (4), resp.), Lq(Dε(R)) can be equivalently written as
Lq(R,+∞) (Uq(J) is well-defined since we have Dε(R) ⊆ [mε,Mε], resp.). If (uε)
is not a normal sequence, then Dε(R) can be replaced by (mε,Mε] in (3) (and (4),
resp.) without changing the value Uq(J). Furthermore, if q1 6= 0, q2 6= 0 and
−∞ < q2 < q1 < +∞, then every q1-UPO sequence on J is also a q2-UPO sequence
on J . In particular, if −∞ < q2 < q1 < 0, then it follows that Uq2(J) ≤ Uq1(J).
By (3) (and (4), resp.) it follows that every subsequence of a q-UPO sequence on J is
itself a q-UPO sequence on J . It is possible to avoid the introduction of the domain
Dε(R) in (4). If, for −∞ < q < 0, we define ψq : [0,+∞) −→ [0,+∞) by ψq(t) := tq,
if t > 0, and ψq(0) := 0, then Uq(J) in (4) can be equivalently written as Uq(J) =

lim supR−→+∞ lim supε−→0

∫ +∞
R

ψq(card{|uε|←(ξ)})dξ. We purposely chose to state
Definition 2 only for absolutely continuous functions uε. The reasons for doing so are
as follows. For one thing, we apply the definition only to the case of FE sequences
(uε), which allow absolutely continuous representatives themselves, and for the other,
the assumption of absolute continuity ensures that, for a sufficiently small ε0 > 0,
and for every 0 < ε ≤ ε0, card{|uε|←(ξ)} is finite for all ξ, except possibly for points
ξ which belong to a set of measure zero (cf. [19], Corollary 2.51, p. 71, and Corollary
3.9, p. 76). We recall that for every absolutely continuous function u : [0, 1] −→ R
it holds that ||u|′(s)| = |u′(s)| (a.e. s ∈ (0, 1)) (cf. [42], Theorem 2.1.11, p. 48), so
that, by the Banach Indicatrix Theorem (cf. [19], Theorem 2.47, p. 68), we have∫ +∞

0

card{|u|←(ξ)}dξ =
∫ 1

0

|u′(s)|ds. (5)

In particular, it follows that the mapping ξ 7→ card{|u|←(ξ)} (known as the Banach
indicatrix of |u|) is measurable and Lebesgue integrable, provided that u is absolutely
continuous. Definition 2 can be stated in a more general setting, which is a discussion
which we do not pursue here (for instance, under more general assumptions on
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u, the measurability of the mapping ξ 7→ card{|u|←(ξ)} was established in [10],
while validity of the Banach Indicatrix Theorem was proved in [11]). In particular,
U∞ < +∞ implies that we have lim supξ−→+∞ lim supε−→0 card{|uε|←(ξ)} < +∞
(cf. Theorem 3). We also note that every sequence of constant functions satisfies
Uq = 0 for every q ∈ (−∞,+∞]\{0}. As the next observation in this section,
in the case of general sequences of absolutely continuous functions uε, we provide
a comparison between regularity in Definition 1, (ii), and some properties similar
to (3) (and (4), resp.). In the proof of the next proposition, the continuity of (uε)
on [0, 1] is used as an essential feature.

Proposition 1. Consider a sequence (uε) of absolutely continuous functions on
[0, 1]. Then we have the following conclusions:

(i) if (uε) is a normal and a non-regular sequence, then for every 0 < q < +∞ it
holds that Uq = +∞, i.e., (uε) is not a q-UPO sequence,

(ii) if (uε) is an ∞-UPO sequence which does not allow a subsequence of constant
functions, and such that U∞ = 0, then (uε) is a regular sequence,

(iii) if 1 ≤ q < +∞, if (uε) is a normal sequence, and if it holds that

lim sup
ε−→0

‖card{|uε|←(·)}‖Lq(0,+∞) < +∞, (6)

then (uε) is a regular sequence,

(iv) if 1 ≤ q ≤ +∞, if (uε) is a regular sequence which satisfies (6), then (uε) is
bounded in W1,1(0, 1),

(v) if (uε) is a regular sequence, then, for every q ∈ (−∞,+∞]\{0}, it holds that
Uq = 0.

Proof. Regarding the proof of assertion (i), we argue as follows. By the intermediate
value property of continuous function uε, we get card{|uε|←(ξ)} ≥ 1 iff ξ ∈ [mε,Mε].
We consider a subsequence (not relabeled) such that limε−→0Mε = +∞. We choose
R > 0 and ε0 > 0, which satisfy that for every 0 < ε ≤ ε0 we have Mε > R > mε.

In effect, it follows that
∫Mε

R
card{|uε|←(ξ)}qdξ ≥ Mε − R. As we pass to the limit

as ε −→ 0, we get assertion (i).
To prove assertion (ii), we assume the opposite. Then there exists a subse-

quence (not relabeled) such that limε−→0Mε = +∞. We consider an arbitrary
R > 0 and a sufficiently small ε0 > 0 such that for every 0 < ε ≤ ε0 we have
Mε > R. Since (up to a subsequence) (uε) is not a sequence of constant func-
tions, it holds that ‖card{|uε|←(·)}‖L∞(R,Mε)

≥ 1. On the other hand, the as-
sumption U∞ = 0 implies that for every 0 < δ < 1 there exists a large enough
R1 = R1(δ) > 0 such that for a sufficiently small 0 < ε1 and every 0 < ε ≤ ε1
we get Mε > R1 and ‖card{|uε|←(·)}‖L∞(R1,Mε)

< δ. Consequently, we have

‖card{|uε|←(·)}‖L∞(R1,Mε)
= 0, and we get the contradiction. Assertion (iii) fol-

lows directly from the estimate

lim sup
ε−→0

(Mε −mε) ≤ lim sup
ε−→0

∫ Mε

mε

(card{|uε|←(ξ)})qdξ < +∞.
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Next, we consider 1 ≤ q′ ≤ +∞ such that 1
q +

1
q′ = 1. From (5) and from the Hölder

inequality we deduce

Mε −mε ≤ ‖u′ε‖L1(0,1) ≤ ‖card{|uε|←(·)}‖Lq(mε,Mε)
(Mε −mε)

1
q′ ,

which gives assertion (iv). Finally, we address the proof of assertion (v). We choose
R > lim supε−→0Mε. It follows that for a sufficiently small ε0 > 0 and every
0 < ε ≤ ε0 we have Dε(R) = ∅. Hence, for every q ∈ (−∞,+∞]\{0}, we get
Uq = 0.

