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Environmental exposure to glyphosate does not inhibit human 
acetylcholinesterase and butyrylcholinesterase
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Glyphosate has remained the leading herbicide on the global market to date, despite the continuous debate between consumers, scientific 
community, and regulatory agencies over its carcinogenicity, genotoxicity, environmental persistence, and the role in the development of  
neurodegenerative disorders. Chemically, glyphosate belongs to a large family of  organophosphorus pesticides, which exert a neurotoxic 
effect by inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), enzymes of  the cholinergic system essential for 
maintaining neurotransmission. Although research shows that glyphosate is a weak cholinesterase inhibitor in fish and mammals compared 
to other OP compounds, no conclusive data exist concerning the inhibition of  human AChE and BChE. In our study we analysed its 
inhibitory potency on human AChE and BChE, by establishing its IC50 and reversible inhibition in terms of  dissociation inhibition 
constants. Glyphosate concentration of  40 mmol/L caused near total inhibition of  enzyme activity (approx. 10 % activity remaining). 
Inhibition dissociation constants (Ki) of  glyphosate-AChE and -BChE complexes were 28.4±2.7 mmol/L and 19.3±1.8 mmol/L, respectively. 
In conclusion, glyphosate shows a slight binding preference for BChE but exhibits inhibition only in a high concentration range. Our 
results are in line with studies reporting that its neurotoxic effect is not primarily linked to the cholinergic system.
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Since its commercialisation in 1974 by Monsanto and the 
introduction of  genetically modified glyphosate-resistant crops in 
1996 (1), the extensive use of  glyphosate has culminated as it took 
the leading on the global herbicide market. Glyphosate, 
N-(phosphonomethyl)glycine (Figure 1), is the active ingredient in 
glyphosate-based herbicides (GBHs) which inhibits 5-enolpyruvyl-
shikimate-3-phosphate synthase (EPSPS), an enzyme unique to 
plants and microorganisms and crucial for the synthesis of  aromatic 
amino acids tryptophan, tyrosine, and phenylalanine (2). GBHs 
most often contain 40–60 % of  glyphosate in isopropyl ammonium 
salt form, and the rest of  the mixture is composed of  water, heavy 
metals (i.e., arsenic and cobalt), surfactants, usually from the 
polyoxyethylenamine (POEA) family, and other adjuvants (3). With 
widespread and unchecked application of  GBHs in non-crop 
situations such as on roadsides, around railway tracks, in pre- and 
post-cropping of  fields, as well as for control of  vegetation under 
the canopy of  trees and orchard crops, glyphosate is predictably 
found in off-target locations and diverse ecosystems (1). In the 
European Union (EU) 21 % of  tested soil contains glyphosate and 
42 % its metabolite aminomethylphosphonic acid (AMPA), reaching 
maximum concentrations of  2 mg/kg (4).

Although glyphosate has been approved for use by the United 
States Environmental Protection Agency (US EPA) and the 
European Food Safety Authority (EFSA), it came under increased 
scrutiny in 2015, when the International Agency for Research on 
Cancer (IARC) categorised glyphosate as a group 2A carcinogen 
(5). This debate is still in progress, as data both support and deny 
glyphosate carcinogenicity, mostly depending on whether the studies 
employed the glyphosate salt or a full GBH formulation. A large 
body of  in vitro, in vivo, and epidemiological evidence, summarised 
in a paper by Lacroix and Kurrasch (6), shows various toxicities of  
glyphosate and GBHs across animal species. However, many of  the 
reviewed studies used high glyphosate concentrations which are not 
detected in the environment or human body, where they range from 
10 ng/L to 10 mg/L (approximately 0.591 nmol/L to 59.15 µmol/L) 
in water ecosystems (7) and 0.16–7.6 µg/L in the urine of  the general 
human population (8). Also, it is difficult to clearly distinguish 
glyphosate from GBH effects, as GBH components are not publicly 
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Figure 1 Chemical structure 
of  glyphosate
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disclosed. A comparison of  various glyphosate formulations showed 
difference in cytotoxicity on a human liver cell line that varied as 
much as 200-fold (3).

