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Abstract – Flood is a significant problem in many regions of the world for the catastrophic damage it causes to both property 
and human lives; excessive precipitation being the major cause. The AI technologies, Deep Learning Neural Networks and Machine 
Learning algorithms attempt realistic solutions to numerous disaster management challenges. This paper works on RNN-
based rainfall/ precipitation forecasting models by investigating the performances of various Recurrent Neural Network (RNN) 
architectures, Bidirectional RNN (BRNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and ensemble models such 
as BRNN-GRU, BRNN-LSTM, LSTM-GRU, BRNN-LSTM-GRU using NASAPOWER datasets of Andhra Pradesh (AP) and Tamil Nadu 
(TN) in India. The different stages in the workflow of the methodology are Data collection, Data pre-processing, Data splitting, 
Defining hyperparameters, Model building and Performance evaluation. Experiments for identifying improved optimizers and 
hyperparameters for the time-series climatological data are investigated for accurate precipitation forecast. The metrics: Mean 
Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE) and Root Mean Squared Logarithmic Error (RMSLE) 
values are used to compare the precipitation predictions of different models. The RNN variants and ensemble models, BRNN, LSTM, 
GRU, BRNN-GRU, BRNN-LSTM, LSTM-GRU, BRNN-LSTM-GRU produce predictions with RMSLE values of 2.448, 0.555, 0.255, 1.305, 
1.383, 0.364, 1.740 for AP and 1.735, 0.663, 0.152, 0.889, 1.118, 0.379, 1.328 for TN respectively. The best performing RNN model, GRU 
when ensembled with the existing statistical model SARIMA produces an RMSLE value of 0.754 and 1.677 respectively for AP and TN.

Keywords: deep Learning, optimizers, hyperparameters, RNN, BRNN, LSTM, GRU, SARIMA 

1.  INTRODUCTION

Around the world, floods regularly cause enormous 
losses; India also suffers the most serious damages [1, 
2]. The prime cause being excessive precipitation [3, 4] 
that occurs suddenly resulting in hazardous flood con-
ditions and difficulties for the people. Out of all natural 
disasters, floods in India account for 56% of all fatalities 
[4]. According to Central Water Commission (CWC) data 
for India, between 1953 and 2020 there was an aver-
age of 1676 flood-related fatalities every year.  Table 1 
depicts the Flood-affected areas and flood damages in 
India during the period from 1953 to 2020 [5].

In the statement on the climate of India released 
by the India Meteorological Department (IMD) in the 
year 2022 [6] concerning the data from 1971 to 2020, 

the majority of India had a high long-period average 
(LPA) precipitation of 108%. During the years, South 
Peninsular India received seasonal monsoon precipita-
tion equal to 122% LPA; Central India and Northwest 
India received seasonal precipitation equal to 119% 
and 101% LPAs respectively; and East & Northeast India 
received seasonal monsoon precipitation equal to 82% 
LPA [7]. The heavy rainfall days showed significantly in-
creasing flood trends over peninsular India [8]. The im-
pact of excessive rainfall is the cause of flood frequency 
in various parts of the world especially India, Indonesia 
and Spain [8-11]. Also, from [9] and [11], the amount 
of daily rainfall turned out to have a stronger correla-
tion with floods. This thought motivates the research to 
make flood forecasts for safe living in extreme rainfall-
receiving areas of India. Rainfall events are classified 
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as moderate when it is between 2.5 and 64.5 mm/day, 
while events that fall beyond 64.5 mm/day are classi-
fied as heavy rainfall [8]-[10]. So, when the rainfall is 
over 64.5 mm/day, there are chances of flooding. Thus, 
this research which involved rainfall prediction is im-
portant to forecast flood risk based on predicted rain-
fall values greater than 64.5 mm/day.

Flooding is possible in heavy precipitation-receiving 
regions like South Peninsular India or South India. The 
union territories of the Andaman and Nicobar Islands, 
Lakshadweep and Puducherry are included in South In-
dia in addition to the Indian states of Andhra Pradesh, 
Karnataka, Kerala, Tamil Nadu and Telangana. South 
India encompasses 20% of the nation's population 
and 19.31% of its total area (635,780 km2 or 245,480 
sq. miles) [12]. It is well recognized that anticipating 
flood disasters requires an awareness and analysis of 
variations in precipitation [13]. The purpose of this re-
search is to analyze time-series climatological data and 
execute RNN-based precipitation forecast models to 
prevent flooding in two of the states in South Penin-
sular India: Andhra Pradesh (AP) and Tamil Nadu (TN). 
The daily precipitation values of TN and AP for the last 
20 years from 2002 to 2022 as identified from the NA-
SAPOWER dataset [14], range from 0 to 178.98 mm/day. 

Table 1. Flood damages in India from1953 to 2020

Description of Flood 
Damages

Measure 
Unit

Total 
damage

Average 
damage

Area Affected
million 

hectares 
(m.ha.)