Remark 1. In this paper, we primarily consider the case q < 0. Note that FE
sequences for which we have Uq = 0 for every q ∈ (−∞,+∞]\{0} exist (obvious
examples are constant sequences uiε(s) := αi, s ∈ [0, 1]), but explicit construction
of normal and non-regular FE sequences is a more difficult task, and such examples
are not easily found in the literature. In particular, we mention that, while there are
examples of non-regular FE sequences which are not bounded in W1,1(0, 1) as ε −→ 0
(cf. [18], Example 1.4), normal and non-regular FE sequences can not be bounded in
W1,1(0, 1) as ε −→ 0. The latter assertion follows from the fundamental theorem of
calculus for absolutely continuous functions (cf. [15], Theorem 6.52), whereby, for

every s ∈ [0, 1], we estimate |uε(s)| ≤ |uε(cε)|+
∫ 1

0
|u′ε(σ)|dσ. Hence, if the sequence

(cε) is chosen such that the sequence (uε(cε)) is a bounded sequence as ε −→ 0, it
follows that every normal sequence, which is also bounded in W1,1(0, 1), is regular.
As a consequence, taking into account (5) and Proposition 1(iii), the range of q
relevant to the study of normal and non-regular FE sequences is q < 0 or 0 < q < 1.
Intuitively, the condition Uq < +∞, where q < 0 (0 < q < 1, resp.), shows that,
at infinity, oscillations of the sequence (uε) are fast enough (slow enough, resp.) to
ensure finiteness of the quantity Uq, but possibly not fast enough (slow enough, resp.)
to ensure finiteness of the quantity Uq̃, where q < q̃ < 0 (0 < q < q̃ < 1, resp.).

One possibility for introducing a q-UPO property is to allow the integration
in (4) over the entire domain [mε,Mε], which would restrict the class of q-UPO
sequences. In fact, for the purposes of analysis of non-regular FE sequences, it is
more natural to consider the limit as R −→ +∞ in (4). It is easy to construct an
example of sequence of absolutely continuous functions (uε) which is non-regular
and for which the limit as ε −→ 0 in (4), with integration over the domain [mε,Mε],
is strictly positive and finite for a given q < 0 (for every q < 0, resp.). Indeed,
we consider a sequence of absolutely continuous functions (vn) ((wn), resp.), such
that max[0,1] |vn| = n, min[0,1] |vn| = 1 (max[0,1] |wn| = n, min[0,1] |wn| = 1, resp.),

with the following properties: card{|vn|←(ξ)} = (2dξe − 1)θq (a.e. 1 ≤ ξ ≤ n)
(card{|wn|←(ξ)} = (2dξe − 1)2⌈ξ⌉−1 (a.e. 1 ≤ ξ ≤ n), resp.), where, for a given
q < 0, we choose θq ∈ N such that qθq < −1. Then, by applying of the integral test
for convergence of series, it holds that

lim sup
n−→+∞

∫ n

1

(card{|vn|←(ξ)})qdξ ≤
+∞∑
n=1

(2n− 1)qθq < +∞ (7)

(
lim sup
n−→+∞

∫ n

1

(card{|wn|←(ξ)})qdξ ≤
+∞∑
n=1

(2n− 1)(2n−1)q < +∞, resp.
)
. (8)
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In this example, due to the convergence of series in (7) (and (8), resp.), it follows
that the corresponding iterated limit in (4) is equal to zero. On the other hand, if,
for a given −1 ≤ q < 0, we choose θq := 1, we get −1 ≤ qθq < 0, and it follows

that the sequence (vn) is not a q-UPO sequence, since the remainder
∑+∞

n≥R n
qθq of

a divergent series equals +∞ for every R ≥ 1.

In the sequel, we provide an explicit construction of the aforementioned sequence
(vn) in the case θq = 1. The construction in the case θq ∈ N, as well as the construc-
tion of (wn), is similar and it is left to the interested reader. To this end, for n ≥ 2
and k ≥ 1, we consider a piecewise affine continuous function ωn,k : [0, 1

n−1 ] −→ [0, 1]

with slope ±(2k + 1)(n − 1), and such that ωn,k(t
2i
n,k) = 0, ωn,k(t

2i+1
n,k ) = 1, where

i = 0, . . . , k, with tjn,k := j
(2k+1)(n−1) , where j = 0, . . . , 2k + 1. We set vn(0) := 1,

vn(s) := ωn,k(s− k−1
n−1 )+ k, s ∈ Jn,k, where Jn,k := ( k−1n−1 ,

k
n−1 ] and k = 1, . . . , n− 1.

Now it is readily seen that we have card{|vn|←(ξ)} = 2k + 1 (a.e. ξ ∈ (k, k + 1]),
maxJn,k

|vn| = k + 1, minJn,k
|vn| = k, where k = 1, . . . , n− 1.

Furthermore, we provide an example of the sequence (zn) for which the iterated
limit in (3) (and (4), resp.) is strictly positive and finite, while the expression in (3)
(and (4), resp.) does not depend on R. We set zn(s) := s + n, s ∈ [0, 1], mn :=
min[0,1] |zn| and Mn := max[0,1] |zn|. Then it holds that card{|zn|←(ξ)} = 1 (a.e.
n ≤ ξ ≤ n+1), mn = n,Mn = n+1. In effect, for every q ∈ (−∞,+∞]\{0} we have
Uq = 1. In Section 4, we further investigate the connection between condition (4)
and the regularity in the case of FE sequences (uε), getting a kind of the converse of
assertion (v) (cf. Theorem 4). For convenience of the reader, we restate a corollary
of the area formula (cf. [15], Theorem 6.81, p. 385, or [9], Theorem 3.9, p. 122),
which will be used in the proofs of Lemma 1, Theorem 3 and Theorem 4.

