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MULTI-OBJECTIVE OPTIMIZATION OF SINGLE POINT
INCREMENTAL FORMING OF 316L STAINLESS STEEL USING
GREY RELATIONAL AND PRINCIPAL COMPONENT ANALYSES

Summary

The single point incremental forming process has a wide range of applications, and the
process can be carried out without any specialized tooling and punches. However, if the process
parameters are not carefully chosen, the components being manufactured are limited. This paper
presents the single point incremental forming of 316L stainless steel sheets of 0.8 mm in
thickness by varying input process parameters, such as tool diameter, wall angle, step depth,
spindle speed, and feed rate, to study their effect on output parameters, strain and surface
roughness. The Taguchi method was coupled with principal component analysis to identify the
optimum process parameter combination to improve strain and reduce surface roughness. The
wall angle has been determined to be the most influential process parameter, and the analysis
of variance showed that the wall angle had the highest contribution (52.44 %), followed by step
depth (18.55 %), tool diameter (9.72 %), spindle speed (1.64 %), and feed rate (0.83 %). The
suggested design of experiments determined the best process parameter combination and
executed the confirmation run. The grey relational analysis combined with principal component
analysis improved the single point incremental forming of 316L stainless steel sheets.

Key words: Single Point Incremental Forming, 316L Stainless Steel, Optimization, Grey
Relation Analysis, Principal Component Analysis, ANOVA

1. Introduction

Single Point Incremental Forming (SPIF) is a widely used alternative process in the sheet
metal industry; it is used for producing symmetric and asymmetric structures using Computer
Numerical Control (CNC) machines. The SPIF process was performed with a cylindrical tool
with a hemispherical or a flat head to follow the CNC tool path in the CNC machine. The SPIF
process parameters such as tool diameter and profile are used to create prototypes, panels, and
coverings for biomedical applications.

Experiments were conducted to predict the minimal time for producing 1.2 mm-thick
1060-O aluminium alloy sheets [1]. The Taguchi analysis indicated vertical pitch as the most
essential metric. The tool diameter, vertical pitch, and feed interacted strongly during the
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forming process. In the forming of 2024-O aluminium alloy sheets, Hussain et al. [2] observed
no significant influence of the sheet thickness or tool size separately but a substantial interaction
between the two. The experiments indicated that smaller tool sizes could not create thick sheets.

Salah Echrif and Maftah Hrairi [3] performed incremental shaping on 0.1mm-thick 1050-O
aluminium alloy sheets. They varied the Taguchi parameters to study surface roughness. The
increased tool radius with a shallower increment depth provided lower surface roughness. The grey
relational analysis (GRA) and response surface methodology (RSM) identified optimal responses
on a 0.4 mm-thick stacked copper sheet. The experiment feed rate was shown to be the most
important factor affecting springback and surface roughness. The plots revealed a strong connection
between the stacking of sheets and the vertical step down. The grey relational grade (GRG)
produced suggests that the proposed optimization strategy may be used for metal forging [4].

Taleb Araghi et al. [5] proposed a hybrid approach to the forming of the titanium alloy,
TiAl6V4, and the magnesium alloy, Mg-AZ31B; due to the hybrid approach, the forming time
was reduced and the component precision improved. Laser heating improves the formability of
titanium and magnesium alloys.

Amrut Mulay et al. [6] used the Design of Experiments (DOE) to increase the surface
quality and formability of the 1050-O aluminium alloy. The findings show that sheet thickness
and step depth influence surface quality and formability. The tool with a diameter of 8 mm
produced negligible springback effects compared to those produced by the tools with diameters
of10 mm and 12 mm, respectively. A larger tool diameter reduces the maximum forming angle.
Lu et al. [7] used the grey relational and principal component analyses to enhance the milling
of SKD61 tool steel. The proposed optimization method simplifies the correlated variables
while preserving the original data. The results confirm that the approach proposed in this study
can be a useful tool to improve the cutting performance of rough cutting processes in high-
speed end milling processes.

Pandivelan Chinnayan and Jeevanantham [8] used single-point incremental forming to
manufacture cold-rolled 5052 aluminium alloy sheets. The grey relational analysis was used to
improve surface roughness and strain sum. The weighting values were obtained using the
principal component analysis. The ball-end tool and lubrication minimized friction on the sheet
being produced. Surface roughness reduces formability. Vishal Gulati et al. [9] used three
different values of sheet thickness, two different tool radii, and three different lubricants to
create the 6063 aluminium alloy. The Taguchi analysis was carried out for the optimization of
process parameters to get better results. The surface roughness and component angle were
measured for all the components formed. Among the output parameters, the grey relational
coefficient (GRC) was found to be the most outstanding process parameter influencing surface
roughness. The forming wall angle increases with sheet thickness and tool rotational speed.

