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Summary — We present a novel approach for measuring 
and representing acoustic emissions of transformers. The re-
presentation of location-based acoustic emissions enables im-
proved monitoring of transformers, e.g., to detect and predict 
anomalies and failure events. Here, we introduce 3D acoustic 
heatmaps to visualize the sound emission patterns of a tran-
sformer. We use a combined sensing approach consisting of 
a 3D point cloud, a microphone array, and beamforming al-
gorithms to generate the distributed representation of acou-
stic emissions over the entire surface of the transformer. In a 
further step, we intend to apply machine learning methods to 
the generated data to enable early fault prevention and predic-
tive maintenance.

Keywords — Transformer, Audio, Microphone Array, 
Monitoring.

I. Introduction

Transformers are important building blocks of the electri-
cal transmission system. Failure of these components can 
result in long outages as well as high restoration costs for 

the grid operator. Therefore, monitoring the condition of transfor-
mers and predicting potential failure events are of great interest 
to all involved parties. A successful monitoring system can thus 
minimize downtime and prevent transformer failure by triggering 
tailored predictive maintenance. The most common transformer 
monitoring techniques include thermal analysis, winding vibrati-
on, motion and deformation analysis, dissolve gas analysis, partial 
discharge analysis, and tapping under load analysis [1].

II. Background
Transformers emit characteristic noise due to the electroma-

gnetic oscillatory behavior of various internal components [2]. 
These include core and coil oscillations. In addition, partial disc-
harges in the winding insulation and insulating brushes contribute 
to the noise emissions [3]. Moreover, geomagnetically induced 
currents and other DC components of the core cause additional 

noise sources [4]. The combination of the aforementioned factors 
creates a complex sound field that is further influenced by the age 
of the transformer, its loading, and potential anomalies [5]. In this 
paper, a novel approach is developed to use the sound emission 
patterns of a transformer to represent and monitor the transformer 
condition during operation. Modelling the acoustic emissions of a 
transformer enables the detection and prediction of anomalies and 
failure events. With the here- presented system concept, we intro-
duce additional information for transformer monitoring systems 
that established methods do not take into account (see Section 1).

III. System Overview
We present a novel approach to measure and visualize tran-

sformer acoustic emissions. We use the term 3D acoustic heatmap 
because we visualize the distribution of acoustic emissions over 
the entire surface of a transformer.

A lidar-generated 3D model of the transformer consists of 
uniformly distributed voxels. A beamformer algorithm calculates 
the directional sound radiation of each voxel. The values of the 
directional sound radiation result in a 3D acoustic heatmap for each 
desired frequency. These acoustic heatmaps show various infor-
mation about different parameters, including the distributed sound 
pressure levels as well as the local sound sources at characteristic 
frequencies. Using this information, we can create powerful visu-
alization, inspection, and prediction models to assess the condition 
of the transformer.

IV. Wave Propagation Considerations
Spherical Wave versus Planar Wave. The use of a depth 

camera provides a great opportunity to use the information about 
the exact distance of the observed transformer voxels as possible 
sound sources to each microphone. Usually, it is assumed that the 
aperture size of a microphone array is small compared to the dis-
tance to the sound source. In our case, however, it is not. The 
Direction of Arrival (DOA) error of the assumed plane wave is 
therefore no longer negligible.

Figure 1 shows the error of the assumed plane wave. The so-
und travels from sound source to two microphones, separated by 
distance d, via r1 and r2. We choose the first microphone as the re-
ference microphone, so the plane wave is orthogonal to r1 and φ is 
the arrival angle. It can be easily seen that DOASphere = r2 - r1, while 
DOAPlanar = 𝑑 cos φ. Considering the cosine rule, the error resul-
ting from the plane wave assumption depends on three parameters, 
φ, r1 and d, respectively.
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Figure 2 shows the DOA error at different sound source dis-
tances and different microphone distances while keeping the angle 
of arrival at 80°. Figure 3 shows the DOA error at various sound 
source distances and arrival angles while the microphone distance 
is kept at 1 m. The larger the sound source distance, the smaller the 
error. Moreover, the influence of the error is frequency-dependent; 
for frequencies with large wavelengths compared to the DOA error, 
the effect of assuming a plane wave is smaller than for frequencies 
with small wavelengths, i.e., high frequencies are more affected 
than low frequencies. A microphone array with an aperture size of 
about 1 m, a common r1 of 5 m, and an angle of arrival of about 70° 
has a plane-wave assumption error of around 0.1 m. At 500 Hz, this 
becomes a wavelength error of about 52°, with 180° representing 
complete negative interference. The use of a point cloud as possible 
sound source points gives excellent results for acoustic heat maps 
and avoids these errors in assuming plane waves.