Theorem 1. Consider a measurable set A ⊆ [0, 1], a Lipschitz-continuous function
f : [0, 1] −→ R, and a continuous and nonnegative function g : R −→ R. Then it
holds that

∫
A
g(f(s))|f ′(s)|ds =

∫
f(A)

g(ξ)card{f←(ξ)}dξ.

3. A priori estimates for (u′
ε)

For further analysis of asymptotic behaviour of FE sequences as ε −→ 0, it makes
sense to consider only non-regular FE sequences. To begin with, in this section, we
obtain some a priori estimates for the first derivative of normal and non-regular FE
sequences. In the first lemma of this section, we recover an a priori estimate, which
shows that the bending of the graph of normal and non-regular FE sequences (uε)
is conditioned by the integrability properties of W .

Lemma 1. Consider an arbitrary W , an arbitrary normal and non-regular FE
sequence (uε), 0 < ρ < 1, and θρ := ρ

1−ρ . Then we have the following conclusions:

(i) If it holds that
∫ +∞
0

V ρ(ξ)dξ = +∞, then it holds that

lim sup
ε−→0

εθρ
∫ 1

0

|u′ε(s)|1+θρds = +∞, (9)
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(ii) If it holds that
∫ +∞
0

V ρ(ξ)dξ < +∞, then for every γ ∈ (0, 1) it holds that

lim sup
ε−→0

εγθρ
∫ 1

0

|u′ε(s)|1+θρds = +∞. (10)

Proof. We note that by our assumption, (uε) can not be a sequence of constant
functions. Consider an FE sequence (uε) in C1[0, 1] such that provisions of Propo-
sition 2 hold. From the normality and the non-regularity of the sequence (uε),
we infer that (uε) itself is not a sequence of constant functions. Then the set
Gε := {s ∈ (0, 1) : u′ε(s) 6= 0} is an open set and a non-empty set, and so λ(Gε) > 0.
By the reverse Hölder inequality for a given 0 < ρ < 1 and ρ′ < 0 such that 1

ρ+
1
ρ′ = 1

it holds that

M ≥ ε−1
∫
Gε

V (|uε|) = ε−1
∫
Gε

V (|uε|)|u′ε|
1
ρ |u′ε|

− 1
ρ

≥ ε−1
(∫

Gε

V ρ(|uε|)|u′ε|
) 1

ρ
(∫

Gε

|u′ε|
− ρ′

ρ

) 1
ρ′

≥
(∫ Mε

mε

V ρ(ξ)dξ
) 1

ρ
(
ε

ρ
1−ρ

∫ 1

0

|u′ε|
1

1−ρ

) ρ−1
ρ

,

where, in the last inequality, we combined Theorem 1, the equality |u′ε(s)| = ||uε|′(s)|
(a.e. s ∈ (0, 1)) (cf. [42], Theorem 2.1.11, p. 48), and the fact that uε ∈ C1[0, 1]
implies that |uε| is a Lipschitz-continuous function. By the normality of (uε) it
follows that there exist m > 0 and ε0 > 0 such that sup0<ε≤ε0mε ≤ m < +∞. On
the other hand, by the non-regularity of (uε), as we pass to the subsequence (not
relabeled) we obtain limε−→0Mε = +∞, and, for sufficiently small ε > 0 we get

M ≥
(∫ Mε

m

V ρ(ξ)dξ
) 1

ρ
(
ε

ρ
1−ρ

∫ 1

0

|u′ε|
1

1−ρ

) ρ−1
ρ

. (11)

At this point we note that M provides a finite upper bound for the product of two
sequences in (11), and that the boundedness of the product of these sequences, with
one of the sequences divergent to +∞, implies that the other sequence converges to
zero. As we pass to the limit as ε −→ 0 in (11), it follows that

M ≥
(∫ +∞

m

V ρ(ξ)dξ
) 1

ρ

lim inf
ε−→0

(
ε

ρ
1−ρ

∫ 1

0

|u′ε|
1

1−ρ

) ρ−1
ρ

, (12)

where, since ρ satisfies 0 < ρ < 1, the integral in the second term in (12) ap-
pears under the negative exponent. Hence, by applying the observations above,∫ +∞
0

V ρ(ξ)dξ = +∞ (
∫ +∞
0

V ρ(ξ)dξ < +∞, resp.) implies (9) (and (10), resp.) with
uε replaced by uε. To complete the argument, we distinguish two cases. In the first
case, we assume that 0 < ρ ≤ 1

2 , whereby it holds that 1 < 1
1−ρ ≤ 2. Then we

have u′ε ∈ L
1

1−ρ (0, 1). In the second case, we assume that 1
2 < ρ < 1, and it results

that 2 < 1
1−ρ < +∞. Without loss of generality, we can assume that there exists a

subsequence (uε) (not relabeled) such that u′ε ∈ L
1

1−ρ (0, 1) (otherwise assertions (9)
and (10) are obvious). Finally, we apply Corollary 8, getting (9) and (10) for an
arbitrary normal and a non-regular FE sequence (uε) in H1(0, 1).
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To proceed, we consider the non-integrability condition
∫ +∞
0

V ρ(ξ)dξ = +∞,

0 < ρ < 1
2 , whereby we allow the case

∫ +∞
0

√
V (ξ)dξ < +∞.

Theorem 2 (L∞-estimates for u′ε: the subcritical case). Consider 0 < ρ < 1
2 . If

W satisfies
∫ +∞
0

V ρ(ξ)dξ = +∞, then every normal and non-regular FE sequence
(vε) satisfies the following: for every ∆ > 0 and for every sequence (ρε) of strictly
positive numbers such that lim infε−→0 ε

1+∆ρε > 1, it holds that

lim sup
ε−→0

‖ρ−1ε u′ε‖L∞(0,1) ≤ 1. (13)

In particular, for every p > 1 it holds that

lim sup
ε−→0

‖εpu′ε‖L∞(0,1) = 0, (14)

Moreover, for every normal FE sequence (uε) such that limε−→0Mε = +∞, there
exists ε0 > 0 such that for every 0 < ε ≤ ε0 we have uε ∈ W1,∞(0, 1).

