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SUMMARY
Research background. The aim of this study is to emphasize the importance of artificial 

intelligence (AI) and causality modelling of food quality and analysis with ’big data’. AI with 
structural causal modelling (SCM), based on Bayesian networks and deep learning, ena-
bles the integration of theoretical field knowledge in food technology with process pro-
duction, physicochemical analytics and consumer organoleptic assessments. Food prod-
ucts have complex nature and data are highly dimensional, with intricate interrelations 
(correlations) that are difficult to relate to consumer sensory perception of food quality. 
Standard regression modelling techniques such as multiple ordinary least squares (OLS) 
and partial least squares (PLS) are effectively applied for the prediction by linear interpo-
lations of observed data under cross-sectional stationary conditions. Upgrading linear re-
gression models by machine learning (ML) accounts for nonlinear relations and reveals 
functional patterns, but is prone to confounding and failed predictions under unobserved 
nonstationary conditions. Confounding of data variables is the main obstacle to applica-
tions of the regression models in food innovations under previously untrained conditions. 
Hence, this manuscript focuses on applying causal graphical models with Bayesian net-
works to infer causal relationships and intervention effects between process variables and 
consumer sensory assessment of food quality. 

Experimental approach. This study is based on the data available in the literature on 
the process of wheat bread baking quality, consumer sensory quality assessments of fer-
mented milk products, and professional wine tasting data. The data for wheat baking 
quality were regularized by the least absolute shrinkage and selection operator (LASSO 
elastic net). Bayesian statistics was applied for the evaluation of the model joint probabil-
ity function for inferring the network structure and parameters. The obtained SCMs are 
presented as directed acyclic graphs (DAG). D-separation criteria were applied to block 
confounding effects in estimating direct and total causal effects of process variables and 
consumer perception on food quality. Probability distributions of causal effects of the in-
tervention of individual process variables on quality are presented as partial dependency 
plots determined by Bayesian neural networks. In the case of wine quality causality, the 
total causal effects determined by SCMs are positively validated by the double machine 
learning (DML) algorithm.

Results and conclusions. The data set of 45 continuous variables corresponding to dif-
ferent chemical, physical and biochemical variables of wheat properties from seven Cro-
atian cultivars during two years of controlled cultivation were analysed. LASSO regulari-
zation of the data set yielded the ten key predictors, accounting for 98 % variance of the 
baking quality data. Based on the key variables, the quality predictive random forest mod-
el with 75 % cross-validation accuracy was derived. Causal analysis between the quality 
and key predictors was based on the Bayesian model shown as a DAG graph. Protein con-
tent shows the most important direct causal effect with the corresponding path coeffi-
cient of 0.71, and THMM (total high-molecular-mass glutenin subunits) content was an 
indirect cause with a path coefficient of 0.42, and protein total average causal effect (ACE) 
was 0.65. The large data set of the quality of fermented milk products included binary con-
sumer sensory data (taste, odour, turbidity), continuous physical variables (temperature, 
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fat, pH, colour) and three grade classes of products by con-
sumer quality assessment. A random forest model was de-
rived for the prediction of the quality classification with an 
out-of-bag (OOB) error of 0.28 %. The Bayesian network mod-
el predicts that the direct causes of the taste classification are 
temperature, colour and fat content, while the direct causes 
of the quality classification are temperature, turbidity, odour 
and fat content. The key quality grade ACE of temperature 
–0.04 grade/°C and 0.3 quality grade/fat content were esti-
mated. The temperature ACE dependency shows a nonlinear 
type as negative saturation with the ’breaking’ point at 60 °C, 
while for fat ACE had a positive linear trend. Causal quality 
analysis of red and white wine was based on the large data 
set of eleven continuous variables of physical and chemical 
properties and quality assessments classified in ten classes, 
from 1 to 10. Each classification was obtained in triplicate by 
a panel of professional wine tasters. A non-structural double 
machine learning (DML) algorithm was applied for total ACE 
quality assessment. The alcohol content of red and white 
wine had the key positive ACE relative factor of 0.35 quality/
alcohol, while volatile acidity had the key negative ACE of 
–0.2 quality/acidity. The obtained ACE predictions by the un-
structured DML algorithm are in close agreement with the 
ACE obtained by the structural SCM. 