Considering its chemical structure, herbicide glyphosate belongs 
to a large family of  pesticides which are organophosphate (OP) 
compounds.  OPs inhibit  the act iv i ty of  the enzyme 
acety lchol inesterase  (AChE) and i ts  re la ted enzyme 
butyrylcholinesterase (BChE) by phosphorylating the serine of  the 
catalytic triad and forming a stable OP-enzyme conjugate. Inhibition 
prevents the hydrolysis of  acetylcholine (ACh), an important 
excitatory neurotransmitter, and leads to ACh accumulation in both 
the peripheral and central nervous system (9). The resulting 
neurotoxic effects are caused by uncontrolled nerve impulse 
transmission, which in severe cases of  acute poisoning can result 
in seizures, respiratory failure, and death (9, 10). Furthermore, 
chronic exposure to OPs below the threshold for acute cholinergic 
toxicity, often observed in agricultural workers and pesticide 
sprayers, causes various neurological and cognitive abnormalities 
known as chronic OP-induced neuropsychiatric disorders (10).

Neurotoxicity effects have been reported in animal models, 
including a drop in AChE activity in blood and various tissues 
(11–13). However, since pesticides can affect gene expression, 
reduced AChE activity in homogenates may not only be related to 
enzyme inhibition but may also result from lower enzyme levels. 
Thus, the main aim of  this research was to evaluate the direct in 
vitro inhibitory effect of  glyphosate on human AChE and BChE in 
terms of  dissociation constants and binding selectivity and to 
confirm our recent results and an estimation that glyphosate is a 
weak inhibitor of  AChE compared to other OP pesticides (14, 15). 
In this study we evaluated the inhibitory potency of  glyphosate 
concentrations ranging between 1 and 40 mmol/L on human 
recombinant AChE and human BChE isolated from plasma.

MATERIALS AND METHODS

Chemicals and enzymes

Analytical grade glyphosate (Sigma-Aldrich, St. Louis, MO, USA) 
with a declaration of  purity of  99.7 % was a generous gift from Dr 
Davor Želježić and Dr Vilena Kašuba (Institute for Medical Research 
and Occupational Health, Zagreb, Croatia). Stock solution 
(100 mmol/L) was prepared in sodium phosphate buffer solution 
(0.1 mol/L, pH 7.4) and further dilutions were made in buffer just 
before use.

Acetylthiocholine iodide (ATCh), thiol reagent 5,5′-dithiobis(2-
nitrobenzoic acid) (DTNB), and bovine serum albumin (BSA) were 
purchased from Sigma-Aldrich. Stock solution of  ATCh was 
prepared in water, while BSA and DTNB were prepared in sodium 
phosphate buffer (0.1 mol/L, pH 7.4).

Recombinant human AChE and purified human plasma BChE 
were a generous gift from Dr Florian Nachon (Armed Forces 

Biomedical Research Institute, Department of  Toxicology and 
Chemical Risk, Bretigny-sur-Orge, France) and were stored at 4 °C 
before use.

Reversible inhibition with glyphosate

Reversible AChE and BChE inhibition was measured by 
determining the decrease in enzyme activity towards substrate ATCh 
in the presence of  a wide range of  glyphosate concentrations 
ensuring 10–90 % inhibition. Enzyme activity was measured 
following a previously described procedure (16) and assayed with 
Ellman’s assay (17), where the inhibition mixture contained sodium 
phosphate buffer, enzyme (AChE or BChE), glyphosate (1–
40 mmol/L), DTNB (0.3 mmol/L), and ATCh (0.1–0.7 mmol/L) 
to start the reaction. 0.01 % BSA was added to the buffer for all 
measurements containing AChE. Measured activity in the presence 
of  glyphosate was corrected for spontaneous non-enzymatic 
hydrolysis of  ATCh. The assay was performed at 25 °C in 96-well 
plates on the Infinite M200PRO plate reader (Tecan Austria GmbH, 
Salzburg, Austria). The dissociation constants of  inhibition, Ki, were 
determined from at least three experiments as described previously 
(16) using the Prism9 software (GraphPad, San Diego, CA, USA).

The same data and the same software were used to approximate 
IC50 values from a nonlinear fit of  the glyphosate concentration 
logarithm values vs the percentage of  enzyme activity.