Proof. We assume the opposite. Then there exists ∆0 > 0, a subsequence of strictly
decreasing positive numbers (εj) such that limj−→+∞ εj = 0 and a sequence (ρεj )
of strictly positive numbers such that limj−→+∞ ρεj = +∞ and such that

λ(Hj) > 0 for every j ∈ N, where Hj := {s ∈ (0, 1) : |u′εj (s)| > ρεj}, (15)

whereby
lim inf
j−→+∞

ε1+∆0
j ρεj > 1. (16)

By the reverse Hölder inequality for 0 < θ < 2 and every j ∈ N we get

M ≥ εj

∫
Hj

|u′εj |
2−θ|u′εj |

θ ≥ εj

(∫
Hj

|u′εj |
(2−θ)r0

) 1
r0
(∫

Hj

|u′εj |
r′0θ

) 1
r′0 , (17)

where 1
r0

+ 1
r′0

= 1, 0 < r0 < 1, r′0 < 0, using assumption (15). We choose 0 < θ < 2

and 0 < r0 < 1 such that (2 − θ)r0 = 1
1−ρ . Then we get r0θ = 2r0 − 1

1−ρ > 0,

1 > r0 >
1
2

1−ρ (note that since 0 < ρ < 1
2 , such a choice of r0 is possible) and

r′0θ =
r0θ
r0−1 = (2r0 − 1

1−ρ )
1

r0−1 . By (17) it follows that

Mr0 ≥
(
ε

ρ
1−ρ

j

∫
Hj

|u′εj |
1

1−ρ

)(
ε
(r0− ρ

1−ρ )
1

r0−1

j

∫
Hj

|u′εj |
(2r0− 1

1−ρ )
1

r0−1

)r0−1
.

From M ≥
∫
(0,1)\Hj

εj |u′εj |
2 we deduce λ((0, 1)\Hj) ≤Mε−1j ρ−2εj . Consequently, we

estimate

ε
ρ

1−ρ

j

∫ 1

0

|u′εj |
1

1−ρ ≤ ε
ρ

1−ρ

j

∫
Hj

|u′εj |
1

1−ρ + ε
ρ

1−ρ

j

∫
(0,1)\Hj

|u′εj |
1

1−ρ

≤ ε
ρ

1−ρ

j

∫
Hj

|u′εj |
1

1−ρ +M(εjρεj )
2ρ−1
1−ρ ,
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By (16) and Lemma 1, (i), we recover limj−→+∞ ε
ρ

1−ρ

j

∫
Hj

|u′εj |
1

1−ρ = +∞, getting

lim
j−→+∞

ε
(r0− ρ

1−ρ )
1

r0−1

j

∫
Hj

|u′εj |
(2r0− 1

1−ρ )
1

r0−1 = +∞,

where (2r0 − 1
1−ρ )

1
r0−1 < 0 and (r0 − ρ

1−ρ )
1

r0−1 < 0. It follows that

lim
j−→+∞

ε
(r0− ρ

1−ρ )
1

r0−1

j λ(Hj)ρ
(2r0− 1

1−ρ )
1

r0−1
εj = +∞,

and so

lim
j−→+∞

ε
(r0− ρ

1−ρ )
1

r0−1+logεj
ρεj

(2r0− 1
1−ρ )

1
r0−1

j = +∞.

Hence, there exists j0 = j0(r0) ∈ N such that for every j ≥ j0 it necessarily holds
that

(r0 −
ρ

1− ρ
)

1

r0 − 1
+ logεjρεj (2r0 −

1

1− ρ
)

1

r0 − 1
< 0, i.e. , ρεj < (ε−1j )

r0− ρ
1−ρ

2r0− 1
1−ρ ,

where
1
2

1−ρ < r0 < 1 is arbitrary. We consider

ϕρ(ξ) :=
ξ − ρ

1−ρ

2ξ − 1
1−ρ

.

Then ϕρ is strictly decreasing on (
1
2

1−ρ , 1), and ϕρ(1− δ) ↘ 1 as δ ↘ 0. For a given

∆0 > 0, we choose δ0(∆0) > 0 such that for every 0 < δ ≤ δ0(∆0) it holds that
ϕρ(1 − δ) ≤ 1 + ∆0. In effect, it follows that λ(Hj) > 0 implies ρεj ≤ ε−1−∆0

j for

every j ≥ j0(δ). We conclude that it holds that lim supj−→+∞ ε1+∆0
j ρεj ≤ 1, which

contradicts the initial assumption (16). Thus, we proved (13). To prove (14), we
choose an arbitrary 1 < p < +∞, 0 < ∆ < p − 1 and we set ρε := ε−p. Then we
have limε−→0 ε

1+∆ρε = +∞, and so lim supε−→0 ‖εpu′ε‖L∞(0,1) ≤ 1. Since p > 1 was

arbitrary, by re-writing the latter estimate as lim supε−→0 ε
−θ‖εp+θu′ε‖L∞(0,1) ≤ 1,

where θ > 0 is arbitrary, we recover (14).

By the Sobolev embedding (cf. [19], Theorem 11.34, p. 335 and exercise 11.38,
p. 339), we immediately get the following corollary:

Corollary 1. Under the assumptions of Theorem 2, it holds that uε ∈ C0,θ[0, 1],
where θ = 1 − 1

p , and p > 1 is arbitrary. Besides, by (9) (and (14), resp.), for

every 0 ≤ θ ≤ ρ
1−ρ (θ > 1, resp.) it holds that lim supε−→0 ‖εθu′ε‖L∞(0,1) = +∞

(limε−→0 ‖εθu′ε‖L∞(0,1) = 0, resp.).

If W is an arbitrary multi-well potential, we have lim supε−→0 ‖ε
1
2u′ε‖L2(0,1) <

+∞. As a consequence, by the Hölder inequality, for every 1 ≤ p ≤ 2, it follows that

lim sup
ε−→0

‖ε 1
2u′ε‖Lp(0,1) < +∞, (18)
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lim
ε−→0

‖εθu′ε‖Lp(0,1) = 0, where θ > 1
2 . (19)

As a further corollary, we deduce the estimate which is the counterpart of (19) in
the case p > 2.