Novelty and scientific contribution. Novel methodologies 
and results for the application of causal artificial intelligence 
models in the analysis of consumer assessment of the quality 
of food products are presented. The application of Bayesian 
network structural causal models (SCM) enables the d-sepa-
ration of pronounced effects of confounding between pa-
rameters in noncausal regression models. Based on the SCM, 
inference of ACE provides substantiated and validated re-
search hypotheses for new products and support for deci-
sions of potential interventions for improvement in product 
design, new process introduction, process control, manage-
ment and marketing. 

Keywords: Bayesian network; AI causality; intervention ef-
fects; ACE; food quality 

INTRODUCTION
According to the EU Commission report by Knowledge 

Centre for Food Fraud and Quality (KC-FFQ) based on 30 000 
respondents, 65 % of them perceived food quality as ’very 
important’ when deciding what to buy, compared to food 
price, which is important to 54 % of consumers (1). The con-
cept of consumer-perceived food quality is very complex, it 
is an untaggable interaction of the objective measurable 
physicochemical properties and numerous subjective factors 
such as consumer population culture, ethical issues, econom-
ic and social status, tradition, personal preferences and ex-
pected nutritional benefits. It is a multi-dimensional concept 
which is influenced by a wide range of unmeasurable situa-
tional and contextual factors. To food producers, these com-
plexities are difficult to rationalize for possible applications 

of statistical and mathematical decision-making algorithms. 
The objective characterization of food complexity can be 
greatly rationalized using ’big data‘ generated with high 
throughput analytical instrumentation. Automation of in-
strument-measurable sensory attributes has led to the devel-
opment of systems such as electronic noses, e-tongue, near- 
infrared spectroscopy (NIR), infrared spectroscopy (IR), 
photoacoustic detectors and computer vision (2–6). They are 
applied for online production monitoring, process control 
and food safety. The fusion of physicochemical and electron-
ic sensory data with computer vision enables the application 
of machine learning models for the detection of specific sig-
nal patterns. It helps food companies in recognizing patterns 
which drive consumer choice of specific products and im-
prove the chances of continued purchase and potentially in 
the innovation of new products optimally adjusted to specif-
ic markets. Commonly applied statistical models are principal 
component analysis (PCA) and partial least square regression 
(PLS), and advanced machine learning (ML) algorithms such 
as artificial neural networks (ANN), convolution neural net-
works (CNN), decision trees (DT) and random forests (RF). 
They analyse large data sets of food quality parameters such 
as appearance, texture, taste and odour, and identify patterns 
that may be difficult for humans to detect. Importantly, they 
can help in identifying food contamination, spoilage and 
adulteration, which are crucial factors in maintaining food 
safety. The main benefit of ML models is the ability to provide 
an ’in-time’ assessment of the statistically significant status 
of food products (7–10). Integration of ML models with busi-
ness knowledge in a food company on a production system 
level leads to industrial artificial intelligence (AI). It collabo-
rates by supporting and enhancing the human thinking pro-
cess, enables knowledge management and storing, and most 
importantly, it can learn. A decade of bibliometric studies on 
AI related to food science and technology show an exponen-
tial increase (11). Literature reports indicate that besides aca-
demic research, there is also a very strong interest in AI in 
major companies in the food industry. Dominant industry in-
terest is in the application of intelligent robotics in specific 
process unit operations and their integration into a whole 
company AI-supported management. Besides standard en-
gineering applications, AI is becoming a key support in the 
discovery and introduction of food innovations such as new 
components for taste, flavour and fragrance, especially aimed 
to reduce the content of sugar and salt in foods and beverag-
es (12). Recent advancements are focused on the integration 
of strategic decisions of food company policymakers, busi-
ness intelligence and AI systems in industrial production (13–
16). The success of global integration of AI in food-producing 
companies depends on understanding the human subjective 
component of the present and potentially new markets (Fig. 
1). Understanding the intricate dependencies of human sub-
jective and objective physicochemical data requires higher 
levels of AI models as given in the scheme of ’knowledge lad-
der’ (17). Most of the present AI models fit the first knowledge 
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ladder rung with potentially high flexibility and prediction 
accuracy under unchangeable model training conditions. In 
a food company, policy decisions of business management 
and production technologies need AI’s ability to act under 
new model untrained conditions. Most unforeseen new con-
ditions are due to disruptions of supply chains, effects of cli-
mate change on the production of agricultural raw materials, 
competitor products and shifts in market preferences. The 
key upgrade of the present AI models is the application of 
causal data fusion of human subjective and instrumental ob-
jective data. Causal AI models are on the second and third 
rungs of the knowledge ladder. Causal relations are deduced 
from field knowledge (economy, engineering, physics, chem-
istry, nutrition) and from big data by statistical and knowl-
edge models. The causal relations are integrated into AI  
models as Bayesian networks. They enable causal analysis 
elimination (blocking) of numerous confounding relations 
present in integrated big data training sets. On the second 
knowledge rung, causal AI models are applied for predicting 
average causal effect (ACE) of potential policy decisions and/
or production interventions, labelled as do operator do(x) in 
Fig. 1. On the third rung, causal AI models are applied for 
counterfactual reasoning approaching human imaginative 
intelligence (17). The aim of this manuscript is to apply causal 
AI modelling of food quality assessed by consumers and a 
professional panel of evaluators of wheat baking quality, fer-
mented dairy products and wine quality. 