RESULTS AND DISCUSSION

Exposure to environmentally relevant glyphosate levels, 
presumably not harmful to humans, seems to have different effects 
from exposure to much higher glyphosate doses. Milić et al. (12) 
reported that low doses produced significant primary DNA damage 
and inhibited AChE but not BChE in glyphosate-exposed rats, even 
without increased markers of  oxidative stress. On the other hand, 
Larsen et al. (18) reported that glyphosate was a weak inhibitor of  
AChE in rats. Glyphosate showed a low potency to inhibit AChE 
in electric eel (Electrophorus electricus), as the inhibition was determined 
only at higher concentrations, namely 4.5 % and 11 % at 
0.75 mmol/L and 1 mmol/L, respectively (13). In equine serum, 
glyphosate was not able to inhibit BChE at concentrations up to 
1 mmol/L (13). While some research suggests that glyphosate 
inhibits about 20 % of  erythrocyte AChE at 5 mmol/L after 4 h 
of  incubation (11), the IC50 in human serum is estimated to be 
714 mmol/L (19), which is much higher than blood concentrations 
associated with indirect exposure (<0.05 mmol/L) or acute 
poisoning (0.05–5.0 mmol/L) (11). Here we determined that human 
AChE and BChE have a similar binding affinity (1/Ki) for glyphosate 
and that glyphosate reversibly inhibits both cholinesterases in the 
lower millimolar range (Figure 2, Table 1) with a slight binding 
preference for BChE. The inhibition profiles of  the upper panels 
in Figure 2 show similar Kapp for all tested substrate concentrations, 
indicating a non-competitive mode of  inhibition. We used the same 
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experimental data to approximate the IC50 values of  glyphosate for 
both cholinesterases (Figure 2, lower panels). As ATCh concentration 
did not significantly influence the degree of  inhibition, we 
determined a joint IC50 value for each enzyme by roughly projecting 
the point of  inflection of  the curve with the line representing 50 % 
of  enzyme activity inhibition on the x-axis. The approximated IC50 
values (Table 1) of  25.1 mmol/L for human AChE and 20.0 mmol/L 
for human BChE do not significantly differ from the dissociation 
constants of  inhibition. It is worth highlighting that we checked 
glyphosate ability to bind both enzymes covalently, and we can 
confirm that glyphosate is not a progressive inhibitor of  
cholinesterase, even though it is an organophosphate. Namely, only 
organophosphates with fully substituted phosphorus atom have a 
potential for the nucleophilic attack on the catalytic serine that results 
with conjugation and consequently with progressive inhibition of  
cholinesterases.

Concerning acute poisonings, a case study of  a patient who 
ingested a glyphosate-based herbicide and developed an intermediate-
like neurotoxicity syndrome revealed a decrease in serum levels of  
BChE (20). However, according to our results and other studies, 
cholinesterase inhibition seems unlikely to be a mechanism of  
neurotoxicity (10, 21, 22). In other words, the capacity of  glyphosate 
to induce oxidative stress, neuroinflammation, and mitochondrial 
dysfunction, processes that lead to neuronal death by autophagy, 
necrosis, or apoptosis (23), or to induce behavioural and motor 
disorders is not likely to be a consequence of  inhibited AChE 
activity. One study on human neuroblastoma SH-SY5Y cells (24) 
r e por t s  tha t  g l yphosa t e  and  i t s  ma in  me t abo l i t e , 
aminomethylphosphonic acid (AMPA), are cytotoxic and neurotoxic 
for neuronal development via oxidative stress and induce neurite 
outgrowth, apoptosis, autophagy, and necrotic signalling pathways.
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While in silico analyses imply poor glyphosate ability to pass the 
blood-brain barrier (BBB) (15), a systematic review by Costas-
Ferreira et al. (23) clearly documents the neurotoxicity and 
mechanisms of  action of  glyphosate in the nervous system of  
various animal species and humans. According to Martinez and 
Al-Ahmad (25), it seems that both glyphosate and AMPA can 
increase BBB permeability, possibly by interfering with the proteins 
that mediate hermetic junctions between BBB endothelial cells. This 
study also showed that glucose uptake by brain endothelial cells 
increased after exposure to high doses of  glyphosate.