Corollary 2. Under assumptions of Theorem 2, for every p > 2 and every ∆0 > 0
it holds that

lim
ε−→0

‖ε1−
1
2

1
p+∆0u′ε‖Lp(0,1) = 0. (20)

Proof. We recall that the Riesz-Thorin interpolation theorem (cf. [12], Proposition
6.10, p. 185) provides that for arbitrary 0 < p0 < p1 ≤ +∞ and 0 < θ < 1 we have

‖g‖Lpθ ≤ ‖g‖θLp0‖g‖
1−θ
Lp1 , where g ∈ Lp0 ∩ Lp1 and 1

pθ
= θ

p0
+ 1−θ

p1
. We set g := u′ε,

p0 := 1, p1 := +∞ and θ := 1
p . It follows ‖u

′
ε‖Lp(0,1) ≤ ‖u′ε‖

1
p

L1(0,1)‖u
′
ε‖

1− 1
p

L∞(0,1), i.e.,

‖ε
1
2

1
p+ρ0(1− 1

p )u′ε‖Lp(0,1) ≤ ‖ε 1
2u′ε‖

1
p

L1(0,1)‖ε
ρ0u′ε‖

1− 1
p

L∞(0,1),

where ρ0 > 1 is arbitrarily chosen. In turn, we get

lim
ε−→0

‖ε
1
2

1
p+ρ0(1− 1

p )u′ε‖Lp(0,1) = 0. (21)

Finally, as we pass to the limit as ε −→ 0 in (21), we complete the argument by
applying (18) and Theorem 2, and by choosing ρ0 = 1+∆ and ∆0 := (1− 1

p )∆.

Remark 2. The estimate (20) is true for 1 < p ≤ 2, but it is weaker than (19),
since ρ0 > 1 gives 1

2
1
p + ρ0(1− 1

p ) ≥
1
4 + 1

2ρ0 >
3
4 .

4. A priori estimates for (uε)

As a consequence of Lemma 1, we can deduce the result which was already proved
by Leoni in [18] (cf. Theorem 1.3 therein).

Corollary 3 (Basic properties of FE sequences: the critical case). If a multi-well

potential W satisfies
∫ +∞
0

√
V (ξ)dξ = +∞, then the following properties hold:

(i) (Regularity) Every normal FE sequence (uε) is regular,

(ii) (Identification of cluster points of regular FE sequences) Every subsequence of
a regular FE sequence (uε) allows a further subsequence (not relabeled) which

satisfies δuε

∗−−−⇀
∑l

i=1 θiδαi
in YM((0, 1);K) as ε −→ 0, where δuε

(s) :=
δuε(s) (a.e. s ∈ (0, 1)), and θi = θi(s), s ∈ (0, 1), i = 1, . . . , l, are measurable
functions (which depend on the chosen subsequence) such that 0 ≤ θi(s) ≤ 1

(a.e. s ∈ (0, 1)) and
∑l

i=1 θi(s) = 1 (a.e. s ∈ (0, 1)),

(iii) (Tightness of non-regular FE sequences) If there exists an FE sequence (uε)
which is non-regular, then it is not a normal FE sequence, and there exists a
subsequence of (uε) (not relabeled) and ε0 > 0 such that for every 0 < ε ≤ ε0
each uε is either strictly positive or strictly negative on (0, 1),
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(iv) (Identification of cluster points of non-regular FE sequences) Every non-regular
FE sequence (uε) allows a subsequence (not relabeled) such that (uε) charges in-
finity on (0, 1). More precisely, there exists a subsequence of (uε) (not relabeled)
such that: every subsequence of (uε) allows a further subsequence (not rela-
beled) which satisfies either δuε

∗−−−⇀δ−∞ or δuε

∗−−−⇀δ+∞ in YM((0, 1);K)
as ε −→ 0.

Proof. Claim (i) is a direct consequence of Lemma 1. It is enough to assume the
opposite to choose ρ := 1

2 in Lemma 1(i), and then to take into account that (uε)
is an FE sequence. Regarding (ii), we note that by the results of Leoni in [18],
it holds that (uε) is strongly pre-compact in L1(0, 1) and so, by the fundamental
theorem of Young measures (cf. [5] or [16]), it follows that (δuε

) is pre-compact
in L∞w∗((0, 1);P(R)) as ε −→ 0. Hence, assertion (ii) follows by the embedding
L∞w∗((0, 1);P(R)) ↪→ YM((0, 1);K). Next, to prove (iii), we observe that by (i),
every non-regular FE sequence (uε) allows a subsequence (not relabeled) which is not
a normal sequence, and therefore it follows that limε−→0mε = limε−→0Mε = +∞.
Consider L > 0 and ε0(L) > 0 such that for every 0 < ε ≤ ε0(L) it holds that
mε > L and Mε > L. We choose any such ε and note that if the opposite were

true, it would follow that there exists c
(1)
ε , c

(2)
ε ∈ (0, 1) such that uε(c

(1)
ε ) ≤ 0 and

uε(c
(2)
ε ) ≥ 0, where without loss of generality, we can assume c

(1)
ε < c

(2)
ε . By the

intermediate value property of the continuous function uε on [c
(1)
ε , c

(2)
ε ], it follows

that there exists cε ∈ [c
(1)
ε , c

(2)
ε ] such that uε(cε) = 0. It follows that mε = 0, which

is not possible. Finally, assertion (iv) follows from the existence of the subsequence
of (uε) (not relabeled) which satisfies limε−→0mε = +∞. Indeed, we recall that
by compactness of K, YM((0, 1);K) itself is a compact metric space. Then every
subsequence of (vε) allows a further subsequence (not relabeled) such that for some
θ0 ∈ L∞(0, 1), 0 ≤ θ0(s) ≤ 1 (a.e. s ∈ (0, 1)), we have δuε

∗−−−⇀θ0δ−∞+(1−θ0)δ+∞
in YM((0, 1);K) as ε −→ 0. According to (ii), without loss of generality, we can
assume that uε is strictly positive (strictly negative, resp.) on (0, 1). Then we get
limε−→0 uε(cε) = +∞ (limε−→0 uε(cε) = −∞, resp.), and therefore arctg(uε) −→ π

2
(arctg(uε) −→ −π

2 , resp.) uniformly on (0, 1) as ε −→ 0, where min[0,1]uε = uε(cε)
(max[0,1]uε = uε(cε), resp.). It follows that θ0(s) = 0 (θ0(s) = 1, resp.) (a.e.
s ∈ (0, 1)).