MATERIALS AND METHODS

Wheat quality

The baking quality of seven winter wheat cultivars from 
the Slavonia region in eastern Croatia was analysed. The vol-
ume of bread loaf under the standard baking protocol was 
used as the baking quality test. The cultivars were grown for 
a period of three years under controlled conditions at the ex-
perimental field of the Agricultural Institute Osijek, Croatia. 
Their quality properties were evaluated by 45 physical, chem-
ical and biochemical variables. Each parameter was deter-
mined in triplicate during three consecutive years of cultiva-
tion. The measured variables were grouped as 6 indirect 
quality parameters, 7 farinographic parameters, 5 extenso-
graphic parameters and 25 pieces of information from 

reversed phase-high performance liquid chromatography 
(RP-HPLC) of gluten proteins. The experiment methodology 
and the data are available in the published manuscripts 
(18,19). All properties are listed as a table of continuous nu-
merical variables. The data were highly correlated and the 
average absolute Pearson correlation was R=0.41. Principal 
component analysis of the total data set revealed that the cu-
mulative effect in explaining the total data variance by the 
first three components was 76.45 % and the first four compo-
nents accounted for 82.68 %.

 

Dairy quality

This dairy dataset contained 1059 samples of consumer 
quality assessments of fermented dairy products (20,21). The 
dataset consisted of 7 variables: pH, temperature, taste, 
odour, fat, turbidity and colour. Temperature, pH and colour 
were instrument-measured properties defined as continuous 
variables. The average and standard deviation for pH was 
6.63±1.4, milk pre-treatment temperatures were in the range 
from 34 to 90 °C, with an average temperature of 44.2 °C. The 
colour data were determined spectroscopically with low var-
iability of 1.7 % relative standard deviation. The samples of 
the physical variables have a non-Gaussian probability distri-
bution. Spearman’s rank-order correlation coefficients be-
tween temperature and pH, colour and odour were signifi-
cant with an average value of ρ=0.25, while the ρ correlation 
between colour and odour is insignificant. The consumer 
quality evaluation was the ordinal categorical variable with 
three levels: low, medium and high. Spearman’s rank-order 
quality grade correlation with temperature, colour and odour 
was significant, while pH was insignificant.

 

Wine quality

The wine quality was a large dataset, 1599 red and 4898 
white samples of the Portuguese Vinho Verde wine, charac-
terized by 12 physical and chemical composition data and 
quality assessments provided by a panel of professional wine 
tasters (22–24). The data file is available from the UCI Machine 
Learning Repository from the University of California at Ir-
vine, USA. The variables were fixed acidity, volatile acidity, 
citric acid, residual sugar, chlorides, free sulphur dioxide, total 
sulphur dioxide, density, pH, sulphates and alcohol. The wine 
compositions were continuous numerical variables and the 
quality was an ordinal categorical variable with levels 1–10. 
The variable density was removed from the data set due to 
its very high variance inflation factor (VIF) since it is a com-
mon effect (causal collider) and hence cofounds modelling 
parameters (24). The probability distributions of the variables 
were approximately Gaussian. The data were highly correlat-
ed and the first three principal components for the red and 
white wines accounted for 99.7 and 99.8 % of the respective 
variances. Both red and white wines had maximum relative 
data variability for citric acid of 71 %, given as the ratio of 
standard deviation and mean value. The maximum Pearson’s 

Fig. 1. System view of causal AI model application for process and 
market decision making, management and innovations of food qual-
ity by do(x) inference
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correlations of the quality were with the content of alcohol, 
R=0.48 and 0.44 for the red and white wines respectively. The 
maximum negative correlation was with volatile acidity,  
R=–0.39 and –0.19 for the red and white wines respectively.