V. Implementation
The proposed information processing system consists of a 3D 

model of the transformer created using a LIDAR scan, a microp-
hone array for audio acquisition, and a beamforming algorithm 
for processing the multichannel audio data. In the following, we 
describe the above-mentioned components in detail.

3D Modelling. A 3D model of the transformer created from 
a LIDAR omnidirectional scan serves as a starting point. Using 
an RGB-D image taken with a combined visual sensor (RGB and 
depth), we then register the actual position of the microphone 
array with respect to the 3D model. In this way, we ensure opti-
mal matching of the different sensor modalities, resulting in the 
best possible mapping of the audio data to the point cloud.

Microphone Array. The microphone array has a special 3D 
design that takes into account the desired characteristics in terms 
of sound distribution as well as mechanical stability and durability. 

Fig. 2. Error at arrival angle 80°

Fig. 3. Error at a microphone interdistance of 1m

Fig. 4. 32-channel microphone array construction in icosahedron dome 
geometry.

Fig. 1. Error of the plane wave assumption
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The geometry consists of an icosahedron dome V2 [6][7] with a 
radius of 135 cm and 26 vertices mounted on a base plate with 6 ho-
les. This results in 32 sensor positions for ICP electret microphones 
in an IP67 enclosure. The array geometry was chosen based on 
numerical beamforming simulations to achieve an appropriate tra-
deoff between main lobe width and maximum sidelobe levels for 
third-octave center frequencies within 100 Hz and 20 kHz, resul-
ting in a directivity index greater than 10 dB for frequencies above 
200 Hz and greater than 15 dB for frequencies above 800 Hz. The 
effective spatial aliasing-free frequency range with minimal direc-
tionality is 130 Hz to 15 kHz [8]. Fig. 4 and 5 show the array design 
and the microphone enclosures used for data acquisition.

Beamforming. We use delay-and-sum (DAS) beamforming 
[9] to compute the sound arriving from a given direction. Beside 
its straightforward implementation, DAS guarantees artifact-free 
output signals, which is important for any acoustic modelling 
approach that relies on these signals. Furthermore, DAS preserves 
the amplitude ratios with respect to the input signals, which is man-
datory for the calculation of the resulting absolute sound pressure 
values. The use of the 3D point cloud outperforms the typically 
assumed plane wave, especially for short distances between the 

microphone array and the transformer. The voxels on the transfor-
mer surface serve as sound source positions for the beamforming 
algorithm. Therefore, the correct spacing of the 3D point cloud si-
gnificantly improves the radiation pattern.

The obtained sound radiation pattern represents the sound ra-
diation of the transformer at the microphone array position. Altho-
ugh we assume the main sound radiation in the orthogonal directi-
ons of the transformer, the study of the anisotropic behavior will be 
a future step. Fig. 6 and 7 show acoustic heatmaps of a transformer 
for the entire frequency range and a single frequency, respectively. 
Fig. 8 shows the used microphone array mounted on a mobile robot 
for data acquisition in a substation.

VI. Results
As a first result, we use the generated 3D acoustic heatmaps to 

investigate the sound radiation patterns over several characteristic 
frequencies. In practical applications, we use the system to scan 
each side of the transformer; the resulting heat maps visualize the 
all-around radiation patterns at each frequency.
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VII. Conclusions And Outlook
We have presented a novel approach for monitoring the con-

dition of a transformer by creating 3D acoustic heat maps from 
acoustic sensor data. By combining data from a microphone array 
with a 3D model of the transformer, we have developed a power-
ful tool for inspection and modelling. In a next step, we aim to 
build predictive models by applying machine learning techniques 
to 3D acoustic heat maps collected during an automated mea-
surement campaign over 3 months [10]. With these models, we 
aim to automatically predict anomalies as well as potential failure 
events by analyzing the acoustic radiation patterns emitted by the 
transformer.
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