Pratheesh Kumar and Elangovan [10] used the response surface methodology to form
Inconel 718, utilizing incremental forming to improve the roughness, profile accuracy, and
thickness of the formed component. Surface roughness increases with step depth. Similarly,
viscosity increases surface roughness. Reducing the feed rate and vertical step depth may aid in
the control of springback. Following single-point incremental forming, Suresh Kurra et al. [11]
used finite element analysis (FEA) to find responses for Extra Deep Drawing (EDD) steel sheet
forming force, permanent strain, and thinning. The Taguchi orthogonal array was used in FEA
simulations. Numerical simulations were done in Python and MATLAB, customized for SPIF.

Ajay Kumar and Vishal Gulati implemented the Taguchi analysis [12] and carried out
experiments on the incremental forming of 2024-O and 6063-0O aluminium alloy sheets. The
forming force was determined using flat and hemispherical tools of varied sizes. Axial force
decreased as the wall angle increased up to 68 degrees, resulting in failure. A hemispherical
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tool produced the weakest forming force, whereas a flat-ended tool produced the strongest.
Ajay Kumar and Vishal Gulati [13] optimized the forming of 2024-O and 6063-O aluminium
alloy sheets by employing flat and hemispherical tool forms. A flat-end tool produced
inadequate surface roughness, whereas a hemispherical tool produced exceptionally good
surface roughness. Angshuman Baruah et al. [14] managed to produce good-quality 5052-H32
aluminium sheets using the SPIF technique. Feed rate had the weakest influence on optimum
formability and surface polish, whereas lubrication had the strongest.

Mariem Dakhli et al. [15] used GRA to optimize forming forces, forming time, and
surface roughness in the forming of 1050 aluminium alloy steel, DCO1 non-alloy cold-rolled
steel, and CuB2 copper alloy steel. The interaction between the rotating tool speed and feed rate
was found to be strong. Seyed Ali Asghar Asghari et al. [16] used GRA in single-point and
two-point incremental forming processes performed on 1050 aluminium alloy sheets. The
results confirmed that the high spindle speed affects formability by causing sheet thinning due
to the friction created.

Hani Mostafanezhad [17] optimized the maximum resultant force and thinning ratio in
the two-point incremental forming of 1050 aluminium. The wall angle was found to be an
essential factor influencing the thinning ratio, and sheet thickness was the one influencing the
forming force Maji and Gautam Kumar [18] calculated the forming wall angle, sheet thickness,
and surface quality of 5083 AA sheets. The proposed algorithm proved to be accurate in
obtaining good output responses.

Visagan A. et al. [19] performed SPIF experiments on an AISI 316 L sheet of uniform
thickness. The forming parameters, such as wall angle, feed rate, tool rotational speed, and
depth of forming, were varied. The difference between the test results and measured values for
a wall angle of 67° is between 1.49% and 4.48%. When the wall angle was 65°, the spindle
speed was 200 rpm, the feed rate was 1000 mm/min, the step depth was 0.2 mm, and the surface
roughness was 0.57 pm. For lower values of step depth and feed rate, the forming time was
maximum and vice versa. A minimum wall thickness of 0.12 mm was observed near the bottom
wall angle. Ganesh P et al. [20] conducted experiments in the single-point incremental forming
of 5052 aluminim alloy sheets to find the most optimum process parameter for obtaining
minimum surface roughness and maximum wall angle. The adopted optimization method
achieved good results for a feed rate of 500 mm/min, step depth of 0.4 mm, tool diameter of 10
mm, and spindle speed of 300 rpm. Among the considered input forming parameters, the
diameter of the tool used in the process had the greatest influence on surface roughness, and
tool rotational speed had the highest impact on wall angle.