 

Methodology

The basic principles of causal AI modelling are based on 
the concepts of Bayesian statistics and networks (BN). Bayes-
ian statistics combines prior knowledge (old model) upgrad-
ed with new experimental observations (data) in the pre-
diction of a new model. The nature of prior knowledge in 
modelling includes deductive (known theoretical knowl-
edge) and inductive (empirical structures and model para-
meters known from previous studies) processes studies. 
Knowledge of a causal AI model was expressed as a joint 
probability density function P of the model conditioned on 
new data. Causal AI modelling is a two-stage process in which 
the first objective is to determine the structure of a BN graph 
G, and in the second stage to determine functional causal de-
pendencies between variables followed by estimation of the 
model parameters θ.

 P(model|data)=P(G=graph,θ=parameter|X=data) /1/

The two-stage process of structural causal modelling 
(SCM) was expressed as a product of the corresponding prob-
ability density functions:

 P(G,θ|X)=P(G|X) P(θ|G,X) /2/

With inferred causal structure G and parameters, θ mod-
el posterior distribution was expressed by the basic Bayesian 
relationship:

 Posterior model data
Likelhood data model P model

Evidenc
( | )

( | )
�

� �
ee data� �

 /3/

In case of a model with continuous random variables 
(Gaussian), it is explicitly expressed in a functional form as:
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θ π θ

θ π θ θ
θ
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Extensive sampling by Monte Carlo Markov chain (MCMC) 
algorithm was applied for statistical inferences from the mod-
el multivariable posterior probability distribution π(θ|X). 

Commonly, the basic modelling presumes that all consid-
ered causal effects are directional, i.e. recurrent causal effects 
are not considered. It results in model graphs without close 
loops, which are consequently named directed acyclic graphs 
(DAG). Markov property of DAG greatly simplifies modelling 
of complex multivariable stochastic systems (25). Complete 
causal directed acyclic graph G is a set of vertices V (corre-
sponding to the random model variables xi) connected with 
a set E of oriented edges (arrows), G={V,E}. It is a Bayesian net-
work (BN) with Markov property enabling decomposition of 
a joint probability density function P as a product of individ-
ual node (variables xk) probabilities p conditioned on their 
parent variables Pa. The parent variables are those variables 
xi (vertices) pointing directly to xk via a single edge. 

 P X p x Pa x
k V

k k� � � � �� ��


|  /5/

Causal dependencies, direct and total, depend on a set of 
network paths between the cause-and-effect variables. To in-
fer causality, confounding of interfering variables must be 
blocked by directed d-separation, which implies conditional 
independence in the probability distribution (17). Variables 
which block interfering interactions define adjustment sets 
that enable deconfounded (linear and/or nonlinear) estimation 
of average causal effect (ACE). For models with continuous var-
iables, ACE is evaluated as the derivative of expected value of 
output variable (effect) Y with respect to the change of input 
(cause) X at constant covariates, called intervention of cause 
by do(x) (6). In case of a linear SCM, ACE is a value correspond-
ing to average change of effect Y due to the intervention by 
changing cause X for a unit value. For nonlinear SCM, ACE is a 
function of the cause X defined by the partial derivative:

 ACE Y
x

E Y do xx� � � �
�

� �� �|  /6/

RESULTS AND DISCUSSION

Wheat baking quality

The wheat data were regularized by the application of a 
flexible net of least absolute shrinkage and selection opera-
tor (LASSO) as a combination of L1 and L2 norm penalty func-
tions (26):

 Lasso min
N
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The initial space of 45 wheat chemical, physical and bio-
chemical variables was reduced to the space of 10 features 
obtained by optimisation algorithm provided with glmnet 
software (27–29). The selected optimal features were: protein, 
wet gluten, falling number, water absorption, dough resist-
ance, resistance/extensibility ratio, total glutenin, total high -
-molecular-mass glutenin, alpha-gliadin and degree of sof-
tening of the dough. 

