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Abstract. Using elementary methods, we prove new formulas for pp(n), the number of
plane partitions of n, pp,.(n), the number of plane partitions of n with at most r rows,
pp’(n), and the number of strict plane partitions of n and pp°®°(n), the number of symmetric
plane partitions of n. We also give new formulas for P.(n), the number of r-component
multipartitions of n.
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1. Introduction

Let n be a positive integer. We denote [n] = {1,2,...,n}. A partition of n is a
non-increasing sequence A = (A1,..., A,,) of positive integers such that |A| = A\ +
<-4+ Ay, = n. We define p(n) as the number of partitions of n and for convenience,
we define p(0) = 1. This notion has the following generalization: A plane partition
of n is an array (nij)i,je[n] of nonnegative integers such that

Z ni; = n and n;; > nyj for all 4, 5,4, j" € [n] such that ¢ < i’ and j < j'.
i,j€[n]

If nij > nji4+1) whenever n;; # 0, then we shall call such a partition strict. If
n;; = n;; for all ¢ and 7, then the partition is called symmetric.
For example, there are 6 plane partitions of n = 3, namely:

300 210 200 111 110 100
000, 000, 100, 000, 100, 100.
000 000 000 000 000 100

Note that four of them are strict partitions and two of them are symmetric. More-
over, three of them have nonzero entries only on the first row and five of them have
nonzero entries on the first two rows.
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We denote by pp(n) the total number of plane partitions of n and, define pp(0) =
1. The properties of pp(n) have been extensively studied in literature. As curios-
ity, we mention that the function pp(n) appears in physics in connection with the
enumeration of small black holes in string theory, see [5, Appendix E].

Let £ > 1 be an integer. We denote by pp,.(n) the number of plane partitions
with at most r rows, and pp,(0) = 1. Note that pp,(n) = p(n) for all n > 0. Also,
if k > n, then pp,(n) = pp(n). In the example above, we have pp,(3) = p(3) = 3,
pp2(3) = 5 and pp3(3) = pp(3) = 6.

We denote by pp?(n) the number of strict plane partitions of n, and by pp*°(n)
the number of strict plane partitions of n with odd parts. We set pp*(0) = pp*°(n) =
1. It is well known that pp®°(n) also counts the number of symmetric plane partitions
of n.

Let a := (a1, as,...,a,) be a sequence of positive integers, r > 1. The restricted
partition function associated to a is pa : N — N, pa(n) := the number of integer
solutions (z1,...,2,) of >.._,a;x; = n with z; > 0. Note that the generating
function of pa(n) is

> pa(n)" = T 1 T < (1)
n=0

See [1, Chapter 5] for further details.

Our aim is to provide new formulas for pp(n), pp,.(n), pp®(n) and pp*°(n) using
their generating functions and the relation with the restricted partition function
Pa(n); see Proposition 1. In Theorem 1, we prove a new formula for pp(n) in terms
of binomial coefficients

/-1
e = {lneoeid) s oo = 602 < toran i<y = (PF7),

Similarly, we provide formulas for pp,.(n), pp®(n) and pp*°(n) in Theorem 2, Theo-
rem 3 and Theorem 4, respectively. Furthermore, using a result from [3] regarding
the restricted partition function, we deduce other formulas for pp(n), pp,.(n), pp®(n)
and pp*°(n); see Theorem 6.

An r-component multipartition of n is an r-tuple A = (A,..., \") of partitions
of n such that || = |[AY| + -+ + [A\"| = n; see [2]. We denote by P,(n) the number
or r-component multipartitions of n and P,(0) = 1. In Proposition 3, we show that

pp,(n) = Z (D)t tlrap(n— 1y — 2y — o — (1 — 1)t,_1),

0<t1<r—1
0<t,_1<1

where P.(j) =0 for j < 0.