Visagan A et al. [21] conduted Two-Point Incremental Forming (TPIF) on AISI 316L
sheets of uniform thickness for a double-wall angle cone. The Taguchi grey relational analysis
and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were
employed, and the optimization results of both methods were compared. The tool rotational
speed and step of forming were the most influential process parameters obtained from GRA
and TOPSIS, respectively. An improvement in the grey relational grade (GRG) of 0.3145 was
obtained from the method proposed by GRA, and an improvement in the closeness coefficient
of 0.1324 was obtained from TOPSIS. Visagan A et al. [22] conducted two-point incremental
forming on AISI 316 L sheets, keeping a single wall angle cone as the target geometry. The
wall angle of the component was fixed at 66°, whereas the other parameters, such as tool
diameter, step depth, spindle speed, and feed rate, were varied at three different levels. The
experiment results revealed that as the step depth increased, the height of forming also
increased; on the other hand, a greater step depth may also produce an over-formed component.
A wall angle of 65.12° was obtained when the step depth was kept at the maximum level; that
value is the closest value to that of the target geometry. Aminimum forming time of 65 minutes
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was obtained when the step depth was kept at the maximum level. When the roughness of the
components was measured in all trials, it was observed that the component roughness was at its
minimum in the centre and at its maximum at the top.

Hongwei Gao et al. [23] performed a dynamic simulation of cross-wedge rolling of LZ50
axle steel. The work was carried out to study the stress, strain, and temperature fields of the
workpiece in the forming process. The workpiece experienced radial compression, axial
extension, and lateral deformation when a wedge-shaped die was used. The influence of lateral
deformation on the deformation of the workpiece was minimal. In the stress field analysis,
compressive stress was noted at the wedging section while tensile and compressive stresses
were both identified at the widening and finishing sections. In the temperature analysis, the
uniform temperature was recorded on the surface and the internal areas.

Loganathan et al. [24] used the Taguchi design of experiments to optimize the single point
incremental forming of 6061 aluminium alloy sheets with a thickness of 1.15 mm. A step depth
of 0.5 mm, tool rotational speed of 200 rpm, and feed rate of 400 mm/min were identified as
the optimum combination of process parameters for obtaining a good surface finish and better
wall thickness. The step depth made a maximum contribution of 28.09%, followed by a tool
rotational speed contribution of 24.40 %, and that of the feed rate of 21.94%. The proposed
method was fairly accurate; the accuracy of the method can be further improved by applying
relevant multi-criteria decision-making algorithms in future experiments.

Karthick et al. [25] studied the variation in tensile properties of AISI 304 stainless steel
during gas metal arc welding. The gas metal arc variants were used under optimised conditions,
and a single V-butt groove with an angle of 60° and a thickness of 12 mm was produced. The
cold metal transfer gave an effective tensile strength of 657 MPa. The maximum elongation
observed was 19%, while that of the base metal was 45%. The results proved that due to the
electromagnetic force exerted during the cold metal transfer process, the tensile strength value
was the highest compared to those in the other proposed methods. The cold metal transfer joint
received a minimal heat input, resulting in a good joint efficiency and notch strength ratio.

Zhongfeng Zhang et al. [26] investigated the influence of paths on the outcomes of the
multi-point forming of double-curved pieces made of 1561 aluminium alloy by adopting a
multi-stage forming technique. The ABAQUS finite element simulation software was used to
do the numerical modelling of the multi-step shaping of curved sheets. The simulation findings
show that the shaping of 1561 aluminium alloy double-curved components is characterized by
wrinkling and low forming accuracy in single-step forming, but the accuracy and forming
quality improve greatly after four-step forming. As a result, a four-step forming approach was
used for stamping testing on double-curved components. The findings of the GOM-inspect
accuracy inspection of formed components show that a four-step process may successfully
enhance the quality of curved parts.

Wafa Taktak et al. [27] performed an experimental investigation into the fracture
toughness of the AA5754 H111 aluminium alloy under cold rolling reduction. A ductile tearing
test was conducted to determine the fracture toughness of the workpiece before and after cold
rolling. The mechanical characteristics of the unrolled and rolled AA5754 H111 aluminium
alloys were investigated using standard tensile tests in two directions as well as microhardness
testing. The cold rolling had a substantial influence on the fracture toughness parameter and the
mechanical characteristics of the AA5754 H111 aluminium alloy in the rolling and transversal
directions, according to the findings. The maximum strength was found in the radial direction,
whereas the greatest ductility was discovered in the transversal direction.

In this study, single wall angle cones were formed by varying input process parameters
such as tool diameter, wall angle, step depth, spindle speed, and feed rate. The output responses,
namely strain 1 (parallel to rolling direction), strain 2 (perpendicular to rolling direction), strain
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3 (diagonal to rolling direction), and the surface roughness parameters Ral, Ra2, and Ra3, were
studied and measured in the same direction as the strain was measured. The optimization was
carried out using the grey relational analysis (GRA) coupled with the principal component
analysis (PCA); the optimal combination to get improved strain was identified, and the
minimum surface roughness was calculated. The SEM analysis was carried out for the optimal
parameter combination.