493 7.24

Population Affected million 2199 32.34

Crops Area Affected m. ha. 276 4.06

Values of Crops Affected Rs. Crore 131462 1933.27

Number of Houses 
Damaged Nos. 82525198 1213606

Value of Damaged Houses Rs. Crore 57018 838.50

Number of Cattle Lost Nos. 6182943 90926.00

Number of Human Lives 
Lost Nos. 113943 1676.00

Value of Damaged Public 
Utilities Rs. Crore 234149 3443.37

Value of Total Damages 
(Inc. Houses, Crops, public 

utilities)
Rs. Crore 437150 6428.67

Presently, many technologies, including Artificial In-
telligence (AI), Machine Learning (ML), and Deep Learn-
ing (DL) provide solutions for different domains of di-
saster management. ML algorithms, such as Regression 
[15], Support Vector Machine (SVM) [7], Decision Trees 
(DT) [16, 17], Naive Bayes [18] and K-Nearest Neighbors 
(KNN) [19] have been effectively used to construct pre-
cipitation prediction or classification models in a vari-
ety of domains. DL algorithms, such as Artificial Neural 
Networks (ANN) [20], Recurrent Neural Networks (RNN) 
[21, 22], Convolutional Neural Networks (CNN) [23] 
and Generative Adversarial Networks (GAN) [24] play 

an essential role in processing and analyzing massive 
amounts of precipitation data to deliver meaningful 
information. Venkatesh, et al. (2021) [25] constructed 
a precipitation prediction system using GAN with a 
CNN upon time-series annual precipitation data of 36 
subdivisions in India from 1901 to 2015. This provided 
a better prediction for summer, winter, pre-monsoon, 
and post-monsoon precipitations with an accuracy of 
99%. S Aswin, et al. (2018) [26] developed a model for 
predicting precipitation using DL architectures, LSTM 
and CNN for the Global Precipitation Climatology Proj-
ect (GPCP) upon a monthly precipitation dataset that 
encompasses the time frame of July 1979 to January 
2018. Also, it declared that LSTM and CNN produced 
RMSE of 2.55 and 2.44 respectively.

Haq, et al. [27] constructed an LSTM model based 
on El-Nino and Indian Ocean Dipole (IOD) precipita-
tion data to predict precipitation for Sidoarjo, East 
Java and Indonesia. With a hidden layer, batch size and 
drop period of 100, 32 and 150 respectively, the model 
performed with a Mean Arctangent Absolute Percent-
age Error (MAAPE) value of 0.5810. Dechao et al. [28] 
created a DL-based forecast on the intensity of the re-
gional precipitation in the next two hours with the use 
of 3 dimensional CNN (Conv3D), GRU algorithms and 
radar images. Ouma, et al. [29] presented precipitation 
and time-series trend analysis using LSTM and Wavelet 
Neural Networks (WNN). Moreover, predictions were 
made using hydrologic basin precipitation streamflow 
data and satellite-based meteorological data from 
1980–2009. Both models performed well and predicted 
the precipitation with R2 values of 0.8610 and 0.7825 
respectively. Samad et al.  [30] built a model for rain-
fall prediction based on an Australian dataset for the 
regions of Albany, Walpole, and Witchcliffe. The LSTM 
network outperformed the ANN after comparison us-
ing different performance measures including MSE, 
RMSE and MAE. The LSTM model accurately predicted 
the precipitation with RMSE values of 5.343, 6.280, and 
7.706 for the three regions respectively. Dada et al. [21] 
proposed four Neural Network models: Feed Forward 
Neural Network (FFNN), RNN, Elman Neural Network 
(ENN) and Cascade Forward Neural Network (CFNN) 
for predicting precipitation using India's precipitation 
data from the Kaggle repository. Additionally, it is clear 
from the statistical findings that the ENN model outper-
formed the other three models. ENN was discovered to 
have the best performance with the lowest RMSE, MSE, 
and MAE values of 6.360, 40.45, and 0.54 respectively. 
Saha et al. [31] used an ensemble regression tree model 
utilizing data from 1948 to 2015 for estimating mon-
soon precipitation over homogeneous regions of India. 
Forecast errors for the monsoons in central, northeast, 
north-west and south-peninsular India are 4.1%, 5.1%, 
5.5% and 6.4% respectively.

From the baseline references [1-5], it is found nec-
essary to build an effective flood warning system to 
prevent recurring harm sustained by people. Also, pre-
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cipitation is the most significant reason for generating 
floods. Time-series data-based precipitation forecast 
can aid in the decision-making processes associated 
with flood and disaster to manage, flood, control floods 
and plan safety preparations [31, 32]. 