In the next theorem, we provide a priori estimates for asymptotic behaviour
as ξ −→ +∞ of the quantity lim infε−→0 card{|uε|←(ξ)}, subject to appropriate
integrability assumptions on W .

Theorem 3. Suppose that there exist 0 < ρ ≤ 1
4 ( 14 < ρ < 1

2 , resp.) such that∫ +∞

0

V ρ(ξ)dξ = +∞. (22)

Then every normal and non-regular FE sequence (uε) satisfies

lim inf
ξ−→+∞

lim infε−→0 card{|uε|←(ξ)}
ξ

1
2ρ

= 0 (23)
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lim inf
ξ−→+∞

lim infε−→0 card{|uε|←(ξ)}
ξ

= 0, resp.
)
. (24)

Proof. If (uε) is also a regular FE sequence, the assertion is obvious. Given a
non-regular FE sequence (uε), by passing to the subsequence (not relabeled) we get
limε−→0Mε = +∞. By the normality of (uε), there exist R ≥ R0 > 0 and ε0(R) > 0
such that for every 0 < ε ≤ ε0(R) we getmε < R < Mε. By the arithmetic-geometric

means inequality and Theorem 1 it follows that M ≥
∫ 1

0

√
V (|uε(s)|)|u′ε(s)|ds ≥∫Mε

R

√
V (ξ)card{|uε|←(ξ)}dξ. As we pass to the limit as ε −→ 0 in the last inequal-

ity, by Fatou’s Lemma, it follows that the mapping ξ 7→ lim infε−→0 card{|uε|←(ξ)}
belongs to L1((R,+∞); dµ), with dµ =

√
V dλ. Since for every R1 > R we have

min{
√
V (ξ) : ξ ∈ [R,R1]} > 0, it follows that the aforementioned mapping also

belongs to L1
loc(R,+∞), and its precise representative is well-defined on (R,+∞).

In particular, its limit inferior at +∞ is also well-defined. Furthermore, by the inter-
mediate value property for continuous functions, for every ξ ∈ [mε,Mε] it holds that
card{|uε|←(ξ)} ≥ 1, and, consequently, lim infε−→0 card{|uε|←(ξ)}) ≥ 1 for every
ξ ∈ [R,+∞). We set r := 2ρ. By the reverse Hölder inequality (with 0 < r < 1 and
r′ < 0, where 1

r + 1
r′ = 1), we deduce

M ≥
∫ +∞

R

√
V (ξ) lim inf

ε−→0
card{|uε|←(ξ)}dξ

≥
(∫ +∞

R

(√
V (ξ)

)r
dξ

) 1
r
(∫ +∞

R

(lim inf
ε−→0

card{|uε|←(ξ)})r
′
dξ

) 1
r′
.

By (22), we recover
∫ +∞
R

(lim infε−→0 card{|uε|←(ξ)})r′dξ = +∞. On the other

hand, for 0 < r ≤ 1
2 ( 12 < r < 1, resp.) it holds that

∫ +∞
R

ξr
′−1dξ < +∞

(
∫ +∞
R

ξr
′
dξ < +∞, resp.). Arguing by contradiction, it follows that we have

lim inf
ξ−→+∞

ξr
′−1

(lim infε−→0 card{|uε|←(ξ)})r′
= 0

(
lim inf
ξ−→+∞

ξr
′

(lim infε−→0 card{|uε|←(ξ)})r′
= 0, resp.

)
,

which amounts to (23) (and (24), resp.).

Theorem 4 (Regularity in the subcritical case). Consider 0 < ρ < 1
2 and an

arbitrary multi-well potential W such that
∫ +∞
0

V ρ(ξ)dξ = +∞. Then every normal
and qρ-UPO FE sequence is regular and strongly pre-compact in L1(0, 1) as ε −→ 0,
where qρ := 2ρ

2ρ−1 < 0. In particular, for every normal FE sequence and every

q ∈ [qρ,+∞]\{0} it follows that Uq < +∞ implies Uq = 0.

Proof. We choose r := 2ρ. We assume the opposite. Then there exists a subse-
quence of (uε) (not relabeled) such that limε−→0Mε = +∞. Similarly to the proof of
Theorem 3, for a sufficiently small ε0 > 0, for every 0 < ε ≤ ε0 we get mε < R < Mε
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and Dε(R) = (R,Mε], where Dε(R) is defined as in Definition 2. Furthermore, if
1
r + 1

r′ = 1 and 0 < ε ≤ ε0, it follows that

M ≥
∫ Mε

R

√
V (ξ)card{|uε|←(ξ)}dξ

≥
(∫ Mε

R

(√
V (ξ)

)r
dξ

) 1
r
(∫ Mε

R

(card{|uε|←(ξ)})r
′
dξ

) 1
r′
.

Consequently, as we pass to the limit as ε −→ 0 in the last inequality, it follows

that lim supε−→0

∫Mε

R
(card{|uε|←(ξ)})r′dξ = +∞, which gives a contradiction. By

combining the fundamental theorem of Young measures (cf. [23], Theorem 3.1) and
the Vitali convergence theorem (cf. [13], Theorem 2.24), as in the proof of Theorem
1.3 in [18], strong pre-compactness of (uε) in L1(0, 1) as ε −→ 0 can now be ob-
tained by a classical argument. The second assertion follows by the regularity and
Proposition 1(v).

Remark 3. We note that Theorem 1.3 in [18] (Theorem 4, resp.) shows that
in the critical case (in the subcritical case, resp.), every normal FE sequence is
regular (normality and a qρ-UPO property imply regularity, resp.), whereby we have
Uq = 0 for every q ∈ (−∞,+∞]\{0} (cf. Proposition 1(v)). Therefore, both theorems
provide the same type of conclusion in terms of a q-UPO property. In the case of
Theorem 1.3 in [18], regularity ultimately leads to strong pre-compactness in L1(0, 1)
of normal FE sequences as ε −→ 0. By contrast, in the case of Theorem 4, strong
pre-compactness in L1(0, 1) follows for normal and qρ-UPO FE sequences, which is
a more narrow class of FE sequences. On the other hand, in the subcritical case,
normal and non-regular FE sequences necessarily satisfy Uqρ = +∞, which means
that only sufficiently slow oscillations at infinity can occur. We do not know if the
result of Theorem 4 is sharp.