2. Materials and Methodology

A circular cone was chosen as the geometric profile for the single-point incremental
forming of 0.8 mm thick 316L stainless steel sheets. Figure 1 (a) shows the SPIF process, while
Figure 1 (b) shows the target geometry created in the Pro-E design software. The SPIF
experiments were planned using a Vertimach V-510 Tal CNC milling machine, Figure 2. The
workpiece prepared for forming was a square sheet measuring 250 x 250 mm with a uniform
thickness of 0.8 mm. One side of the sheet was laser-etched with 4 mm circles and 1 mm gaps
between them to determine the surface strain during the SPIF process. The workpieces were
formed using 8 mm and 10 mm carbide tools with hemispherical tips.

100

Tool path

Tool rotation

Tool head

Initial configuration—

y 4
y 4
Backing

plate

Final configuration
Fixture

Fig. 1 (a) Schematic representation of the SPIF process; (b) Dimensions of the target geometry

Forming tool

Workpiece

SP-ISF fixture

Fig. 2 CNC milling machine used for the experiments

Taguchi's experimentation is used to anticipate optimal parameter selections in this study.
The degree of freedom must be determined to pick the best design. The Degree of Freedom
(DOF) is [2-1] + [4 (3-1)] + 1 = 10. Therefore, Lis Orthogonal Array (OA) was used, and Lis
(2! x 3%) was picked. Table 1 shows the factors and levels selected for this investigation, and
Table 2 shows the output responses of each experimental combination.
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Table 1 Experimental values and their levels

Input Factors Levels
Level1 | Level2 | Level 3
Tool diameter (mm) A 8 10
Wall angle (°) B 60 63 66
Step depth (mm) C 0.2 0.3 0.4
Spindle speed (rpm) D 100 200 300
Feed rate (mm/min) E 500 1000 1500

Table 2 Experimental layout and the response variables using L;s orthogonal array (OA)

Forming parameters and their levels Response variable
E;‘f . Tool Wall | Step | Spindle | Feed | Strain | Strain | Strain Ra Ra Ra
diameter | angle | depth | speed rate 1 2 3 1 2 3
1 8 60 0.2 100 500 | 0.8463 | 0.1574 | 0.8643 | 1.0110 | 1.3641 | 1.6931
2 8 60 0.3 200 1000 | 0.8010 | 0.1040 | 0.9234 | 1.0025 | 1.2351 | 1.4996
3 8 60 0.4 300 1500 | 0.7214 | 0.2947 | 0.7656 | 1.0100 | 1.3631 | 1.6916
4 8 63 0.2 100 1000 | 0.9083 | 0.1129 | 0.9995 | 1.0005 | 1.1591 | 1.3856
5 8 63 0.3 200 1500 | 0.8195 | 0.1426 | 0.8599 | 1.0410 | 1.3941 | 1.7381
6 8 63 0.4 300 500 | 0.8443 | 0.1011 | 0.8836 | 1.2350 | 1.5881 | 2.0291
7 8 66 0.2 200 500 | 0.9706 | 0.0922 | 0.9913 | 1.4530 | 1.8061 | 2.3561
8 8 66 0.3 300 1000 | 0.9388 | 0.0806 | 0.9535 | 1.0049 | 1.3381 | 1.6541
9 8 66 0.4 100 1500 | 0.9589 | 0.1715 | 0.9943 | 1.5820 | 1.9351 | 2.5496
10 10 60 0.2 300 1500 | 0.9877 | 0.2694 | 0.9979 | 1.2291 | 1.4906 | 1.0025
11 10 60 0.3 100 500 | 09194 | 0.2452 | 0.9216 | 1.6531 | 2.1266 | 1.3000
12 10 60 0.4 200 1000 | 0.7908 | 0.3161 | 0.8851 | 1.3991 | 1.7456 | 1.0460
13 10 63 0.2 200 1500 | 0.9434 | 0.1657 | 0.9725 | 1.4741 | 1.8581 | 1.1210
14 10 63 0.3 300 500 | 0.8962 | 0.1592 | 0.9396 | 1.6261 | 2.0861 | 1.2730
15 10 63 0.4 100 1000 | 0.9463 | 0.2091 | 0.9591 | 1.8551 | 2.4296 | 1.5020
16 10 66 0.2 300 1000 | 0.9976 | 0.1027 | 0.9359 | 1.3441 | 1.6631 | 1.0126
17 10 66 0.3 100 1500 | 0.9424 | 0.0937 | 0.9467 | 1.2381 | 1.5041 | 1.0003
18 10 66 0.4 200 500 | 09156 | 0.1693 | 0.9126 | 1.1541 | 1.3781 | 1.0078