Also, based on a survey of related work [21, 25-31], it 
has been determined that articles for predicting pre-
cipitation use DL neural network models such as LSTM, 
ANN, GRU, FFNN, RNN, ENN, and CFNN. Also, measures 
such as RMSE and MAE are used to assess the expected 
precipitation. Thus, to assist in the decision-making 
procedures for preventing floods which demand ex-
tremely precise predicted precipitation, the study de-
cides to carry out experiments and a thorough analysis 
by experimenting with a variety of optimizers and hy-
perparameters to forecast precipitation using RNN vari-
ants on time-series precipitation data. This study focus-
es on creating RNN variant models using BRNN, LSTM, 
GRU and ensemble models such as BRNN-GRU, BRNN-
LSTM, LSTM-GRU and BRNN-LSTM-GRU to improve 
the effectiveness of RNN-based precipitation forecast. 
Finally, the paper also attempts an ensemble model for 
predicting precipitation using the lowest-error models 
of RNN variants with the statistical model, SARIMA. The 
most effective optimizer and hyperparameters as iden-
tified from the experiments are selected to predict pre-
cipitation using the RNN variant model. Also, the results 

of the proposed RNN variants and ensemble models 
are compared in terms of error metrics, with those from 
publications by S. Aswin et al. [26], Haq et al. [27], Ouma 
et al. [29], Samad A, et al. [30], Dada et al. [21], and Saha 
et al. [31]. The comparative analysis demonstrates that 
the proposed model outperforms all other models and 
techniques under comparison.  The rest of this paper is 
organized in three more sections: Section 2 describes 
the workflow of the proposed methodology; Section 3 
presents the results of the experiments and Section 4 
summarizes the findings of the proposed work.

2. PROPOSED SYSTEM 

The proposed methodology for designing the models 
for daily precipitation forecasting for the southern states 
of AP and TN is shown in Fig. 1. The proposed system 
predicts precipitation for AP and TN using RNN variants 
such as BRNN, LSTM, GRU, and ensemble models such 
as BRNN-GRU, BRNN-LSTM, LSTM-GRU and BRNN-LSTM-
GRU with suitable hyperparameters and optimizers. The 
different stages in the workflow of the methodology 
are Data collection, Data pre-processing, Data splitting, 
Defining hyperparameters, Model building and Perfor-
mance evaluation. Time-series-based precipitation data 
from 2002 to 2022 is downloaded from the NASAPOWER 
website- https://power.larc.nasa.gov/ [14]. 

The best hyperparameters and optimizers for the RNN 
variants, BRNN, LSTM and GRU are identified and used 
to build the precipitation forecast models. Several en-
semble models like BRNN-GRU, BRNN-LSTM, LSTM-GRU 
and BRNN-LSTM-GRU are also experimented with for 
predicting precipitation. The performances of different 
RNN and the ensemble models are evaluated using MSE, 
RMSE, MAE and RMSLE. Finally, a GRU-SARIMA is created 
with the lowest error-producing GRU and the existing 
statistical model SARIMA for predicting precipitation.

2.1. DATASET

The time-series data is obtained from the website 
https://power.larc.nasa.gov/ [14] for training the DL 
and ensemble algorithms. This website provides clima-
tological data obtained from satellite observations of 
agricultural and renewable energy usage. The time-se-
ries climatological dataset is collected for the southern 
Indian states of AP and TN in Comma-Separated Value 
[CSV] file format for the years from 2002 to 2022. This 
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Test Data FileTest Dataset

Visualize -Error
values

Model Built

Dataset

Evaluate model from Actual and
Predicted precipitation values

Model Evaluation

Preprocessing

Data Cleaning, Data Analysis, 
Feature Scaling
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Validating Dataset

Define &Train models: LSTM, 
BRNN, GRU,  BRNN-GRU, 
BRNN-LSTM, LSTM-GRU, 

BRNN-LSTM-GRU and GRU-
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Optimizer and Hyperparameter
Selection

Building Models

Choose Best 
Model

Best model
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Fig. 1. Methodology of the proposed RNN based precipitation forecast system
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time-series dataset had 7670 records. In this study, only 
the precipitation data and the corresponding date of 
year are taken from the dataset. The date of year fea-
ture is created using the to_datetime () function in the 
pandas package of Python. This forms a univariate time 
series of precipitation data covering 20 years from 2002 
to 2022. Utilizing the Python packages pandas and 
matplotlib, the dataset is visualized as in Fig. 2 which 

shows the daily, weekly and monthly precipitation to-
tals of AP and TN states for the years 2002–2022. Fig. 
2 depicts the fluctuation in precipitation and the peak 
points corresponding to the highest and lowest pre-
cipitation.

Every year from June to December, a time series pat-
tern in the form of increasing trends in precipitation is 
seen in the TN and AP statistics.

(a)

(b)

Fig. 2. Line Plots showing increasing trends in the daily, weekly, and monthly precipitation statistics of a) 
Andhra Pradesh b) Tamil Nadu from 2018 to 2022

Fig. 2 illustrates the seasonal pattern in the precipi-
tation data for the AP and TN states. Thus, the use of 
RNN variant models, which are univariate time series 
forecasting models is suggested for flood prediction 
since RNN variants capture time dependency in the 
data and so are better at prediction than other models. 
Additionally, time-series data is particularly well-suited 
for RNN [33, 34]. The likelihood of catastrophic flooding 
increases with heavy precipitation and so precipitation 
forecasting is necessary to prevent severe casualties. 

