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Abstract. Using elementary methods, we prove new formulas for pp(n), the number of
plane partitions of n, ppr(n), the number of plane partitions of n with at most r rows,
pps(n), and the number of strict plane partitions of n and ppso(n), the number of symmetric
plane partitions of n. We also give new formulas for Pr(n), the number of r-component
multipartitions of n.
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1. Introduction

Let n be a positive integer. We denote [n] = {1, 2, . . . , n}. A partition of n is a
non-increasing sequence λ = (λ1, . . . , λm) of positive integers such that |λ| = λ1 +
· · ·+ λm = n. We define p(n) as the number of partitions of n and for convenience,
we define p(0) = 1. This notion has the following generalization: A plane partition
of n is an array (nij)i,j∈[n] of nonnegative integers such that∑

i,j∈[n]

nij = n and nij ≥ ni′j′ for all i, j, i
′, j′ ∈ [n] such that i ≤ i′ and j ≤ j′.

If nij > ni(j+1) whenever nij ̸= 0, then we shall call such a partition strict. If
nij = nji for all i and j, then the partition is called symmetric.

For example, there are 6 plane partitions of n = 3, namely:

3 0 0
0 0 0
0 0 0

,
2 1 0
0 0 0
0 0 0

,
2 0 0
1 0 0
0 0 0

,
1 1 1
0 0 0
0 0 0

,
1 1 0
1 0 0
0 0 0

,
1 0 0
1 0 0
1 0 0

.

Note that four of them are strict partitions and two of them are symmetric. More-
over, three of them have nonzero entries only on the first row and five of them have
nonzero entries on the first two rows.
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We denote by pp(n) the total number of plane partitions of n and, define pp(0) =
1. The properties of pp(n) have been extensively studied in literature. As curios-
ity, we mention that the function pp(n) appears in physics in connection with the
enumeration of small black holes in string theory, see [5, Appendix E].

Let k ≥ 1 be an integer. We denote by ppr(n) the number of plane partitions
with at most r rows, and ppk(0) = 1. Note that pp1(n) = p(n) for all n ≥ 0. Also,
if k ≥ n, then ppk(n) = pp(n). In the example above, we have pp1(3) = p(3) = 3,
pp2(3) = 5 and pp3(3) = pp(3) = 6.

We denote by pps(n) the number of strict plane partitions of n, and by ppso(n)
the number of strict plane partitions of n with odd parts. We set pps(0) = ppso(n) =
1. It is well known that ppso(n) also counts the number of symmetric plane partitions
of n.

Let a := (a1, a2, . . . , ar) be a sequence of positive integers, r ≥ 1. The restricted
partition function associated to a is pa : N → N, pa(n) := the number of integer
solutions (x1, . . . , xr) of

∑r
i=1 aixi = n with xi ≥ 0. Note that the generating

function of pa(n) is

∞∑
n=0

pa(n)z
n =

1

(1− za1) · · · (1− zar )
, |z| < 1. (1)

See [1, Chapter 5] for further details.

Our aim is to provide new formulas for pp(n), ppr(n), pp
s(n) and ppso(n) using

their generating functions and the relation with the restricted partition function
pa(n); see Proposition 1. In Theorem 1, we prove a new formula for pp(n) in terms
of binomial coefficients

fs,ℓ = |{(j1, . . . , js) : j1+ · · ·+ js = ℓ, 0 ≤ ji ≤ ℓ for all 1 ≤ i ≤ s}| =
(
s+ ℓ− 1

ℓ

)
.

Similarly, we provide formulas for ppr(n), pp
s(n) and ppso(n) in Theorem 2, Theo-

rem 3 and Theorem 4, respectively. Furthermore, using a result from [3] regarding
the restricted partition function, we deduce other formulas for pp(n), ppr(n), pp

s(n)
and ppso(n); see Theorem 6.

An r-component multipartition of n is an r-tuple λ = (λ1, . . . , λr) of partitions
of n such that |λ| = |λ1| + · · · + |λr| = n; see [2]. We denote by Pr(n) the number
or r-component multipartitions of n and Pr(0) = 1. In Proposition 3, we show that

ppr(n) =
∑

0≤t1≤r−1

...
0≤tr−1≤1

(−1)t1+···+tr−1Pr(n− t1 − 2t2 − · · · − (r − 1)tr−1),

where Pr(j) = 0 for j < 0.