3. Results, Analysis, and Discussion

The current study uses the grey relational analysis (GRA) coupled with the principal
component analysis (PCA) to optimise strain and surface roughness. The orthogonal array
determines the experimental data using the appropriate process parameters. The observed
outputs were surface roughness and strain for the circular cone geometry. To achieve maximum
strain and minimum surface roughness, a mixed-level Lis orthogonal array was developed. The
signal-to-noise (S/N) ratio was calculated using Equations (1) and (2) for surface roughness and
strain, respectively, and the values are shown in Table 3.

1 n
For “the smaller, the better”, the S/N ratio () = —10log,, (—jZ( y;) (D
nyi-

1 n
For “the larger, the better", the S/N ratio () = —10log,, (—jZ(l / y;) ()
=

Here ‘n’ stands for replications, and y; is the response.
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The S/N ratio normalization for strain and surface roughness has been determined using
Equations (3) and (4), and the calculated values are shown in Table 4. The grey relational
coefficient (GRC) and grey relational grade (GRG) are calculated using Equation (5) and
Equation (6), respectively.

(max ¥, -Y,)

L= 3
" (maxY, —minY)) )

Y. —minY,
= (U mln.y) @

(max ¥, —minY,)
For GRC,

5 _Amin+/7’Amax (5)

TOA A,

where, 4 is the distinguishing coefficient, (0 < 4 <1). GRG is calculated and shown in Table 6.
1 <
Gi :;ijlﬂjgij ’ (6)

where m is the number of responses, and y; is the normalised weighting value from PCA shown

in Table 6. Principal component analysis is a numerical method for constructing variance-
covariance using linear groups of each constraint. The unique multi-objective matrix Y is
formed using Equation (7).

»n@  »® »(n)
s B0 n@ oy -
Vu(m) v, (n) () y,(n)
vi (j) =i=1,2,..., m = SPIF experiment number, j = 1,2,..., n = output responses. In this case,

n =6, m =18, and y = GRC of each output from Table 4. Equation (1) yields the correlation
coefficient matrix Cj (8),

_| _covi(1).y,(D) ,j=1,2,...nand =1,2....n, (8)
sdev y,(/)-sdev ,(0)

J

where cov(y,(j),,(I))is the covariance of orders of y.(j)and y,([), sdevy.(j) and
2, 7, =n are the standard deviations of ¥,(j)and y,(/), respectively. The next step in PCA

is to obtain the eigenvalues and eigenvectors from the matrix using Equation (9).
(C-7,4,) B, = 0 ©)

A total of eighteen tests were performed, with one input parameter having two levels and
the other four having three levels. Tables 6 and 7 show the eigenvalues and eigenvectors
obtained using Equation (9). Table 8 shows the contribution of the initial principal component
response. The square of the eigenvector matrix yields the value of the principal component
contribution.
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Table 3 S/N ratio for the obtained responses