In Theorem 7, we prove a new formula for P.(n) and deduce from it a new
expression for pp,.(n); see Corollary 1. Moreover, in Theorem 8 we obtain other
formula for P.(n).
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2. New formulas for the number of plane partitions

e Let n > r be two positive integers.
e Let pp(n) be the number of plane partitions of n. We define pp(0) = 1.

e Let pp,(n) be the number of plane partitions of n with at most r rows. We
also define pp,.(0) = 1. Note that if n < r, then pp(n) = pp,.(n).

e Let pp®(n) be the number of strict plane partitions of n. We set pp®(0) = 1.

e Let pp®°(n) be the number of strict plane partitions of n with odd parts. We
set pp*°(n) = 1. As shown in [6], pp*°(n) is equal to the number of symmetric
plane partitions of n.

MacMahon [8] proved that

oo . (oo} 1
pr(n)z = H =ron for |z| < 1. (2)
n=0 n=1
A refinement of this result is as follows:
ipp (n)z" = ﬁ ; for |z| < 1, (3)
T (1 _ Zn)mm{n,r}
n=0 n=1
see [1, Equation (10.1)].
Gordon and Houten [7] proved that
S o ()" = T ! f 1
>_pp*(m)z" =] (1 = zn)lrD/2] - 2] < 1.

n=0 n=1
Gordon [6] also proved that

oo . N o0 1 oo 1
ngopp (n)z" = };[1 (1 — z2nt1) nl;[l (1—z2n)n for 2] < 1.

Give n,k two positive integers, we denote by nl¥! the sequence n,n,...,n of
length k, e.g. 21 = 2,22, We consider the following sequences of integers:
n:= (1,20 38 plly,
n, := (1, olmin{2,r}] ‘glmin{3,r}] 7n[min{mr}])7
n® .= (1,20 301 4B D721y ang
n% = (1’2[1]73[1]’4[2]’ o m[/\(n)]),

1 is odd
where \(n) = {n’ s o

3, niseven
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Proposition 1. Let n > r be two positive integers. We have that:
(1) pp(n) = pu(n) for alln > 0.
(2) pp,(n) = pn,(n) for all n > 0.
(3) pp®(n) = pn=(n) for alln > 0.
(4) pp*°(n) = pnse(n) for alln > 0.
Proof. (1): From equation (1), it follows that
3 palm)z = [ s @
S Sy
m=0 j=1
= (1+Z+22+...)(1+22+z4+...)...(1+2"_|_22"_|_...).

On the other hand, from equation (2), we have

ipp(m)zm:(1—|—z+z2—|—---)(1+z2—|—z4+~--) (5)
m=0
() (L )
Comparing (4) and (5), it follows that
pp(m) = pn(m) for all 0 <m < n,

thus, in particular, pp(n) = pa(n), as required.
(2, 3, 4): The proof is similar to the proof of (1), so we omit it. O

For all 1 < s <n and ¢ > 0 we consider:
fso=H(G1, -1 ds) : 1+ +js=4 where 0 <j; <lforall1<i<s}. (6)

Note that f; . is equal to the number of monomials of degree ¢ in s variables, there-
fore:

fS’Z:<s+ﬁ_l>,foralll<s<nand£>0. (7)

These binomial coefficients fs ¢ play a central role in the following.
Theorem 1. Let n > 1 be an integer. We have that
s+l —1
wo = > T,
(01l ) EA, 5=2 °

where Ay, = {(1,...,4,) EN" : 1+ 205+ -+ nl, =n}.
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Proof. From Proposition 1(1) it follows that

pp(n) = {1, s Gesy) € NCE) ik 20 4 2G5+ 4 mjiy sy (8)
+ -+ ’I’Lj(n;rl) = n}

We denote 01 = j1, lo = jo + j3,. .., bn = j(g)+1 + - —|—j(n;1) From (6) and (8) it

follows that N
pp(n) = Z H fs,fs . (9)

(01, sln) EA,, 5=2
Therefore, from (9) and (7) we get the required formula. O
Remark 1. Note that p(n) = #A,, for all n > 1.