In Theorem 7, we prove a new formula for Pr(n) and deduce from it a new
expression for ppr(n); see Corollary 1. Moreover, in Theorem 8 we obtain other
formula for Pr(n).
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2. New formulas for the number of plane partitions

� Let n ≥ r be two positive integers.

� Let pp(n) be the number of plane partitions of n. We define pp(0) = 1.

� Let ppr(n) be the number of plane partitions of n with at most r rows. We
also define ppr(0) = 1. Note that if n ≤ r, then pp(n) = ppr(n).

� Let pps(n) be the number of strict plane partitions of n. We set pps(0) = 1.

� Let ppso(n) be the number of strict plane partitions of n with odd parts. We
set ppso(n) = 1. As shown in [6], ppso(n) is equal to the number of symmetric
plane partitions of n.

MacMahon [8] proved that

∞∑
n=0

pp(n)zn =

∞∏
n=1

1

(1− zn)n
for |z| < 1. (2)

A refinement of this result is as follows:

∞∑
n=0

ppr(n)z
n =

∞∏
n=1

1

(1− zn)min{n,r} for |z| < 1, (3)

see [1, Equation (10.1)].
Gordon and Houten [7] proved that

∞∑
n=0

pps(n)zn =

∞∏
n=1

1

(1− zn)⌊(n+1)/2⌋ for |z| < 1.

Gordon [6] also proved that

∞∑
n=0

ppso(n)zn =

∞∏
n=1

1

(1− z2n+1)

∞∏
n=1

1

(1− z2n)n
for |z| < 1.

Give n, k two positive integers, we denote by n[k] the sequence n, n, . . . , n of
length k, e.g. 2[3] = 2, 2, 2. We consider the following sequences of integers:

n := (1, 2[2], 3[3], . . . , n[n]),

nr := (1, 2[min{2,r}], 3[min{3,r}], . . . , n[min{n,r}]),

ns := (1, 2[1], 3[2], 4[2], . . . , n[⌊(n+1)/2⌋]) and

nso := (1, 2[1], 3[1], 4[2], . . . , n[λ(n)]),

where λ(n) =

{
1, n is odd
n
2 , n is even

.
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Proposition 1. Let n ≥ r be two positive integers. We have that:

(1) pp(n) = pn(n) for all n ≥ 0.

(2) ppr(n) = pnr (n) for all n ≥ 0.

(3) pps(n) = pns(n) for all n ≥ 0.

(4) ppso(n) = pnso(n) for all n ≥ 0.

Proof. (1): From equation (1), it follows that

∞∑
m=0

pn(m)zm =

n∏
j=1

1

(1− zj)j
(4)

= (1 + z + z2 + · · · )(1 + z2 + z4 + · · · ) · · · (1 + zn + z2n + · · · ).

On the other hand, from equation (2), we have

∞∑
m=0

pp(m)zm = (1 + z + z2 + · · · )(1 + z2 + z4 + · · · ) (5)

· · · (1 + zn + z2n + · · · )(1 + zn+1 + · · · ) · · · .

Comparing (4) and (5), it follows that

pp(m) = pn(m) for all 0 ≤ m ≤ n,

thus, in particular, pp(n) = pn(n), as required.

(2, 3, 4): The proof is similar to the proof of (1), so we omit it.

For all 1 ≤ s ≤ n and ℓ ≥ 0 we consider:

fs,ℓ = |{(j1, . . . , js) : j1 + · · ·+ js = ℓ, where 0 ≤ ji ≤ ℓ for all 1 ≤ i ≤ s}|. (6)

Note that fs,ℓ is equal to the number of monomials of degree ℓ in s variables, there-
fore:

fs,ℓ =

(
s+ ℓ− 1

ℓ

)
, for all 1 ≤ s ≤ n and ℓ ≥ 0. (7)

These binomial coefficients fs,ℓ play a central role in the following.

Theorem 1. Let n ≥ 1 be an integer. We have that

pp(n) =
∑

(ℓ1,...,ℓn)∈An

n∏
s=2

(
s+ ℓs − 1

ℓs

)
,

where An := {(ℓ1, . . . , ℓn) ∈ Nn : ℓ1 + 2ℓ2 + · · ·+ nℓn = n}.
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Proof. From Proposition 1(1) it follows that

pp(n) = #{(j1, . . . , j(n+1
2 )) ∈ N(

n+1
2 ) : j1 + 2j2 + 2j3 + · · ·+ nj(n2)+1 (8)

+ · · ·+ nj(n+1
2 ) = n}.