S/N RATIO
Exp. no Strain Strain Strain Ra Ra Ra
1 2 3 1 2 3
1 -1.4497 -16.0621 -1.2667 -0.0950 -2.6969 -4.5734
2 -1.9277 -19.6568 -0.6921 -0.0213 -1.8340 -3.5192
3 -2.8365 -10.6119 -2.3198 -0.0864 -2.6906 -4.5657
4 -0.8354 -18.9442 -0.0048 -0.0039 -1.2824 -2.8324
5 -1.7288 -16.9186 -1.3113 -0.3490 -2.8859 -4.8012
6 -1.4702 -19.9047 -1.0744 -1.8333 -4.0176 -6.1459
7 -0.2589 -20.7064 -0.0763 -3.2453 -5.1348 -7.4437
8 -0.5486 -21.8777 -0.4140 -0.0424 -2.5298 -4.3710
9 -0.3646 -15.3155 -0.0500 -3.9841 -5.7341 -8.1293
10 -0.1079 -11.3912 -0.0186 -1.7917 -3.4669 -0.0213
11 -0.7297 -12.2079 -0.7094 -4.3660 -6.5535 -2.2789
12 -2.0386 -10.0049 -1.0597 -2.9170 -4.8386 -0.3906
13 -0.5065 -15.6145 -0.2423 -3.3705 -5.3811 -0.9921
14 -0.9520 -15.9591 -0.5415 -4.2229 -6.3865 -2.0966
15 -0.4790 -13.5933 -0.3630 -5.3673 -7.7105 -3.5334
16 -0.0212 -19.7663 -0.5757 -2.5686 -4.4181 -0.1089
17 -0.5158 -20.5656 -0.4759 -1.8551 -3.5452 -0.0028
18 -0.7655 -15.4265 -0.7948 -1.2449 -2.7853 -0.0677
Table 4 Normalised S/N ratio for the obtained responses
Normalised S/N RATIO
Exp. no Strain Strain Strain Ra Ra Ra
1 2 3 1 2 3
1 0.4926 0.4898 0.4549 0.9830 0.7799 0.4376
2 0.3228 0.1871 0.7031 0.9968 0.9142 0.5673
3 0.0000 0.9489 0.0000 0.9846 0.7809 0.4385
4 0.7108 0.2471 1.0000 1.0000 1.0000 0.6518
5 0.3935 0.4177 0.4356 0.9357 0.7506 0.4095
6 0.4853 0.1662 0.5380 0.6589 0.5745 0.2441
7 0.9156 0.0986 0.9691 0.3956 0.4007 0.0844
8 0.8127 0.0000 0.8232 0.9928 0.8060 0.4625
9 0.8780 0.5527 0.9805 0.2579 0.3075 0.0000
10 0.9692 0.8832 0.9940 0.6667 0.6602 0.9977
11 0.7483 0.8145 0.6956 0.1867 0.1800 0.7199
12 0.2834 1.0000 0.5443 0.4569 0.4468 0.9523
13 0.8276 0.5275 0.8974 0.3723 0.3624 0.8783
14 0.6694 0.4985 0.7682 0.2134 0.2060 0.7424
15 0.8374 0.6978 0.8453 0.0000 0.0000 0.5655
16 1.0000 0.1778 0.7534 0.5218 0.5122 0.9869
17 0.8243 0.1105 0.7965 0.6548 0.6480 1.0000
18 0.7356 0.5434 0.6588 0.7686 0.7662 0.9920
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Table 5 Calculated grey relational coefficient (GRC) and grey relational grade (GRG) for 18 experiments

Exp GRC Weighted GRG

no GRC GR_C GR_C GRCRal |[GRCRa2| GRCRa3 Grade Rank
Strain 1 Strain 2 Strain 3

1 0.4963 0.4950 0.4784 0.9671 0.6944 0.4706 0.1121 11
2 0.4247 0.3808 0.6274 0.9936 0.8535 0.5361 0.2407 7
3 0.3333 0.9072 0.3333 0.9701 0.6954 0.4710 -0.3619 10
4 0.6335 0.3991 1.0000 1.0000 1.0000 0.5895 0.4861 2
5 0.4519 0.4620 0.4698 0.8860 0.6672 0.4585 0.1455 15
6 0.4928 0.3749 0.5197 0.5945 0.5403 0.3981 0.3759 18
7 0.8555 0.3568 0.9418 0.4528 0.4548 0.3532 0.7278 14
8 0.7275 0.3333 0.7388 0.9859 0.7204 0.4819 0.4357 6
9 0.8039 0.5278 0.9624 0.4025 0.4193 0.3333 0.5593 12
10 0.9420 0.8107 0.9882 0.6000 0.5954 0.9955 0.5000 1
11 0.6652 0.7293 0.6216 0.3807 0.3788 0.6410 0.3168 13
12 0.4110 1.0000 0.5232 0.4793 0.4747 0.9129 -0.0758 8
13 0.7436 0.5141 0.8298 0.4434 0.4395 0.8042 0.5807
14 0.6020 0.4993 0.6832 0.3886 0.3864 0.6599 0.4644 17
15 0.7546 0.6233 0.7637 0.3333 0.3333 0.5351 0.4687 16
16 1.0000 0.3782 0.6697 0.5112 0.5062 0.9745 0.9006
17 0.7400 0.3598 0.7107 0.5916 0.5868 1.0000 0.7126 5
18 0.6541 0.5227 0.5944 0.6836 0.6814 0.9843 0.4930 3

Table 6 shows that the first principal component (PC) has a considerable effect (42.6%);
therefore, the percent contribution of the first PC was established as weighted production
(Table 8). Thus, in Equation (6), the weighted coefficients were adjusted to w1 = 0.511,
w2 =-0.559, u3=0.026, us =-0.477, us = 0.381, and w6 = 0.23. Table 5 shows the GRC and the
weighted GRG for each combination performed after the substitution of the individual weight
values.