Glyphosate also seems to exert a significant toxic effect on 
neurotransmission, with the glutamatergic system being one of  the 
most affected systems (24–28). Intranasal administration of  
glyphosate has been reported to reduce the number of  cholinergic 
neurons, which was evidenced by lower expression of  choline 
acetyltransferase (ChAT), the enzyme responsible for the synthesis 
of  neurotransmitter ACh, as well as of  the alpha-7 nicotinic ACh 
receptor (α7-nAChR) in the hippocampus (29). These effects could 
be responsible, at least in part, for anxiety, memory deficit and 
locomotor disturbances (30), as well as for lower body weight gain 
and depression-like behaviour, which implies the dopaminergic and 
serotoninergic system impairment (31). In addition, one study (32) 
has showed that glyphosate can infiltrate the brain, elevate the 
expression of  tumour necrosis factor alpha (TNFα) and soluble 

Figure 2 Glyphosate inhibition 
profiles for human AChE and 
BChE shown as the dissociation 
constant of  the enzyme-inhibitor 
complex (Ki, upper panels) and IC50 
values (lower panels) determined in 
the  p re sence  o f  subs t r a t e 
acetylthiocholine (ATCh) over a 
range of  glyphosate concentrations 
(c). The same dataset was used to 
determine both kinetic profiles. 
Inhibition was evaluated from four 
experiments measured at 25 °C

Table 1 Dissociation constants (Ki) of  glyphosate for human AChE and 
BChE and approximated IC50 values

Enzyme Ki
(mmol/L)

Approx. IC50
(mmol/L)

AChE 28.4±2.7 25.1

BChE 19.3±1.8 20.0
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amyloid beta (Aβ), and disrupt the transcriptome in a dose-
dependent manner.

CONCLUSION

Glyphosate is a weak inhibitor of  both human AChE and BChE. 
In other words, environmental exposure to glyphosate, which is in 
the micromolar range, does not inhibit acetylcholinesterase. 
Inhibition occurs only at very high, 1000-fold doses.
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Glifosat u okolišnim dozama slab je inhibitor aktivnosti ljudske acetilkolinesteraze i butirilkolinesteraze

Glifosat je vodeći herbicid na današnjem svjetskom tržištu, unatoč neprestanim raspravama između potrošača, znanstvene zajednice i 
regulatornih agencija o njegovoj kancerogenosti, genotoksičnosti, postojanosti u okolišu i utjecaju na razvoj neurodegenerativnih bolesti. 
Kemijski gledano, glifosat pripada velikoj obitelji pesticida, organofosfornim spojevima (OP) koji imaju neurotoksični učinak inhibirajući 
acetilkolinesterazu (AChE) i butirilkolinesterazu (BChE), esencijalne enzime kolinergičnoga sustava koji održava proces prijenosa živčanih 
impulsa. Iako su različita istraživanja pokazala da je glifosat slab inhibitor kolinesteraza u riba, sisavaca i ljudi u odnosu na druge 
organofosforne spojeve, još uvijek ne postoje konačni podatci o njegovoj inhibiciji ljudske AChE i BChE. U ovoj smo studiji analizirali 
inhibitorni potencijal za ljudsku AChE i BChE, procijenili IC50 vrijednosti i utvrdili reverzibilnu inhibiciju pomoću vrijednosti konstanti 
disocijacije inhibitora. Glifosat je gotovo u cijelosti inhibirao aktivnost enzima pri 40 mmol/L koncentraciji (preostalo je otprilike 10 % 
enzimske aktivnosti). Konstante disocijacije (Ki) kompleksa glifosat-AChE i -BChE iznose 28.4±2.7 mmol/L, odnosno 19.3±1.8 mmol/L. 
Zaključno, glifosat iskazuje malu sklonost za vezanje BChE, no pokazuje inhibiciju u rasponu visokih koncentracija. Rezultati ovoga 
istraživanja podupiru rezultate postojećih studija prema kojima neurotoksični učinak glifosata nije primarno vezan za kolinergični sustav.

KLJUČNE RIJEČI: AChE; BChE; herbicid; inhibicija; kolinesteraza; konstanta disocijacije; neurotoksičnost; organofosforni spojevi