Example 1. If we take n = 3 in Theorem 1, we have A3 = {(3,0,0),(1,1,0),(0,0,1)}
and thus

ls+ 5 — 1\ /2 3
w52 () (0 () e
(£1,02,03)EAs s=2
Theorem 2. Let n > r > 2 be two positive integers. We have that
s + min{s,r
)= 3 I (),
(b1, ln)EA,, 5=2

Proof. From Proposition 1(2) it follows that

ppr(n) = #{(1s - Jpp () €N ) ji+2i+2js+ REE[O TR
e R () gy e R () =) (10)

We denote {1 = j1, lo = jo+j3,..., 4, = jrni(r;1)+1 +e +-]rn7(;) From (10) and
(6) it follows that:

ppr(n) = Z H fmin{hs},@s (11)

(L1, ln)EA, 5=2

Therefore, from (11) and (7) we get the required formula. O

Example 2. Let n = 3and r = 2. Since A3 = {(3,0,0), (1,1,0),(0,0,1)}, according
to Theorem 2, the number of plane partitions of 3 with at most 2 rows is:

s+ 1 2 2
ppo(3) = Y H( ) 1+<1)+(1>_5.
(51 Lo Z3)EA3 s=2
Theorem 3. Let n > 3 be an integer. We have that

pp*(n) = Y H <

(L1,..ln)EA, s=3
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Proof. Assume n = 2p. From Proposition 1(3) it follows that

pp° () =#{(J1,- -+ Jp24p) 151 +2J2+343+3ja+. . .+ ngpe 1+ Fngpz =0} (12)

We denote ¢y = ji, lo = jo, €3 = j3 + ja,.. ., ln = Jp241 + -+ + Jp24p. From (12)
and (6) it follows that

pp°(n) = Z pr;],es (13)

(l1,iln)EA, 5=3

Therefore, from (13) and (7) we get the required formula. The case n = 2p + 1 is
similar. O

Example 3. Let n = 3. Since Az = {(3,0,0),(1,1,0),(0,0,1)}, according to The-
orem 3, the number of strict plane partitions of 3 is:

3+ 1 2
°(3) = =1+1 =4.
Pp(3) 2 ( ls ) L (1>
(£1,82,03)EA3
Theorem 4. Let n > 3 be a positive integer. We have that

Lz)

pp(n) = > ]I (63 +Z - 1)-

(Zlv---ven)eAn s=2

Proof. Assume n = 2p. From Proposition 1(4) it follows that

pp°(n) = #{ (1, Jp24p) 1 J1 + 202 +3J3 +4ja + 445 +5j +... + (n — 1)j(,,)

2

+nj(,21)+1 4+ 4 n](p42r1) = TL}
We denote {1 = j1, lo = j2, €3 = j3,..., ln—1 = Jz) by = iy oo ey
From (12) and (6) it follows that
[5]

pp'(n) = > ][] fee. (14)

(£1,sln)EA,, 5=2

Therefore, from (14) and (7) we get the required formula. The case n = 2p + 1 is
similar. O

Example 4. Let n = 3. Since A3 = {(3,0,0),(1,1,0),(0,0,1)} and [2| = 1,
according to Theorem 4, the number of symmetric plane partition of 3 is:

pp*’(3) =p(3) = #A3 =3.

The unsigned Stirling numbers [;]’s are defined by

(0 = = e (e e 1)

We recall the following result:
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Theorem 5 (see [3, Theorem 2.8(2)] and [4]). Let a = (ay,...,a,) be a sequence of
positive integers and let D be the least common multiple of a1, ..., a,. We have that

r—1 r
n Z > )
pa(n) =7y [k + J
m=00<j, <2—1 ogj,rga%—lkzm
airji+-- +arjr_n( mod D)

k
X (_1)kim <m> Dik(aljl +o a?‘jr)kim”m-
Theorem 6.
(1) Forn > 1 we have

(‘n;»l)_l "
1 ls+s—1
T > (Y

m=0 0<¢1<Dy,—1,...,0<¢,<Dp—n s=2
l14+20o+-+nlyp=n( mod Dy)

(";1) (n+1) . k . .
2 -1 D"ty +2¢ L) ™
X 2 P L <m> n (G420 + -+ nly) )
where D, is the least common multiple of 1,2, ..., n.