Table 6 Eigen values and variations of principal components (PCs)

PC Eigen value Explained Variation (%)
First 2.558 42.6
Second 1.6454 27.4
Third 1.0509 17.5
Fourth 0.5549 9.2
Fifth 0.1711 2.8
Sixth 0.0199 0.33

The single GRG now optimizes the multi-objective optimization. Table 9 shows the
average weighted GRG for each level. The higher the GRG number, the more influential the
process parameter becomes. Accordingly, the optimal sequence of input process parameters
was chosen as follows: tool diameter (A2 - 10 mm), wall angle (B3 — 66°), step depth
(CI - 0.2 mm), spindle speed (D1 - 100 rpm), and feed rate (E2 - 1000 mm/min).

The ANOVA has a wide range of applications but it has been adopted in a minimum
number of studies [28]. ANOVA assigns proportions to multiple inputs based on the variability
of the response variable. It is possible to find the most important response variable. Fisher's
F-test was used to determine the most critical forming parameter based on GRG. The results of
the ANOVA for the weighted GRG are shown in Table 10.
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The table shows that the wall angle contributes 52.44 percent, followed by step depth
(18.55 percent), tool diameter (9.72 percent), spindle speed (1.64 percent), and feed rate
(0.83 percent). Table 10 also shows that the range value of weighted GRG is the greatest for
component B, then for C, A, D, and E in descending order. As it can be observed, wall angle
(B) has a greater impact on the multi-objective response than other characteristics.

Table 7 Eigenvectors of PCs

5::&‘;)‘;:: First Second Third Fourth Fifth Sixth
Strain 1 0.511 0.362 0.151 -0.016 0.73 -0.227
Strain 2 -0.559 0.259 0.21 0.114 0.416 0.625
Strain 3 0.026 -0.631 0.259 0.689 0.23 -0.081

Ral -0.477 0.378 0.381 0.188 -0.133 -0.657
Ra?2 0.381 0.493 0.052 0.592 -0.419 0.29
Ra3 0.23 -0.135 0.847 -0.356 -0.219 0.188
Table 8 Contribution of response variables
Response variable Contribution
Strain 1 4.5625
Strain 2 -4.9911
Strain 3 0.2321
Ral -4.2589
Ra2 3.4018
Ra3 2.0536
Table 9 Response table for weighted GRG
. Average weighted GRG
Forming Parameter Rank
Level 1 Level 2 Level 3 Range
Tool diameter (mm) | A 0.3024 0.4845" 0.1821 3
Wall angle (°) B 0.122 0.4202 0.6382# 0.5162 1
Step depth (mm) C 0.5512# 0.386 0.2432 0.3080 2
Spindle speed (rpm) | D 0.4426" 0.352 0.3858 0.0906 4
Feed rate (mm/min) E 0.415 0.4904# 0.356 0.0590 5
Overall mean GRG = 0.3935, # Optimum Level
Table 10 Results of ANOVA for weighted GRG
Source DF Sum of square | Mean square F-value Fac::)tlzc:l Contribution
A 1 0.14935 0.149346 4.62 1.5 9.72%
B 2 0.80579 0.402893 12.47 1.6 52.44%
C 2 0.28512 0.142558 4.41 1.6 18.55%
D 2 0.02515 0.012577 0.39 1.6 1.64%
E 2 0.01271 0.006356 0.2 1.6 0.83%
Error 8 0.2585 0.032312 16.82%
Total 17 1.53661 100.00%

As shown in Figure 3 (a) a tool diameter of 10 mm, a wall angle of 66°, a step depth of
0.2 mm, a spindle speed of 100 rpm, and a feed rate of 500 mm/min were found to be the
optimum combination for achieving strain 1. Figure 3 (b) shows that the S/N ratio has the
primary effect on strain 2. The maximum strain 2 was achieved with the following parameters:
tool diameter of 10, step depth of 0.4, feed rate of 1500 mm/min, wall angle of 60°, and spindle
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speed of 100 rpm. For strain 3, Figure 3 (c) shows the S/N ratio for primary effects. In order to
achieve the maximum strain 3, the tool has to be 10 mm in diameter with a 0.2 step depth,
66° wall angle, 1000 mm/min feed rate, and 100 rpm spindle speed.