We denote ℓ1 = j1, ℓ2 = j2 + j3, . . . , ℓn = j(n2)+1 + · · ·+ j(n+1
2 ). From (6) and (8) it

follows that

pp(n) =
∑

(ℓ1,...,ℓn)∈An

n∏
s=2

fs,ℓs . (9)

Therefore, from (9) and (7) we get the required formula.

Remark 1. Note that p(n) = #An for all n ≥ 1.

Example 1. If we take n = 3 in Theorem 1, we haveA3 = {(3, 0, 0), (1, 1, 0), (0, 0, 1)}
and thus

pp(3) =
∑

(ℓ1,ℓ2,ℓ3)∈A3

3∏
s=2

(
ℓs + s− 1

ℓs

)
= 1 +

(
1

1

)(
2

1

)
+

(
3

1

)
= 6.

Theorem 2. Let n > r ≥ 2 be two positive integers. We have that

ppr(n) =
∑

(ℓ1,...,ℓn)∈An

n∏
s=2

(
ℓs +min{s, r} − 1

ℓs

)
.

Proof. From Proposition 1(2) it follows that

ppr(n) = #{(j1, . . . , jrn−(r2)) ∈ Nrn−(r2) : j1+2j2+2j3+ · · ·+rj(r2)+1 + · · ·+ rj(r+1
2 )

+ · · ·+ njrn−(r+1
2 )+1 + · · ·+ njrn−(r2)

= n}. (10)

We denote ℓ1 = j1, ℓ2 = j2+ j3, . . . , ℓn = jrn−(r+1
2 )+1+ · · ·+ jrn−(r2)

. From (10) and

(6) it follows that:

ppr(n) =
∑

(ℓ1,...,ℓn)∈An

n∏
s=2

fmin{r,s},ℓs (11)

Therefore, from (11) and (7) we get the required formula.

Example 2. Let n = 3 and r = 2. SinceA3 = {(3, 0, 0), (1, 1, 0), (0, 0, 1)}, according
to Theorem 2, the number of plane partitions of 3 with at most 2 rows is:

pp2(3) =
∑

(ℓ1,ℓ2,ℓ3)∈A3

3∏
s=2

(
ℓs + 1

ℓs

)
= 1 +

(
2

1

)
+

(
2

1

)
= 5.

Theorem 3. Let n ≥ 3 be an integer. We have that

pps(n) =
∑

(ℓ1,...,ℓn)∈An

n∏
s=3

(
ℓs + ⌊ s+1

2 ⌋ − 1

ℓs

)
.
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Proof. Assume n = 2p. From Proposition 1(3) it follows that

pps(n)=#{(j1, . . . , jp2+p) :j1+2j2+3j3+3j4+. . .+njp2+1+· · ·+njp2+p=n} (12)

We denote ℓ1 = j1, ℓ2 = j2, ℓ3 = j3 + j4, . . . , ℓn = jp2+1 + · · · + jp2+p. From (12)
and (6) it follows that

pps(n) =
∑

(ℓ1,...,ℓn)∈An

n∏
s=3

f⌊ s+1
2 ⌋,ℓs (13)

Therefore, from (13) and (7) we get the required formula. The case n = 2p + 1 is
similar.

Example 3. Let n = 3. Since A3 = {(3, 0, 0), (1, 1, 0), (0, 0, 1)}, according to The-
orem 3, the number of strict plane partitions of 3 is:

pps(3) =
∑

(ℓ1,ℓ2,ℓ3)∈A3

(
ℓ3 + 1

ℓ3

)
= 1 + 1 +

(
2

1

)
= 4.

Theorem 4. Let n ≥ 3 be a positive integer. We have that

ppso(n) =
∑

(ℓ1,...,ℓn)∈An

⌊n
2 ⌋∏

s=2

(
ℓs + s− 1

ℓs

)
.

Proof. Assume n = 2p. From Proposition 1(4) it follows that

pps(n) = #{(j1, . . . , jp2+p) : j1 + 2j2 + 3j3 + 4j4 + 4j5 + 5j6 + . . .+ (n− 1)j(p2)

+nj(p2)+1 + · · ·+ nj(p+1
2 ) = n}.