(2) Forn>3 and 2 <r <n—1 we have

"T_(g)_l n .
1 ls + min{s,r} — 1
-t (ot
(nr = (5) = 1)! m=0 OgélgD,;nin{l,r}, 5,132 ts

0<4y, SDn‘;min{n,r}
£14202+--+nlyp=n( mod D)

(=1)k—m (Z)D;k(e1+zez+ b)) T

s n
S . ) 4 +Ls+lJ
pp°(n) (ESNEEIED] > 2 H( >

m=0 0<e,y <Dn 1, s=3

0<1z,,<D —L"“J
L14202+4-+nly=n( mod Dy)
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(4) Forn > 1 we have

1
pp*’(n) = B
(18 +2m - 1)
(I.%J)+s(n)—1 2] 0t .
s S —
S 5 ()
m=0 0<1 <Dy —A(1),...,0<0n <Dy —A(n) s=2

l14+28o+-+nlyp=n( mod Dy)
(ng )+E(n)71

<D

k=m

2y + e

71167777,
et |G

X (:l) DRy + 200 + - 4 nl,) 0™

n 1s even 0, n s even

1, n is odd ands(n){l’ n s odd
2

where A\(n) = {n

Proof. (1): Note that the length of the sequence n = (1,20, ... nl") is (";1)
From Proposition 1(1) and Theorem 5 it follows that

("sh)-1 ("s)-1

D) = ) = e > )]

n+1
(( J2r ) - 1)| m=0 (jl,...,j(n;rl))ecn k=m

—-m k —k( - . . : —m,,m
x(—1)* <m>D” (14250 +2j3 -+ - gyt -+ng(n;1))’f n™ (15)
where
. . . . _ D, . _ Dy
Cn:{(]17,](n;l))OS]lSDn_].?OS]QS7_170§J3§7_1,,0
. Dn . D’!L .
SJ(Z')Jrl S 7—1,...,0§j(n-2¢-1) S — — 1 such that

n
J14 2o + 23+ + nj(;)+l S ’I’Lj(n;l) = n(mod D,)}.

We let el :jla 62 :j2 +]57 7€n :.7("2‘)4-1 +ee +j(";rl)'
Note that if (j1, jo, - - ,j(n+1)) €C,,then0< /¥ <D, —tforalll <t <n,and
2

moreover, {1 + 20s + -+ - +nl, = n(mod D,,). From (15), using a similar argument
as in the proof of Theorem 1, we get the required result.

(2): Note that the length of the sequence n, := (1,2[mn{27} glmin{3,r}
ntin{nry g ("5 4 p(n — r) = nr — (). The rest of the proof is similar to the
proof of (1), using Proposition 1(2), Theorem 2 and Theorem 5.

(3): Note that the length of the sequence n® := (1,201, 3121 421 plln+1)/2]])
is p?+pif n = 2p, and (p+1)? if n = 2p+1. Hence, in both cases, the length is L"T'HJ
| 2£2|. The rest of the proof is similar to the proof of (1), using Proposition 1(3),
Theorem 3 and Theorem 5.



A NOTE ON THE NUMBER OF PLANE PARTITIONS AND 7-COMPONENT MULTIPARTITIONS OF n. 113

(4): Note that the length of the sequence n® := (1,21 301 421 nlA(™]) js (2)

if n = 2p, and ( ) +1if n = 2p+ 1. Hence, in both cases, the length is ( % )
The rest of the proof is similar to the proof of (1), using Proposition 1(4), Theorem
4 and Theorem 5. O

3. New formulas for the number of multipartitions with » com-
ponents

If we denote by P.(n) the number of r-component multipartitions of n, we have that

> Pi(n)z" Hl—ﬁ (16)

where P.(0) = 0 by convention; see [2]. We consider the sequence
n’ = (107 2l pl).
Proposition 2. With the above notations, we have P.(n) = py-(n) for alln > 0.