The model was the assembly of 500 trees, each obtained 
by random split of 3 variables. Validation of the prediction 
model showed that with the untrained out-of-bag samples 
it  accounted for 75 % of variance (30). Fig. 2 shows the 

Fig. 2. Prediction of the wheat baking quality as volume of product 
with 10 key features by the random forest model
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performance of the model predictions. Causal relations be-
tween the key variables were evaluated as a directed acyclic 
graph (DAG). The DAG was shown with the key variables as 
the nodes, associations between the variables as the edges 
and the causal dependences as arrows. In the process of caus-
al structural learning, the graph edges and orientations of 
arrows were considered as random variables with statistical 
properties estimated by Monte Carlo Markov Chain (MCMC) 
sampling from Bayesian posterior distribution, provided as 
BNDAG software support (31,32). The result was structural 
causal model (SCM) shown as a graph in Fig. 3. The causal 
strengths, with positive and negative effects, were given as 
the path coefficients, which were calculated from corre-
sponding d-separated (directionally separated subgraph) ad-
justment sets by ordinary least squares (OLS) regression with 
normalized data (17,33). original DAG and accordingly modify the joint probability func-

tion by replacement of random variable Xk with preselected de-
terministic value xk and d-separation of confounding variables 
which simultaneously interfere with the intervention (treat-
ment) and effect (outcome). To account for nonlinearity and 
probability in uncertainty of do(x) effects, Bayesian neural net-
works (BNN) were developed (35). The intervention effects of 
the key causal variables P and THMM on bread baking quality V 
are shown in Fig. 5. The distributions of the effect V indicate con-
siderable uncertainty due to the covariates from the adjustment 
sets and modest saturation type nonlinearities. 

Fig. 3. Causal Bayesian network model of the wheat key features and 
bread baking quality as volume. The path coefficients are the direct 
causal strengths evaluated with the standardized variables. P=w(pro-
tein)/%, WG=w(wet gluten)/%, FN=falling number/s, V=V(bread loaf)/
cm3, WA=water absorption/%, R=dough resistance/min, R/Ext=resis-
tance/extensibility ratio, TGT=w(glutenin)total/%, THMM=total high 
molecular mass/%, a=w(α-gliadin)/% and DS=high degree of soften-
ing

Fig. 4. Direct average causal effects (ACE) of the wheat key features 
on bread baking quality. The ACE values were evaluated with the 
standardized variables. DS=high degree of softening, a=w(α-glia-
din)/%, WG=w(wet gluten)/%, R.1=dough resistance/min, WA=wa-
ter absorption/%, R/Ext=resistance/extensibility ratio, FN=falling 
number/s, THMM=total high molecular mass/%, P=w(protein)/% and 
TGT=w(glutenin)total/%

Fig. 5. Distributions of a bread loaf volume (do(x)) caused by the in-
tervention of do(x) on the content of: a) total high-molecular-mass 
(THMM) gliadins and b) protein 

The causal inferences of the SCM were compared (validat-
ed) using unstructured causal model with double machine 
learning (DML) algorithm for estimation of the average caus-
al effect (ACE) (34). The effects were estimated as the ratio of 
covariance and variance of the residuals of volume V and k-th 
variable xk predicted by the corresponding random forest 
(RF) mode l:

 ACE x V
cov x RF x X V RF V X

RF x Xk
k k k k

k k

,
| , |

( | )
� � �
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The ACE estimates with standardized data are shown as 
a bar chart (Fig. 4). The SCM and the ACE estimates confirm 
the dominant positive effects on bread baking quality (V) of 
protein (P) and total high-molecular-mass (THMM) content.