We denote ℓ1 = j1, ℓ2 = j2, ℓ3 = j3, . . . , ℓn−1 = j(p2)
, ℓn = j(p2)+1 + · · · + j(p+1

2 ).

From (12) and (6) it follows that

pps(n) =
∑

(ℓ1,...,ℓn)∈An

⌊n
2 ⌋∏

s=2

fs,ℓ2s (14)

Therefore, from (14) and (7) we get the required formula. The case n = 2p + 1 is
similar.

Example 4. Let n = 3. Since A3 = {(3, 0, 0), (1, 1, 0), (0, 0, 1)} and ⌊ 3
2⌋ = 1,

according to Theorem 4, the number of symmetric plane partition of 3 is:

ppso(3) = p(3) = #A3 = 3.

The unsigned Stirling numbers
[
r
k

]
’s are defined by(

n+ r − 1

r − 1

)
=

1

n(r − 1)!
n(r) =

1

(r − 1)!

([
r

r

]
nr−1 + · · ·

[
r

2

]
n+

[
r

1

])
.

We recall the following result:
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Theorem 5 (see [3, Theorem 2.8(2)] and [4]). Let a = (a1, . . . , ar) be a sequence of
positive integers and let D be the least common multiple of a1, . . . , ar. We have that

pa(n) =
1

(r − 1)!

r−1∑
m=0

∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡n( mod D)

r−1∑
k=m

[
r

k + 1

]

× (−1)k−m

(
k

m

)
D−k(a1j1 + · · ·+ arjr)

k−mnm.

Theorem 6.

(1) For n ≥ 1 we have

pp(n) =
1((

n+1
2

)
− 1
)
!

(n+1
2 )−1∑
m=0

∑
0≤ℓ1≤Dn−1,...,0≤ℓn≤Dn−n
ℓ1+2ℓ2+···+nℓn≡n( mod Dn)

n∏
s=2

(
ℓs + s− 1

ℓs

)

×
(n+1

2 )−1∑
k=m

[(
n+1
2

)
k + 1

]
(−1)k−m

(
k

m

)
D−k

n (ℓ1 + 2ℓ2 + · · ·+ nℓn)
k−mnm,

where Dn is the least common multiple of 1, 2, . . . , n.

(2) For n ≥ 3 and 2 ≤ r ≤ n− 1 we have

ppr(n) =
1(

nr −
(
r
2

)
− 1
)
!

nr−(r2)−1∑
m=0

∑
0≤ℓ1≤Dn−min{1,r},

...
0≤ℓn≤Dn−min{n,r}

ℓ1+2ℓ2+···+nℓn≡n( mod Dn)

n∏
s=2

(
ℓs +min{s, r} − 1

ℓs

)

×
nr−(r2)−1∑

k=m

[
nr −

(
r
2

)
k + 1

]
(−1)k−m

(
k

m

)
D−k

n (ℓ1 + 2ℓ2 + · · ·+ nℓn)
k−mnm.

(3) For n ≥ 1 we have

pps(n) =
1(⌊

n+1
2

⌋
·
⌊
n+2
2

⌋
− 1
)
!

⌊n+1
2 ⌋·⌊n+2

2 ⌋−1∑
m=0

∑
0≤ℓ1≤Dn−1,

...,

0≤ℓn≤Dn−⌊n+1
2 ⌋

ℓ1+2ℓ2+···+nℓn≡n( mod Dn)

n∏
s=3

(
ℓs + ⌊ s+1

2
⌋ − 1

ℓs

)

×
⌊n+1

2 ⌋·⌊n+2
2 ⌋−1∑

k=m

[⌊
n+1
2

⌋
·
⌊
n+2
2

⌋
k + 1

]
(−1)k−m

×

(
k

m

)
D−k

n (ℓ1 + 2ℓ2 + · · ·+ nℓn)
k−mnm.
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(4) For n ≥ 1 we have

ppso(n) =
1((⌊n

2 ⌋
2

)
+ ε(n)− 1

)
!

