An analog of Wolstenholme's theorem: an addendum

Boaz Cohen*
Department of Computer Science, The Academic College of Tel-Aviv, Rabenu Yeruham St., P.O.B 8401 Yaffo, 6818 211, Israel

Received November 21, 2023; accepted February 25, 2024

Abstract. Let $p \geqslant 2$ be a prime number and let a, b, m be positive integers such that $p \nmid m$. In a recent paper [1], we discussed the maximal prime power p^{e}, which divides the numerator of the fraction

$$
\frac{1}{m}+\frac{1}{m+p^{b}}+\frac{1}{m+2 p^{b}}+\cdots+\frac{1}{m+\left(p^{a}-1\right) p^{b}}
$$

when written in reduced form. This short note may be regarded as an addendum to paper [1] for the case where $p=2, b=1, m>1$ and $2^{a} \| m-1$, which was left open.
AMS subject classifications: 11A05, 11A07, 11A41
Keywords: Wolstenholme's theorem, Bauer's theorem, congruences, primes

1. Introduction

For a given prime number $p \geqslant 2$ and positive integers a, b, m such that $p \nmid m$, let us consider the fraction

$$
\begin{equation*}
\frac{1}{m}+\frac{1}{m+p^{b}}+\frac{1}{m+2 p^{b}}+\cdots+\frac{1}{m+\left(p^{a}-1\right) p^{b}} \tag{1}
\end{equation*}
$$

and let $e=E(p, a, b, m)$ denote the maximal exponent of the prime power p^{e} which divides the numerator of fraction (1), when written in reduced form. In [1], we proved that

$$
E(p, a, b, m)= \begin{cases}a & p>2 \\ a & p=2, b \geqslant 2 \\ 2 a & p=2, b=1, m=1 \\ a+c & p=2, b=1, m>1,2^{c} \| m-1, c<a \\ 2 a & p=2, b=1, m>1,2^{c} \| m-1, c>a\end{cases}
$$

As one can see, all the values of $E(p, a, b, m)$ have been determined, except for the case where $p=2, b=1, m>1$ and $2^{a} \| m-1$. Nevertheless, we were able to

[^0]determine in [1] that in this exceptional case $E(p, a, b, m) \geqslant 2 a+1$. In this paper, we prove that if $p=2, b=1, m>1,2^{a} \| m-1$, then
$$
E(p, a, b, m)=2 a+d
$$
where d is a positive integer such that $2^{d} \| \frac{m-1}{2^{a}}+1$. As an illustrative example, for $p=2, b=1, a=2$ and $m=1021$, we obtain that
$$
\frac{1}{1021}+\frac{1}{1023}+\frac{1}{1025}+\frac{1}{1027}=\frac{4294946816}{1099501142025}
$$

Here $2^{2} \| m-1$ and $2^{8} \| \frac{m-1}{2^{a}}+1$, so the numerator 4294946816 is divisible by $2^{2 \cdot 2+8}=$ 2^{12}, but not by 2^{13}.

2. The proof of the exceptional case

For the proof of our main result we shall use the following part of Bauer's theorem from [2, p. 127]:

Proposition 1. Let $a>1$ be a positive integer. Then

$$
\prod_{\substack{1 \leqslant s<2^{a} \\ s \text { is odd }}}(x-s) \equiv\left(x^{2}-1\right)^{2^{a-2}}\left(\bmod 2^{a}\right)
$$

where the congruence indicates that the corresponding coefficients of the polynomials are congruent modulo 2^{a}.

Now we are ready to prove:
Theorem 1. Suppose that a is a positive integer and $m>1$ is an odd integer such that $2^{a} \| m-1$. In addition, let d be a positive integer such that $2^{d} \| \frac{m-1}{2^{a}}+1$. Then the maximal prime power 2^{e} which divides the numerator of the fraction

$$
\frac{1}{m}+\frac{1}{m+2}+\frac{1}{m+4}+\frac{1}{m+6}+\cdots+\frac{1}{m+2\left(2^{a}-1\right)}
$$

when written in reduced form, is $2^{2 a+d}$.
Proof. Set $u=(m-1) / 2^{a}$. Note that by our assumption u is odd and $2^{d} \| u+1$. In addition, set $v=(u+1) / 2^{d}$. Note that

$$
\begin{aligned}
\frac{1}{m}+\frac{1}{m+2}+\cdots+\frac{1}{m+2\left(2^{a}-1\right)} & =\sum_{k=0}^{2^{a}-1} \frac{1}{m+2 k}=\sum_{k=0}^{2^{a}-1} \frac{1}{2^{a} u+(2 k+1)} \\
& =\sum_{\substack{1 \leqslant s<2^{a+1} \\
\text { s is odd }}} \frac{1}{2^{a} u+s} \\
& =\sum_{\substack{1 \leq s<2^{a} \\
s}}\left(\frac{1}{2^{a} u+s}+\frac{1}{2^{a} u+2^{a+1}-s}\right) \\
& =\sum_{\substack{1 \leqslant s \ll^{a} \\
s \text { is odd }}} \frac{2^{a+1} u+2^{a+1}}{\left(2^{a} u+s\right)\left(2^{a} u+2^{a+1}-s\right)}
\end{aligned}
$$

$$
=\sum_{\substack{1 \leq s<2^{a} \\ s \text { sis odd }}} \underbrace{\frac{2^{a+d+1} v}{\left(2^{a} u+s\right)\left(2^{a} u+2^{a+1}-s\right)}}_{A_{s}} .
$$