Proof. It follows from (1) and (16), using a similar argument as in the proof of
Proposition 1(1). O

Theorem 7. Let n > 4 and r > 2 be two positive integers such that n > r. We

have that
Po(n) = Z H(ﬁ +r—1)

(01,00 ln ) EA,, s=1

Proof. From Proposition 2 it follows that

Pr(n) = #{(1s- s dne) 21+ Jr 2000+ 220
+o njnr—r-‘rl + -+ n.jn'r':n} (17)

We denote ¢ = g1+t g, by = jr+1 + - +.j27‘7"'7€7l = ijr—v"+1 + e e
From (17) and (6) it follows that

Pn)y= > ]t (18)

(lenx‘en)eAn s=1

Therefore, from (18) and (7) we get the required formula. O

Example 5. Let n = 4 and r = 2. Since A4 = {(4,0,0,0),(2,1,0,0),(1,0,1,0),
(0,2,0,0), (0,0,0,1)} and fop =€+ 1 for 0 < ¢ <4, from Theorem 7 we have that

Py(4)=5+3-2+2-24+34+2=20.



114 M. CIMPOEAS AND A. TEODOR

Let pp,(n) be the number of plane partitions of n with at most » rows. From
(3) and (16) it follows that

0 r—1 0o
> pp(n)e" = [ 2) 7Y Po(n)en
n=0 J=1 n=0
= Z (71)t1+...+t7.,1z P,,(n—tl — 2ty —-- ‘*(Tfl)tr_l)zn, (19)
0<t;1<r—1 n=0
0<ta<r—2
ogtrilg

where P,.(j) = 0 for j < 0. As a direct consequence of (19), we get the following
result:

Proposition 3. For alln > 0 we have that

pp,(n) = Y ()T P (n —ty = 2ty — o — (r = D)t ).
0<t1<r—1

0<t,_1<1
As a consequence of Proposition 3 and Theorem 7, we get:

Corollary 1. For alln >4 and n > r > 2, we have that

pp,(n) = S ()P — by = 2ty — = (r = Dtey)
0<t;<r—1

0<t,_1<1
n<4+t1+2to+-+(r—1)t,—1

n
lo+r—1
+ 1)t tte— S .
Y ("
0<t;<r—1 (l1,....,0n)€E s=1
Ap by —2tp— o —(r—1)tp_1

0<t,_1<1
n>44t1+2ta+- 4 (r—1)t,_1

Theorem 8. Letn > 4 and r > 2 be two positive integers such that n > r. We
have that

Py(n) :ﬁ b > 11 (ES o 1)

m=0 0<¢,<D,,—1,...,0<¢,<D,,—n s=1
l14262+-+nly,=n( mod D)

nr—1

nr k
§ -1 k—m D—k 2 . k—m m
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Proof. From Proposition 2 and Theorem 5 it follows that

1 nr—1 nr—1
Pon) = ——— 3 3 S e
(nr—1)! , : k+1
m=0 0<j1<Dp—1,...,0<5,<D—1 k=m
0<jnr—rp1<B2—1,.0<)p, < B —1

JiteFirt A ngnr—rp1+ - Fnin-=n( mod Dy)

k . . . ke
X(m)D;k(Jl+"'+Jr+"'+n]rnr+1+"'+n]rn>k . (20)

We let 64 = j1 4+ -+ Jry-o oy bn = Jnr—ry1 + -+ + Jrn. 1t is easy to see that
0</?¢; <D, —tfor1<t<n. Therefore, from (20), using a similar argument as in
the proof of Theorem 7, there follows the required formula. O
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