×
(⌊

n
2 ⌋
2

)+ε(n)−1∑
m=0

∑
0≤ℓ1≤Dn−λ(1),...,0≤ℓn≤Dn−λ(n)

ℓ1+2ℓ2+···+nℓn≡n( mod Dn)

⌊n
2
⌋∏

s=2

(
ℓs + s− 1

ℓs

)

×
(⌊

n
2 ⌋
2

)+ε(n)−1∑
k=m

[(⌊n
2 ⌋
2

)
+ ε(n)

k + 1

]
(−1)k−m

×

(
k

m

)
D−k

n (ℓ1 + 2ℓ2 + · · ·+ nℓn)
k−mnm,

where λ(n) =

{
1, n is odd
n
2 , n is even

and ε(n) =

{
1, n is odd

0, n is even
.

Proof. (1): Note that the length of the sequence n = (1, 2[2], . . . , n[n]) is
(
n+1
2

)
.

From Proposition 1(1) and Theorem 5 it follows that

pp(n) = pn(n) =
1((

n+1
2

)
− 1

)
!

(n+1
2 )−1∑
m=0

∑
(j1,...,j(n+1

2 )
)∈Cn

(n+1
2 )−1∑
k=m

[(n+1
2

)
k + 1

]

×(−1)k−m

(
k

m

)
D−k

n (j1+2j2+2j3+· · ·+nj(n2)+1+· · ·+nj(n+1
2 ))

k−mnm, (15)

where

Cn = {(j1, . . . , j(n+1
2 )) : 0 ≤ j1 ≤ Dn − 1, 0 ≤ j2 ≤ Dn

2
− 1, 0 ≤ j3 ≤ Dn

2
− 1, . . . , 0

≤ j(n2)+1 ≤ Dn

n
− 1, . . . , 0 ≤ j(n+1

2 ) ≤
Dn

n
− 1 such that

j1 + 2j2 + 2j3 + · · ·+ nj(n2)+1 + · · ·+ nj(n+1
2 ) ≡ n(mod Dn)}.

We let ℓ1 = j1, ℓ2 = j2 + j3, . . . , ℓn = j(n2)+1 + · · ·+ j(n+1
2 ).

Note that if (j1, j2, . . . , j(n+1
2 )) ∈ Cn, then 0 ≤ ℓt ≤ Dn − t for all 1 ≤ t ≤ n, and

moreover, ℓ1 + 2ℓ2 + · · ·+ nℓn ≡ n(mod Dn). From (15), using a similar argument
as in the proof of Theorem 1, we get the required result.

(2): Note that the length of the sequence nr := (1, 2[min{2,r}], 3[min{3,r}], . . . ,
n[min{n,r}]) is

(
r+1
2

)
+ r(n − r) = nr −

(
r
2

)
. The rest of the proof is similar to the

proof of (1), using Proposition 1(2), Theorem 2 and Theorem 5.
(3): Note that the length of the sequence ns := (1, 2[1], 3[2], 4[2], . . . , n[⌊(n+1)/2⌋])

is p2+p if n = 2p, and (p+1)2 if n = 2p+1. Hence, in both cases, the length is
⌊
n+1
2

⌋
·⌊

n+2
2

⌋
. The rest of the proof is similar to the proof of (1), using Proposition 1(3),

Theorem 3 and Theorem 5.



A note on the number of plane partitions and r-component multipartitions of n 113

(4): Note that the length of the sequence nso := (1, 2[1], 3[1], 4[2], . . . , n[λ(n)]) is
(
p
2

)
if n = 2p, and

(
p
2

)
+1 if n = 2p+1. Hence, in both cases, the length is

(⌊n
2 ⌋
2

)
+ ε(n).

The rest of the proof is similar to the proof of (1), using Proposition 1(4), Theorem
4 and Theorem 5.

3. New formulas for the number of multipartitions with r com-
ponents

If we denote by Pr(n) the number of r-component multipartitions of n, we have that

∞∑
n=0

Pr(n)z
n =

∞∏
n=1

1

(1− zn)r
, (16)

where Pr(0) = 0 by convention; see [2]. We consider the sequence

nr = (1[r], 2[r], . . . , n[r]).

Proposition 2. With the above notations, we have Pr(n) = pnr (n) for all n ≥ 0.

Proof. It follows from (1) and (16), using a similar argument as in the proof of
Proposition 1(1).

Theorem 7. Let n ≥ 4 and r ≥ 2 be two positive integers such that n > r. We
have that

Pr(n) =
∑

(ℓ1,...,ℓn)∈An

n∏
s=1

(
ℓs + r − 1

ℓs

)
.