2.2. DATA PREPROCESSINg

Pre-processing is done on the data to remove any 
null, empty or outlier data or to replace them with the 

right data before training RNN and ensemble algo-
rithms.  Extreme data values that lie outside the obser-
vation range are outliers. To eliminate data inconsisten-
cies, outliers and missing numbers are corrected/ filled 
in and the dataset is formatted for training [35-37]. No 
similar pre-processing is required because the climato-
logical data obtained NASAPOWER website [14] for AP 
and TN is free of missing values and outliers. 

The precipitation values in the dataset range from 0 
to 178.98. To improve model efficiency, min-max scal-
ing as defined in equation (1) is applied to the attribute, 
precipitation. 

(1)
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MinMaxScalar function in the sklearn package of Py-
thon produces the scaled data, SCi in the range, [0,1] 
for every ith precipitation observation, yi. The scaled 
dataset is divided into training and validation datasets 
in an 80:20 ratio [36, 37] with the training dataset be-
ing used to train the aforementioned RNN variants and 
ensemble techniques. The performance of the models 
is evaluated using the validation dataset [35]. The pre-
processed univariate time-series dataset is then sub-
jected to the training phase of the RNN algorithms in 
the Model Building stage.

2.3. MODEl BUIlDINg 

This study proposes to design and analyze precipi-
tation forecast models using time series precipitation 
data of TN and AP states with variant RNN architectures: 
the BRNN, LSTM and GRU and ensemble techniques, 
BRNN-GRU, BRNN-LSTM, LSTM-GRU, BRNN-LSTM-GRU 
and GRU-SARIMA.

2.3.1. RNN ARCHITECTURES

 Recurrent Neural Network is a kind of DL Neural 
Network; numerous applications with time series data 
have successfully used the RNN [38]. An RNN uses mul-
tiple layers of neurons to construct a model based on 
training data to forecast unknown or future data. Three 
basic RNN architectures exist: BRNN [36], LSTM and 
GRU [39, 40]. A review of these architectures is made in 
the following sub-sections. 

2.3.2. BRNN

The Bidirectional Recurrent Neural Network (BRNN) 
is a variant of RNN architecture. While unidirectional 
RNNs can only utilize previous inputs to predict precipi-
tation, BRNN works to increase the forecast accuracy by 
focusing on the previous and subsequent situations as 
shown in Fig. 3. It has two RNNs that are oriented in op-
posite directions and linked to the same output layer. 
The BRNN receives not only the hidden layer output of 
the previous moment as an input but also the hidden 
layer output of the following moment [23]. 

Fig. 3. Structure of BRNN

The values in the hidden and output layer neurons 
are determined in the forward pass of training based 
on the equations from (2) to (4).

(2)

(3)

(4)

Here, xt is the input with values x1, x2, x3… at time 
slots, t=1,2,3,…, ht is the hidden state memory values, 
h1, h2, h3, ….. at time slots, t=1,2,3,…, ia is the hidden 
layer activation function, w1, w2 are the weights asso-
ciated with forward hidden layer and w3, w4 are the 
weights associated with the backward hidden layer. 
bh(F) and bh(B) are biases to the forward and backward 
layers respectively. ht(F) is the output from the forward 
hidden layer of ht(B) is the output from the backward 
hidden layer. yt is the precipitation output produced 
for the instant, ‘t’. The hyperparameters and optimizers 
used in the forward and backward passes of the train-
ing phase of the BRNN obtained after fine-tuning are 
mentioned in Table 6 and a discussion on the precipita-
tion forecast is provided in Subsection 3.

2.3.3.  lSTM

Sepp Hochreiter and Juergen Schmidhuber intro-
duced the Long Short-Term Memory (LSTM) as an al-
ternative architecture of RNN in 1997 [39, 41]. A typi-
cal LSTM structure is made up of a cell unit and three 
major gates: an input gate, a forgetting gate and an 
output gate as shown in Fig. 4 (a). The cell unit is a 
memory unit that can store information for a long pe-
riod. The memory unit's writing, reading and saving 
are controlled in order by the input gate, output gate, 
and forgetting gate. When the forgetting gate outputs 
1, the cell unit writes and saves the information; when 
the forgetting gate outputs 0, the cell unit deletes the 
saved information; when the input gate outputs 1, the 
rest of the LSTM reads the cell unit information; and 
when the input gate outputs 0, the rest of the LSTM 
writes the contents to the cell unit. 

The values of the gates in the hidden layer and out-
put values are determined in the forward pass of train-
ing based on the equations from (5) to (11). 