Corollary 4. Suppose that a multi-well potential W satisfies the following: there
exist q > 2 and R ≥ R0 such that it holds that

V (ξ) ≥ c0
ξq

for every ξ ≥ R, (25)

where c0 > 0. Then every normal and 2
2−q -UPO FE sequence is regular. In partic-

ular, if (25) is satisfied for some q > 2, and if
∫ +∞
0

√
V (ξ)dξ < +∞, then the same

conclusion applies.

Proof. We note thatW satisfies
∫ +∞
R

(√
V (ξ)

)r

dξ = +∞, provided that we choose

r such that 0 < r ≤ 2
q < 1, and the assumptions of Theorem 4 are fulfilled. Hence,

we have 2
2−q ≤ r′ < 0, where 1

r + 1
r′ = 1. Finally, we apply the observation that for

every −∞ < q2 < q1 < 0, we have Uq2 ≤ Uq1 .

Remark 4. Corollary 4 establishes the regularity of normal and q-UPO FE se-
quences for a given q < 0, as long as the decay of V at infinity is not too fast.
However, if the decay is fast enough, we conjecture that the regularity result is no
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longer true. The multi-well potential W chosen such that for every ξ ≥ R ≥ R0

we have V (ξ) ≤ αe−βξ, where α, β > 0, is an example of the function which sat-

isfies
∫ +∞
0

(√
V (ξ)

)r

dξ < +∞ for every 0 < r < 1. Similar observations hold

if V satisfies V (ξ) ≤ αe−βξ
1
n , ξ ≥ R ≥ R0, for some n ∈ N, since it holds that∫ +∞

0
e−ξ

1
n dξ = n!.

In the last corollary, we mention an extension of some of the previous results to
the case of a variable power ρ = ρ(ξ). Further generalizations to the variable power
setting are possible and are left to the interested reader.

Corollary 5. Consider 0 < ρ1 < ρ2 < 1
2 and a multi-well potential W which

satisfies
∫ +∞
R

V ρ(ξ)(ξ)dξ = +∞, where ρ : (R,+∞) −→ (ρ1, ρ2) is a continuous
function, where R ≥ R0. Then every normal and q0-UPO FE sequence is regular,
where q0 := max{qρ1

, qρ2
} and qρi

:= 2ρi

2ρi−1 , i = 1, 2.

Proof. By Cρ(·) we denote the set of all continuous and strictly positive functions
V : (R,+∞) −→ (0,+∞) which satisfy

∫ +∞
R

V ρ(ξ)(ξ)dξ = +∞. Then the canonical

representation V ρ(ξ)(ξ) = Z1(ξ) + Z2(ξ), Z1(ξ) := V ρ(ξ)(ξ)χ{η∈(R,+∞):V (η)<1}(ξ),

Z2(ξ) := V ρ(ξ)(ξ)χ{η∈(R,+∞):V (η)>1}(ξ), provides the estimate V ρ(ξ)(ξ) ≤ V ρ1(ξ) +

V ρ2(ξ), which, in turn, yields the inclusion Cρ(·) ⊆ Cρ1 ∪ Cρ2 . The assertion now
follows from Theorem 4.

5. Appendix

In the appendix we have gathered some technical results used in the previous sec-
tions. We begin by the following definition:

Definition 3. Given 1 ≤ p < +∞, and a sequence (uε) in Lp(0, 1), we say that (uε)
is

(i) p-equi-integrable, if there exists 0 < ε0 < 1 with the following property: for
every η > 0 there exists δ > 0 such that for every measurable set E ⊆ (0, 1) we
have that λ(E) ≤ δ implies sup0<ε≤ε0

∫
E
|uε|p ≤ η,

(ii) uniformly integrable, if there exists 0 < ε0 < 1 with the property

lim
R−→+∞

sup0<ε≤ε0

∫
{|uε|>R}

|uε| = 0.

If (uε) is 1-equi-integrable, we say that (uε) is equi-integrable.

Proposition 2. Consider an arbitrary multi-well potential W . Then for every FE
sequence (uε) in H1(0, 1) there exists an FE sequence (uε) in C1[0, 1] such that

|ε−1Iε0(uε)− ε−1Iε0(uε)| ≤ ε, ‖uε − uε‖H1(0,1) ≤ ε, ‖uε − uε‖L∞(0,1) ≤ ε,

λ{uε 6= uε} ≤ ε, λ{u′ε 6= u′ε} ≤ ε,

where ε is an arbitrary real number which satisfies 0 < ε ≤ ε0, for a sufficiently
small 0 < ε0 << 1.
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Proof. If ε > 0 is given, then by Corollary 6.6.2 in [9], p. 256, for every δ > 0 there
exists wε,δ ∈ C1[0, 1] with the properties

‖uε − wε,δ‖H1(0,1) ≤ δ, λ{uε 6= wε,δ} ≤ δ, λ{u′ε 6= w′ε,δ} ≤ δ.

By the Sobolev embedding, we have ‖uε − wε,δ‖L∞(0,1) ≤ C‖uε − wε,δ‖H1(0,1) ≤ Cδ,

for a constant C > 0 which is independent of W and δ. Hence, we can choose
0 < δ << 1

C . On the other hand, for every ζ1, ζ2 ∈ [−‖uε‖L∞(0,1)−1, ‖uε‖L∞(0,1)+1]

it holds that |W (ζ2) − W (ζ1)| ≤ ωε(|ζ2 − ζ1|), where ωε denotes the modulus of
continuity of the restriction of W on [−2‖uε‖L∞(0,1)−2, 2‖uε‖L∞(0,1)+2]. We recall

that without loss of generality, we can assume that ωε : [0, 4‖uε‖L∞(0,1) + 4) −→
[0,+∞) is a strictly increasing and invertible function. Therefore, it follows that

ε−1
∫ 1

0

|W (uε(s))−W (wε,δ(s))|ds ≤ ε−1ωε(‖uε − wε,δ‖L∞(0,1)) ≤ ε−1ωε(Cδ).