Hence, in order to prove the claim it suffices to prove that the numerator of the fraction

$$
\begin{equation*}
\sum_{\substack{1 \leq s<2^{a} \\ s \text { is odd }}} \frac{1}{A_{s}} \tag{2}
\end{equation*}
$$

when written in reduced form, is divisible by 2^{a-1} but not by 2^{a}. For simplicity, for every $0 \leqslant k \leqslant 2^{a-1}$, let us denote the following k th elementary symmetric expression $e_{k}\left(A_{1}, A_{3}, \ldots, A_{2^{a}-1}\right)$ by e_{k}. Note that the numerator of (2) is $e_{2^{a-1}-1}$. Since the A_{s} 's are odd, it suffices to prove that $2^{a-1} \| e_{2^{a-1}-1}$. To do that, consider the polynomial

$$
f(x)=\prod_{\substack{1 \leqslant s<2^{a+1} \\ s \text { is odd }}}\left(x-2^{a} u-s\right)
$$

It holds:

$$
\begin{aligned}
f(x) & =\prod_{\substack{1 \leqslant s \ll^{a+1} \\
\text { sis odd }}}\left(x-\left(2^{a} u+s\right)\right)=\prod_{\substack{1 \leq s<2^{a} \\
s \text { is odd }}}\left(x-\left(2^{a} u+s\right)\right)\left(x-\left(2^{a} u+2^{a+1}-s\right)\right) \\
& =\prod_{\substack{1 \leq s<0^{a} \\
s \text { is odd }}}\left(x^{2}-\left(2^{a+1} u+2^{a+1}\right) x+A_{s}\right) \equiv \prod_{\substack{1 \leq s<2^{a} \\
s \text { is odd }}}\left(x^{2}+A_{s}\right) \\
& =\sum_{k=0}^{2^{a-1}} e_{k} x^{2^{a}-2 k}\left(\bmod 2^{a+1}\right) .
\end{aligned}
$$

On the other hand, by Proposition 1

$$
\prod_{\substack{1 \leqslant s<2^{a+1} \\ s \text { is odd }}}(y-s) \equiv\left(y^{2}-1\right)^{2^{a-1}} \quad\left(\bmod 2^{a+1}\right)
$$

Thus, by taking $y=x-2^{a} u$ we get

$$
f(x) \equiv\left(\left(x-2^{a} u\right)^{2}-1\right)^{2^{a-1}}=\sum_{k=0}^{2^{a-1}}\binom{2^{a-1}}{k}(-1)^{k}\left(\left(x-2^{a} u\right)^{2}\right)^{2^{a-1}-k} \quad\left(\bmod 2^{a+1}\right)
$$

Now, since $\left(x-2^{a} u\right)^{2} \equiv x^{2}\left(\bmod 2^{a+1}\right)$, it follows that

$$
f(x) \equiv \sum_{k=0}^{2^{a-1}}\binom{2^{a-1}}{k}(-1)^{k} x^{2^{a}-2 k} \quad\left(\bmod 2^{a+1}\right)
$$

By comparing the coefficient of $x^{2^{a}-2 k}$ in (1) and (2) we obtain that

$$
e_{k} \equiv\binom{2^{a-1}}{k}(-1)^{k} \quad\left(\bmod 2^{a+1}\right)
$$

for every $0 \leqslant k \leqslant 2^{a-1}$. In particular $2^{a-1} \| e_{2^{a-1}-1}$, as required.

By combining the above with the mentioned results from [1], we have the result as follows:

Theorem 2. Let $p \geqslant 2$ be a prime number and let a, b, m be positive integers such that $p \nmid m$. Then

$$
E(p, a, b, m)= \begin{cases}a & p>2 \\ a & p=2, b \geqslant 2 \\ 2 a & p=2, b=1, m=1 \\ a+c & p=2, b=1, m>1,2^{c} \| m-1, c<a \\ 2 a & p=2, b=1, m>1,2^{c} \| m-1, c>a \\ 2 a+d & p=2, b=1, m>1,2^{a}\left\|m-1,2^{d}\right\| \frac{m-1}{2^{a}}+1\end{cases}
$$

References

[1] B. Cohen, An analog of Wolstenholme's theorem, Math. Commun. 28(2023), 69-83.
[2] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, Clarendon Press, Oxford, , 2008.

[^0]: ${ }^{*}$ Corresponding author. Email address: arctanx@gmail.com (B. Cohen)
 https://www.mathos.unios.hr/mc
 (C) 2024 School of Applied Mathematics and Informatics, University of Osijek