(5)

(6)

(7)

(8)

(11)

(9)

(10)

If xt is the input with values x1, x2, x3… at time slots, 
t=1,2,3,…, the forget gate, ft, input gate, it and output 
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gate, ot values are determined from the equations 
(5), (7) and (8) respectively. The long-term memory 
state, Ct and the hidden state memory values, h1lstm, 
h2lstm, h3lstm,…..at time slots, t=1,2,3,…, are determined 
as in equations (9) and (10) respectively. Here wf , wc , 
wi and wo are weights associated with the link carry-
ing hidden state information, h1lstm to the forget gate, 
long-term memory state, input gate and output gate 
respectively. Also, uf , uc , ui and uo are the weights as-
sociated with links carrying input, xt to the forget gate, 
long-term memory state, input gate and output gate 
respectively. b is the bias associated with output neu-
ron yt corresponding to the timeslot t. The precipitation 
forecast of LSTM at different time slots, ‘t’ is determined 
as in equation (11). σ ia and oa are the sigmoid, tanh 
and linear activation functions.

Fig. 4 (b) shows a deep LSTM architecture where the 
htlstm value produced by a hidden neuron at a particu-
lar level is the input to the next hidden neuron of that 
level. The output neuron of that level produces the out-
put precipitation value, yt as a linear function of htlstm 
value from its immediately previous hidden neuron 
as in equation (11) using the weight, ‘wt’. The model is 
trained using the data from NASAPOWER training da-
tasets of AP and TN with the hyperparameters listed in 
Table 6 for precipitation forecast. A discussion on the 
test results is provided in Subsection 3.

(a)

(b)

Fig. 4. Structure of a) basic LSTM cell b) deep LSTM

2.3.4. gRU

Another RNN variant is the Gated Recurrent Unit 
(GRU). It is an upgraded and enhanced version of LSTM 
which debuted in 2014 [15, 42]. Compared to the three 
gates of an LSTM, it requires fewer parameters because 
of the reset gate, rt and update gate, zt. The decision of 
which information should be transmitted to the output 
is made using zt and rt, which are vectors as shown in 
Fig. 5. This study uses the GRU architecture also to pre-
dict daily precipitation.

Fig. 5. Structure of basic GRU cell

The values of the gates in the hidden layer and out-
put values are determined in the forward pass of train-
ing based on the equations from (12) to (16).

(12)

(13)

(14)

(15)

(16)

If xt corresponds to the input values x1, x2, x3… at time 
slots, t=1,2,3,…. Reset gate, rt and update gate, zt values 
are determined from the equations (12) and (13) respec-
tively. The hidden state memory values, h1gru, h2gru, hrgru, 
..., at time slots, t=1,2,3,…, are determined as in equa-
tions (15). The precipitation forecast of GRU at different 
time slots is in equation (16). The weights wz, wr and w 
are associated with update gate, reset gate and previous 
hidden state respectively. b is the bias associated with 
output neuron, yt of timeslot t. σ ia and oa are the sig-
moid, tanh and linear activation functions.

Deep GRU architecture is similar to deep LSTM as 
shown in Fig 4 (b), where the htgru value produced by 
a hidden neuron at a particular layer is the input to the 
next hidden neuron of that level. The output neuron of 
that level produces the output precipitation value, yt as 
a linear function of htgru value from its immediately pre-
vious hidden neuron as in equation (16). In eqn. (16), 
wt is the weight associated with the output neuron, yt. 
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The model is trained using the training datasets from 
AP and TN with the hyperparameters listed in Table 6 
which are obtained by analyzing various hyperparam-
eters and optimizers. Also, a discussion of the predicted 
precipitation is provided in Subsection 3.

2.3.5. ENSEMBlE ARCHITECTURE

This section discusses the ensemble models that in-
corporate the RNN variant models: BRNN, LSTM and 
GRU. Averaging, Bagging, and Stacking are the three 
ensemble learning techniques [43]. Ensemble learning 
techniques are often trained using many models on the 
same dataset utilizing each learned model to generate 
a forecast and combining the results of the individual 
model to produce the final result or forecast [43]. In this 
work, an average ensemble of selected RNN models is 
determined based on the results of the models to pro-
duce accurate precipitation forecasts as shown in Fig. 6. 

Fig. 6. General Workflow for Ensemble Techniques

The different ensemble models used in the analysis 
are BRNN-GRU, BRNN-LSTM, LSTM-GRU and BRNN-
LSTM-GRU as shown in Fig. 7. The optimized hyperpa-
rameters used by LSTM, GRU and BRNN as mentioned 
in Table 6 are used by the base models of the ensemble 
techniques also. The performance of the models BRNN, 
LSTM, GRU, BRNN-GRU, BRNN- LSTM, LSTM-GRU and 
BRNN-LSTM-GRU are provided in Table 7 and 8.

The RNN variant with the lowest error, GRU is also 
used to create a hybrid ensemble model with statistical 
SARIMA for precipitation forecasting as shown in Fig. 8. 
SARIMA is a Seasonal AutoRegressive Integrated Mov-
ing Average model for time-series data-based fore-
casting that uses past values. SARIMA is an advanced 
version of AutoRegressive Integrated Moving Average 
(ARIMA) [7] for Time Series forecasting based on its past 
values, lags and lagged forecast error values along with 
the seasonal characteristics of the time-series data with 
seasonal patterns.