Next, we estimate

|‖u′ε‖
2
L2 − ‖w′ε,δ‖

2

L2 | = |‖u′ε‖L2(0,1) − ‖w′ε,δ‖L2 |
(
‖u′ε‖L2 + ‖w′ε,δ‖L2

)
≤ |‖u′ε‖L2 − ‖w′ε,δ‖L2 |

(
2‖u′ε‖L2 + ‖w′ε,δ − u′ε‖L2

)
≤ ‖u′ε − w′ε,δ‖L2

(
2‖u′ε‖L2 + δ

)
≤ δ

(
2‖u′ε‖L2 + δ

)
,

whereby |ε‖u′ε‖
2
L2 − ε‖w′ε,δ‖

2

L2
| ≤ δε

1
2

(
2ε

1
2 ‖u′ε‖L2 + δε

1
2

)
≤ δε

1
2

(
2(M + 1)

1
2 + δε

1
2

)
.

Thus, we have

|ε−1Iε0(uε)− ε−1Iε0(wε,δ)| ≤ δε
1
2

(
2(M + 1)

1
2 + δε

1
2

)
+ ε−1ωε(Cδ).

By the construction we can choose δ
(1)
ε > 0 (δ

(2)
ε , resp.) such that it holds that

δ
(1)
ε ≤ min{ ε

C ,
1
Cω
−1
ε ( ε

2

2 )} (δ
(2)
ε ≤ ε

1
2 2−1

(
2(M + 1)

1
2 + 1

)−1
, resp.), and the proof

is completed provided that we define uε := wε,δε , where δε := min{δ(1)ε , δ
(2)
ε , ε}.

Corollary 6. Consider sequences (uε) and (uε) as in Proposition 2. Then the
following holds:

(i) (uε) is normal iff (uε) is normal,

(ii) (uε) is regular iff (uε) is regular.

Moreover, for a given 1 ≤ p < +∞ we have the following:

(iii) (uε) is p-equi-integrable on (0, 1) iff (uε) is p-equi-integrable on (0, 1),

(iv) (uε) is bounded (strongly pre-compact, resp.) in Lp(0, 1) iff (uε) is bounded
(strongly pre-compact, resp.) in Lp(0, 1).
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Proof. Since it holds that ‖uε − uε‖L∞(0,1) ≤ ε (|uε(cε) − uε(cε)| ≤ max{|uε(s) −
uε(s)| : s ∈ [0, 1]} ≤ ε, where (cε) is chosen as in Definition 1, resp.), it follows that
the sequence (uε) is regular (normal, resp.) iff the sequence (uε) is regular (normal,
resp.). The same argument applies to assertions (iii) and (iv).

Corollary 7. Consider sequences (uε) and (uε) as in Proposition 2. Then the
following holds:

(i) (uε) is weakly pre-compact in Lp(0, 1) iff (uε) is weakly pre-compact in Lp(0, 1),
where 1 < p < +∞,

(ii) (uε) is weakly* pre-compact in L∞(0, 1) iff (uε) is weakly* pre-compact in
L∞(0, 1),

(iii) (uε) is weakly pre-compact in L1(0, 1) iff (uε) is weakly pre-compact in L1(0, 1).

Proof. Assertion (i) follows from the estimate ‖uε − uε‖L∞(0,1) ≤ ε and weak pre-

compactness of bounded sets in Lp(0, 1), where 1 < p < +∞. Quite in the same way,
we infer conclusion (ii), taking into account weak* pre-compactness of bounded sets
in L∞(0, 1). Finally, assertion (iii) follows from Corollary 6(iv), from equivalence
of equi-integrability and uniform integrability for bounded sets in Lp(0, 1)(cf. [13],
Theorem 2.29), from the Dunford-Pettis Theorem (cf. [13], Theorem 2.54) and from
the estimate ‖uε − uε‖L∞(0,1) ≤ ε.

Corollary 8. If a subsequence of (uε) (not relabeled) satisfies u′ε ∈ L
1

1−ρ (0, 1) for
some 0 < ρ < 1, then under the assumptions of Proposition 2, for a sufficiently

small ε0 > 0 and for every 0 < ε ≤ ε0, the sequence (uε) satisfies u′ε ∈ L
1

1−ρ (0, 1),

‖u′ε − u′ε‖
L

1
1−ρ (0,1)

≤ ε and
∫ 1

0
|u′ε|

1
1−ρ ≤ 2

ρ
1−ρ

(
ε

1
1−ρ +

∫ 1

0
|u′ε|

1
1−ρ

)
.

Proof. By Corollary 6.6.2 in [9], p. 256, we can achieve ‖u′ε − u′ε‖
L

1
1−ρ (0,1)

≤ ε, so

that

|‖u′ε‖
L

1
1−ρ (0,1)

− ‖u′ε‖
L

1
1−ρ (0,1)

| ≤ ε.

As a result, we obtain

‖u′ε‖
1

1−ρ

L
1

1−ρ (0,1)
≤

(
ε+ ‖u′ε‖

L
1

1−ρ (0,1)

) 1
1−ρ ≤ 2

ρ
1−ρ

(
ε

1
1−ρ + ‖u′ε‖

1
1−ρ

L
1

1−ρ (0,1)

)
.
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[27] A.Raguž, A note on calculation of asymptotic energy for Ginzburg-Landau functional
with externally imposed lower-order oscillatory term in one dimension, Boll. Un. Mat.
Ital. 10-B(2007), 1125–1142.
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[36] A.Raguž, Minimization of asymptotic energy of Müller’s functional endowed with
local nonlinear lower-order term, Proc. Appl. Math. Mech. 16(2016), 661–662.
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[38] A.Raguž, A priori estimates for finite-energy sequences of Müller’s functional with
non-coercive two-well potential with symmetrically placed wells, Math. Comm. 24
(2019), 39–59.

[39] P. Sternberg, The Effect of a Singular Perturbation on Non-Convex Variational
Problems, Arch. Rational Mech. Anal. 101(1988), 209–260.

[40] L.Tartar, H-measures, a new approach for studying homogenisation, oscillations and
concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect.
A 115(1990), 193–230.

[41] L.Tartar, Beyond Young measures, Meccanica 30(1995), 505–526.
[42] W.P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, Berlin, 1989.