The main technological benefit is the application of the SCM 
to predict unconfounded effects of intervention action, i.e. do-
ing effects (17). The do(x) operator was applied to redesign 

Dairy product quality

Causal analysis of the dairy product quality data was 
based on the SCM. Causal structure network learns by 
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hill-climbing (HC) algorithm of greedy search of DAG space 
of association structures and causal directions to optimize 
Bayesian information criterion (BIC) (36). A relatively simple 
DAG network shown in Fig. 6 was obtained. Temperature and 
fat content were identified as the exogeneous variables, 
which with product quality and taste are common effects as 
colliders. The endogenous variables were product pH, odour, 
turbidity and colour. The product taste and quality grade had 

wines, while volatile acidity had the highest negative ACE. 
Although SCM and DML are based on different assumptions, 
the corresponding ACE estimates were qualitatively and nu-
merically almost in agreement. 

CONCLUSIONS
This manuscript provides methodologies of causal AI 

modelling applied to complex problem of integration of ob-
jective (instrumental) and subjective (human) food quality 
data. The obtained causal network model helps food engi-
neers with intervention decisions for the existing and inno-
vation of new technologies. The methodologies are illustrat-
ed by the models of bread baking quality, fermented dairy 
products and wine.

Machine learning models of neural networks and random 
forest of decision trees were applied. The key research 

Fig. 8. The average causal effect (ACE) of wine quality caused by the 
change of the standardized values of physical and chemical para-
meters

Fig. 6. Directed acyclic graph (DAG) of causal effects of milk composi-
tion and process parameters on consumer assessment of dairy quali-
ty. Temp.=temperature, Turb.=turbidity

common causal ancestors with maximum negative correla-
tion between the grade and temperature of R=–0.45 and 
maximum positive correlation between the taste and fat con-
tent of R=0.32. Predictive power of the random forest model 
with 500 trees and 2 randomly selected variables at each had 
very high yield with the average out-of-bag classification er-
ror of <1 % (30). The maximum causal effect on the quality as 
negative ACE on temperature was –0.04 quality grade/°C in 
the temperature range 25–60 °C. The ACE of fat content on 
quality grade was 0.4. Functional dependences of ACE were 
obtained using the adjusted d-separated variables of the 
Bayesian neural network shown as partial dependent plots in 
Fig. 7. The ACE of temperature was highly nonlinear with the 
saturation low point at about 60 °C, while the ACE of fat con-
tent was positive and linear in the full range. 

 

Wine quality analysis

For the wine quality detailed description of SCM and 
causal analysis is given by Kurtanjek (24). Here the causal ef-
fects were determined by SCM validated by unstructured 
DML causality model (34). The model given in Eq. 8 was ap-
plied. The random forest modelling was applied to standard-
ized data sets separately for red and white wines. The models 
with relative average prediction errors of 5.13 and 4.17 % were 
obtained for red and white wines respectively. The compar-
ative ACE of the red and white wines are jointly presented in 
Fig. 8. Alcohol content, predicted by the DML and SCM, had 
the highest positive ACE on quality of red and white wines. 
The content of sulphates and free sulphur dioxide had the 
second most important positive ACE on both red and white 

Fig. 7. Probability distribution of quality(do(x)) of consumer assess-
ment of dairy quality caused by a change in: a) pretreatment tem-
perature (°C) and b) relative fat content
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objective is discovery of the causal relations between the ob-
jective physicochemical data and consumer perception of 
quality. To find causal relationships between complex data of 
wheat biochemical and physical properties and bread baking 
quality, Bayesian statistical model with Monte Carlo Markov 
chain (MCMC) sampling of the posterior distribution was ap-
plied. Structural causal learning and analysis of dairy prod-
ucts was achieved by hill-climbing optimization of the Bayes-
ian information criterion (BIC). Besides the structural causal 
models, the unstructured algorithm of double machine learn-
ing (DML) models with the random forest decision trees were 
applied to obtain the vine quality data.

The main technological application of the presented 
causal artificial models is to evaluate the effects of interven-
tions (’do’, do(x) operator) as improvements of production 
process parameters and compositions of food ingredients. 
The causal models help find process control patterns and 
support technological decisions outside the available regres-
sion data. Here, for each presented model, average causal ef-
fects (ACE) were evaluated based on d-separation criteria and 
selection of the corresponding unconfounding adjustment 
sets. For the models to compare wine quality, the structural 
models based on ACE are in agreement with the estimates by 
the unstructured DML algorithm. The importance of nonlin-
ear causal effects is modelled by Bayesian neural networks 
with d-separated minimal adjustment sets and shown as par-
tial dependency plots. 
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