The SARIMA model has the parameters: the order of 
the 'Auto Regressive' (AR) phrase, the number of lags to 
be utilized as predictors and the order of the moving 
average along with the parameters of seasonal charac-
teristics which includes: seasonal autoregressive order, 
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seasonal difference order, seasonal moving average 
order and the periodicity of seasons [10]. The precipi-
tation is found by averaging the forecasts of the GRU 
model and the SARIMA model. The ensemble model is 
trained using historical precipitation data of TN and AP 
from 2002 to 2022. By leveraging its learned patterns, it 
predicts the precipitation for the next 30 days, provid-
ing valuable insights for planning and decision-making 
against floods. Additionally, the performance of this hy-
brid ensemble model is assessed in terms of MAE, MSE, 
RMSE and RMSLE. In Section 3, the outcomes of these 
RNN variant models and ensemble models are exam-
ined in terms of evaluation metrics, MAE, MSE, RMSE, 
and RMSLE. The values are shown in Tables 7 and 8.

(a) (b)

(d)(c)

Fig. 7. Architecture of RNN-based Ensemble models 
a) BRNN-LSTM-GRU b) BRNN-GRU c) BRNN-LSTM  

d) LSTM-GRU

Fig. 8. Block diagram showing GRU-SARIMA 
ensemble model
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(a)

(b)

(c)

Fig. 9. Optimizer based losses in RNN variants 
a) LSTM b) BRNN and c) GRU

These models are developed using the DL and es-
sential packages in Python namely TensorFlow, NumPy, 
Pandas, Matplotlib, Sklearn and Keras.  Appropriate hy-
perparameters are essential to achieve the best results 
from the RNN variants and the ensemble models [43-45]. 
Hyperparameters are variables that control the neural 
network architecture and performance during training. 
Some of the hyperparameters are the number of lay-
ers, activation functions, loss function, batch size and 
optimizer. Optimizers and hyperparameters have been 
studied in this work to improve the accuracy of the pre-
cipitation forecasts from the RNN and ensemble models.  
The working steps for selecting hyperparameters and 
optimizers are explained in the following paragraph.

The RNNs variants used in this study are compared 
against various optimization models including Adap-
tive Moment Estimation (Adam) [46], Stochastic Gra-
dient Descent (SGD) [46], Adaptive Gradient Descent 
(AdaGrad) [46], Extension of AdaGrad (Adadelta) [40, 
46] and Root Mean Square Propagation (RMSProp) 
[40, 46] to determine which optimization model offers 
the best learning and prediction. For the same set of 
hyperparameters as listed in Table 2, different optimiz-
ers are tried for all the RNN variants. The performance 
is assessed in terms of RMSLE by making forecasts on 
the validating dataset as shown in Table 3. The losses 
are illustrated in Fig. 9 a) LSTM, b) BRNN, and c) GRU 
respectively for different epochs of the training. 

Table 2. List of Hyperparameters for Selecting 
Optimizer

Hyperparameters Value of Hyperparameters

Batch Size 32

No of epochs 20

No of Hidden Layers 1

Hidden Units 100

Activation Function Tanh

Output-Units 30

Output-Layer-Activation-Function Linear

Loss Function MAE

Of all the optimizers, the Adam optimizer generated 
smaller and steadily decreasing losses while using the 
training dataset. Unlike Adam, the other optimizers de-
livered constant losses and substantial forecast errors. 
Even while the RMSProp offered continuously decreas-
ing losses, the losses in the BRNN model fluctuate. As 
a result, in this study, the Adam optimizer is employed 
to forecast precipitation from all the RNN variants and 
ensemble models. Also, to select the best set of hyper-
parameters for RNN variants such as BRNN, LSTM, and 
GRU, a list of experiments with different hyperparam-
eter combinations as mentioned in Table 4 are per-
formed on all RNN variants.

Table 3. Evaluation of Optimizers based on RMSLE

Model Optimizers

Adam SGD RMSProp AdaGrad Adadelta

LSTM 0.0017 0.0017 0.0020 0.0019 0.0019

GRU 0.0018 0.0018 0.0018 0.0018 0.0018

BRNN 0.0018 0.0018 0.0018 0.0018 0.0018

The RNN variants generated results as shown in Table 
5 for different trials. The RMLSE values for BRNN, LSTM, 
and GRU in the trials from 1 to 4 are 0.26, 1.42, 0.26; 
0.58, 1.39, 0.30; 0.57, 2.01, 0.48 and 0.97,1.10, 0.95 re-
spectively. All trials from 1 through 4 are compared to 
select the best hyperparameters. The trials 1 and 2 are 
compared to select the best batch; trials 3 and 4 are 
compared to select the best epoch and the trials 1 and 
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4 are compared to select the best number of hidden 
layers. The performances of the different RNN variants 
in the above experiments are compared as shown in 
Fig.10 a) to d) of Section 3 in terms of   MAE, MSE, RMSE 
and RMSLE. The most effective optimizer and hyperpa-
rameters as identified from the experiments and listed 
in Table 6 are selected for further training and testing 
to predict precipitation.