Figure 4 (a) shows the S/N ratio for the major impacts on Ra 1. A tool diameter of 10 mm,
a spindle speed of 100 rpm, a wall angle of 63°, a step depth of 0.4 mm, and a feed rate of
500 mm/min were shown to be the best combination for achieving reduced Ra 1. Figure 4 (b)
shows the S/N ratio for the major impacts on Ra 2. The ideal combination for achieving
minimum Ra 2 was determined to be a tool diameter of 10 mm, a wall angle of 63°, a step depth
of 0.4 mm, a spindle speed of 100 rpm, and a feed rate of 500 mm/min. Figure 4 (c) shows the
S/N ratio for the major impacts on Ra 3. A tool diameter of 8 mm, a wall angle of 63°, a step
depth of 0.4 mm, a spindle speed of 100 rpm, and a feed rate of 500 mm/min were shown to be
the best combinations for achieving reduced Ra 3.

Confirmation tests check optimal parameter settings. The optimal predicted grey

relational value is:

Y=Y+>(¥,-X) (10)

where Y, is the mean GRG, and Y, is the mean GRG at optimal condition.

(a) Main Effects Plot for SN ratios for Strain 1 (b) Main Effects Plot for SN ratios for Strain 2
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(c) Main Effects Plot for SN ratios for Strain 3
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Fig. 3 (a) S/N ratio plot for Strain 1, (b) S/N ratio plot for Strain 2, (¢) S/N ratio plot for Strain 3
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(a) Main Effects Plot for SN ratios for Ra 1 (b) Main Effects Plot for SN ratios for Ra 2
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Fig. 4 (a) S/N ratio plot for Ra 1, (b) S/N ratio plot for Ra 2, (¢) S/N ratio plot for Ra 3

Table 11 Results of confirmation experiments

Optimal parameter combination

Responses Prediction Experimental

A2B3C1D1E2| A2B3C1DI1E2
Strain 1 - 0.9936
Strain 2 - 0.3156
Strain 3 - 0.9992
Ral - 1.1024
Ra?2 - 1.2687
Ra3 - 1.0008
Weighted GRG 0.9575 0.9226

Table 11 shows the findings of the confirmation test, which revealed that the obtained
GRG was 0.9226. The projected outcome was estimated at 0.9575. The GRG value obtained in
the confirmation run was increased by 3.5 percent.

Figure 5 shows the structural modification of the component formed using the optimum
process parameter combination. Location 1 depicts the unformed zone microstructure of the
base metal. The SEM micrograph shows austenite grain boundaries and reveals unaltered
austenite grains. Location 2 depicts the first developing zone, with marginal banding. The
microstructure in cross-section shows the development of strain banding; austenite grains are
undeformed but overlapped by bands. Location 4 demonstrates the severity of strain bands with
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distorted austenite grains in the forming direction. Austenite grain fragmentation was detected.
Location 5 has no banding owing to a minimal decrease in austenite grain fragmentation.
However, the tension caused the development of slip bands.

LOCATION 1 LOCATION 2

LOCATION 4

Fig. 5 SEM micrographs of the conformation specimen

4. Conclusion

A set of Lis experiments in the SPIF process using the grey relational analysis and the
principal component analysis were done to assess the consistent weighting values of individual
performance. A combination of GRA and PCA may efficiently find the optimum process
parameters from validation studies. So, the following approach may be used to improve the
SPIF process:

— From ANOVA results with a significance level of 95 %, it was concluded that the
parameters that influence the strain and surface roughness are wall angle and step depth
at 52.44 % and 18.55 %, respectively. Similarly, the parameters that have the least
influence on the strain and surface roughness are tool diameter, spindle speed, and feed
rate at 9.72 %, 1.64 %, and 0.83 %, respectively.

— The maximum strain and the minimum surface roughness can be obtained
experimentally by keeping the parameters at the optimal combination of A2 (tool
diameter of 10 mm), B3 (wall angle of 66°), C1 (step depth of 0.2 mm), D1 (spindle
speed of 100 rpm), and E2 (feed rate of 1000 mm/min).
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— The tool with a larger diameter will have a larger contact area with the sheet being
formed, which increases formability.

— Lower surface roughness has been achieved while considering the higher end of the
tool of 10 mm in diameter, a wall angle of 66°, and a feed rate of 1500 mm/min. The
higher strain has been achieved while considering a lower tool diameter of 8 mm, lower
step depth of 0.2 mm, and a lower spindle speed of 100 rpm.

— The SEM micrograph shows grains of austenite not deformed during incremental
forming.
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