Proof. From Proposition 2 it follows that

Pr(n) = #{(j1, . . . , jnr) : j1 + · · ·+ jr + 2jr+1 + · · ·+ 2j2r

+ · · ·+ njnr−r+1 + · · ·+ njnr=n} (17)

We denote ℓ1 = j1 + · · · + jr, ℓ2 = jr+1 + · · · + j2r, . . . , ℓn = jnr−r+1 + · · · + jnr.
From (17) and (6) it follows that

Pr(n) =
∑

(ℓ1,...,ℓn)∈An

n∏
s=1

fr,ℓs (18)

Therefore, from (18) and (7) we get the required formula.

Example 5. Let n = 4 and r = 2. Since A4 = {(4, 0, 0, 0), (2, 1, 0, 0), (1, 0, 1, 0),
(0, 2, 0, 0), (0, 0, 0, 1)} and f2,ℓ = ℓ+ 1 for 0 ≤ ℓ ≤ 4, from Theorem 7 we have that

P2(4) = 5 + 3 · 2 + 2 · 2 + 3 + 2 = 20.



114 M.Cimpoeaş and A.Teodor

Let ppr(n) be the number of plane partitions of n with at most r rows. From
(3) and (16) it follows that

∞∑
n=0

ppr(n)z
n =

r−1∏
j=1

(1− zj)r−j
∞∑

n=0

Pr(n)z
n

=
∑

0≤t1≤r−1
0≤t2≤r−2

...
0≤tr−1≤1

(−1)t1+···+tr−1

∞∑
n=0

Pr(n−t1−2t2−· · ·−(r−1)tr−1)z
n, (19)

where Pr(j) = 0 for j < 0. As a direct consequence of (19), we get the following
result:

Proposition 3. For all n ≥ 0 we have that

ppr(n) =
∑

0≤t1≤r−1

...
0≤tr−1≤1

(−1)t1+···+tr−1Pr(n− t1 − 2t2 − · · · − (r − 1)tr−1).

As a consequence of Proposition 3 and Theorem 7, we get:

Corollary 1. For all n ≥ 4 and n > r ≥ 2, we have that

ppr(n) =
∑

0≤t1≤r−1

...
0≤tr−1≤1

n<4+t1+2t2+···+(r−1)tr−1

(−1)t1+···+tr−1Pr(n− t1 − 2t2 − · · · − (r − 1)tr−1)

+
∑

0≤t1≤r−1

...
0≤tr−1≤1

n≥4+t1+2t2+···+(r−1)tr−1

(−1)t1+···+tr−1

∑
(ℓ1,...,ℓn)∈

An−t1−2t2−···−(r−1)tr−1

n∏
s=1

(
ℓs + r − 1

ℓs

)
.

Theorem 8. Let n ≥ 4 and r ≥ 2 be two positive integers such that n ≥ r. We
have that

Pr(n) =
1

(nr − 1)!

nr−1∑
m=0

∑
0≤ℓ1≤Dn−1,...,0≤ℓn≤Dn−n
ℓ1+2ℓ2+···+nℓn≡n( mod Dn)

n∏
s=1

(
ℓs + r − 1

ℓs

)

×
nr−1∑
k=m

[
nr

k + 1

]
(−1)k−m

(
k

m

)
D−k

n (ℓ1 + 2ℓ2 + · · ·+ nℓn)
k−mnm.
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Proof. From Proposition 2 and Theorem 5 it follows that

Pr(n) =
1

(nr − 1)!

nr−1∑
m=0

∑
0≤j1≤Dn−1,...,0≤jr≤D−1

...
0≤jnr−r+1≤Dn

n −1,...,0≤jnr≤Dn
n −1

j1+···+jr+···+njnr−r+1+···+njnr≡n( mod Dn)

nr−1∑
k=m

[
nr

k + 1

]
(−1)k−m

×
(
k

m

)
D−k

n (j1 + · · ·+ jr + · · ·+ njrn−r+1 + · · ·+ njrn)
k−mnm. (20)

We let ℓ1 = j1 + · · · + jr, . . . , ℓn = jnr−r+1 + · · · + jrn. It is easy to see that
0 ≤ ℓt ≤ Dn − t for 1 ≤ t ≤ n. Therefore, from (20), using a similar argument as in
the proof of Theorem 7, there follows the required formula.
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