Table 4. List of Hyperparameters and Optimizer 
values for selecting best hyperparameters

Hyperparameters Trial 1 Trial 2 Trial 3 Trial 4

Number of Hidden 
Layers 3 3 1 1

Hidden units 128,256, 
128

128,  
256,128 128 128

Number of epochs 100 100 300 100

Batch size 32 64 32 32

Activation function Tanh Tanh Tanh Tanh

Optimizer Adam Adam Adam Adam

Loss function MSE MSE MSE MSE

Output-Units 30 30 30 30

Output-Layer-
Activation-Function Linear Linear Linear Linear

Table 5. Comparison on the Performance of RNN 
variants in different trials

Model Experiment MAE MSE RMSE RMSlE

BRNN 0.0039 0.0621 0.0350 0.0028

LSTM Trial1 0.0003 0.0186 0.0107 0.0002

GRU 0.0001 0.0123 0.0072 0.0001

BRNN 0.0039 0.0622 0.0337 0.0029

LSTM Trial2 0.0005 0.0241 0.0134 0.0004

GRU 0.0004 0.0216 0.0124 0.0003

BRNN 0.0038 0.0615 0.0348 0.0027

LSTM Trial 3 0.0001 0.0122 0.0068 0.0001

GRU 0.0003 0.0193 0.0113 0.0002

BRNN 0.0031 0.0559 0.0269 0.0023

LSTM Trial 4 0.0018 0.0426 0.0223 0.0014

GRU 0.0014 0.0377 0.0206 0.0011

(a)

(b)

(c)

(d)

Fig. 10. Bar plot showing the performances of RNN 
variants for different trials in terms of a) MAE b) MSE               

c) RMSE d) RMSLE

Table 6. List of Hyperparameter values and 
optimizer selected for building BRNN, LSTM and 

GRU models

Hyperparameters Value

Number of Hidden Layers 3 (128,256,128 units)

Number of epochs 300

Batch size 32

Activation function Tanh

Optimizer Adam

Loss function MSE

Output-Units 30

Output-Layer-Activation-Function Linear
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3. EXPERIMENTAl RESUlTS AND DISCUSSION

This study underscores the importance of precipita-
tion forecast to mitigate the negative effects of flood 
damage. Time-series data are often used to make pre-
dictions or forecasts of future values based on historical 
observations. The time-series data is obtained from the 
website, https://power.larc.nasa.gov/ [14] to forecast 
precipitation.  Fig. 2 illustrates time-series data for days, 
weeks and months for AP and TN. However, day-wise 
data is used to train the deep learning RNN algorithms 
and ensemble techniques to predict the precipitation 
for the next 30 days. The model is created from the past 
60 days' precipitation data to predict the precipitation 
of the next 30 days.

Experiments are conducted on an Intel Core i7 pro-
cessor running at 2.70 GHz with 16GB of RAM using nu-
merical and DL libraries of Python. TensorFlow, NumPy, 
Pandas, Matplotlib, Keras, and Sklearn are some of the 
packages used from Python. RNN based precipita-
tion forecasting models are evaluated using the per-
formance assessment metrics: Mean Absolute Error 
(MAE), Mean Squared Error (MSE), Root Mean Square 
Error (RMSE), and Root Mean Squared Logarithmic Er-
ror (RMSLE) values [30, 47].  The Mean Absolute Error 
(MAE) is the average of the absolute error difference as 
defined in Equation (17).

(17)

The square root of the Mean Square Error (MSE) is re-
ferred to as the RMSE and is defined by Equation (18).

(18)

where

(19)

An RMSE variation that computes the logarithmic 
difference between the predicted and actual values is 
RMLSE. It is defined in equation (20).

(20)

In all the above equations, the predicted value and 
the actual value corresponding to the ith observation 
are denoted as ypi and yai respectively. m is the number 
of records in the test dataset.

3.1. RESUlTS AND DISCUSSION

In this work, for precipitation forecast, time-series 
based climatological data from 2002 to 2022 are down-
loaded from the NASAPOWER website. Subsequently, 
the data preprocessing operations are carried out. Af-
terward, the data is split in the ratio, 80:20 for data train-
ing and validation. The most effective hyperparameters 
and optimizer as identified and mentioned in Table 6 
are chosen in building the RNN and ensemble models: 

BRNN, LSTM, GRU, BRNN-GRU, BRNN-LSTM, LSTM-GRU 
and BRNN-LSTM-GRU.  

The test accuracy of predictions made by the models 
are evaluated using MSE, RMSE, MAE, and RMSLE. These 
evaluation metric values are presented in Table 8 and 9 
and in Fig. 11 a) to d) for AP and TN respectively. Finally, 
using the RNN model, GRU which produces lowest error, 
a hybrid ensemble model is created with the statistical 
model, SARIMA to predict precipitation. The accuracy of 
this model is listed in Table 7 and 8 for AP and TN respec-
tively. The GRU model produces improved performance 
than all the other models under comparison with a net 
RMSLE value of 0.255 and 0.152 for AP and TN datasets 
respectively. The ensemble model, LSTM-GRU proves to 
be the next best model from among all the ensemble 
models under comparison with a net RMSLE value of 
0.364 and 0.379 for AP and TN datasets respectively. The 
best performing RNN model, GRU when ensembled with 
the existing statistical model SARIMA produces an RMSLE 
value of 0.754 and 1.677 respectively for AP and TN. The 
results of the proposed GRU model is also compared in 
terms of error metrics with those from publications as 
shown in Table 9. From the analysis, of all the models, the 
best performing GRU model appears reliable for flood de-
fense due to heavy precipitation. The comparative analy-
sis demonstrates that the GRU as identified from the pro-
posed methodology outperforms all other models and 
techniques in terms of RMSE values.

Table 7. Comparison on the Performance of 
different RNN models and ensemble techniques on 

Test Dataset from AP

Models MAE MSE RMSE RMSlE

LSTM 1.041 2.113 1.453 0.555

BRNN 4.255 30.922 5.561 2.448

GRU 0.635 0.558 0.747 0.255

BRNN-LSTM 2.351 10.176 3.190 1.383

BRNN-GRU 2.240 8.843 2.974 1.305

LSTM-GRU 0.766 0.933 0.966 0.364

BRNN-LSTM-GRU 2.972 15.683 1.453 1.740

GRU-SARIMA 1.461 1.278 1.528 0.754

Table 8. Comparison on the Performance of 
different RNN models and ensemble techniques on 

Test Dataset from TN

Models MAE MSE RMSE RMSlE

LSTM 1.482 6.221 2.494 0.663

BRNN 3.296 16.772 2.494 1.735

GRU 0.519 0.352 0.593 0.152

BRNN-LSTM 2.160 6.945 0.593 1.118

BRNN-GRU 1.801 4.843 2.201 0.889

LSTM-GRU 0.910 2.130 1.460 0.379

BRNN-LSTM-GRU 2.525 9.209 2.494 1.328

GRU-SARIMA 2.905 8.905 2.484 1.677
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(a) (b)

(c) (d)

Fig. 11. Bar plot showing the performances of different of RNN variants and ensemble techniques on Test 
Dataset from TN and AP in terms of a) MAE b) MSE c) RMSE d) RMSLE

Table 9. Comparison of results from different 
algorithms

Authors Region & 
Dataset Algorithms Best RMSE Value

S Aswin, et al. 
(2018) [26]

Geographic 
location 

10368 - [26]
LSTM, CNN LSTM- 2.55, CNN- 

2.44

Y.O. Ouma, et 
al. (2020) [29] Kenya - [29] LSTM, WNN LSTM -17.22 

WNN- 14.64

Samad, A. et al. 
(2020) [30] Australia - [30] LSTM LSTM - 5.30

E Gbenga 
Dada et al. 
(2021) [21]

India - [21] FFNN, RNN, 
ENN, CFNN ENN -6.36

Proposed 
Methodology-

GRU
India – [14] RNN variant 

and Ensemble GRU - 0.593

4. CONClUSION

Predicting precipitation is an effective flood defense 
method that helps minimize the impact of high precip-
itation events and safeguard vulnerable areas.  In this 
study, RNN-based precipitation forecast algorithms 
were trained and tested using the time-series-based 

climatological data of heavy rainfall receiving South 
Indian states of Tamil Nadu, Andhra Pradesh. The DL al-
gorithms and the ensemble techniques:  BRNN, LSTM, 
GRU, BRNN-GRU, BRNN-LSTM, LSTM-GRU, BRNN-LSTM-
GRU and GRU-SARIMA were trained with the best set of 
hyperparameters and optimizers identified experimen-
tally. In addition, the performances of these models 
were assessed in terms of MAE, MSE, RMSE, and RMSLE 
values. The GRU model proved to be the most effective 
model among all the models with net RMSLE values of 
0.225 and 0.152 for AP and TN datasets respectively. 
The ensemble model, LSTM-GRU proved the next best 
model from among all the models under comparison 
with net RMSLE values of 0.364 and 0.379 for AP and 
TN datasets respectively. Also, hybrid ensemble model 
GRU-SARIMA proved to be the effective model, with 
net RMSLE values of 0.754 and 1.677 for AP and TN da-
tasets respectively. Thus, the analysis concludes GRU 
model for precipitation predictions from time-series 
based climatological data as a mechanism to precau-
tion flood. When the precipitation forecast exceeds the 
threshold of 64.5 mm/day as mentioned in [8-10], it is a 
flood alarm for planning the disaster. This work can be 
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extended to prediction models that combine multivari-
ate datasets, data from multiple sources for improved 
precipitation forecasts.
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