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The paper introduces an innovative framework for rotating machinery fault recognition by combining Empirical 
Mode Decomposition (EMD) and Convolutional Neural Network (CNN). This novel approach integrates feature ex-
traction and selection, utilizing deep learning for precise classification of transmission components faults. Our 
method achieves an impressive accuracy of 98,97 %. This robust technology significantly enhances the detection 
and diagnosis of transmission faults in metallurgical plant, providing an efficient solution for intelligent manufactur-
ing applications.
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INTRODUCTION

The restoration of the mechanical and electrical sys-
tems in a metallurgical plant relies heavily on timely and 
accurate fault detection. Recent advancements in intel-
ligent metallurgical manufacturing have led to the devel-
opment of data-driven diagnostic methods. Currently, 
driven by artificial intelligence (AI) innovations, signifi-
cant technological progress has been achieved in metal-
lurgical production. AI methods encompass machine 
learning (ML) and deep learning (DL) neural network 
algorithms[1]. Deep learning networks typically depend 
on extensive datasets and have proven effective in the 
fault diagnosis of various rotating equipment in the met-
allurgical field, surpassing other machine health moni-
toring systems in classification accuracy[2, 3]. Mechani-
cal fault detection has become a primary concern in 
many industries, as these faults can disrupt operations 
and increase operational costs. Furthermore, a failure in 
one component of a transmission part may trigger a cas-
cade of failures in other components[4]. Vibration signal 
analysis plays a crucial role in distinguishing between 
normal and abnormal mechanical operation. This analy-
sis, conducted in both the time and frequency domains, 
aids in identifying faults in multiple transmission com-
ponents of metallurgical plant machinery.

This article decomposes complex data signals into 
simpler constituent parts, facilitating the easier identifi-
cation and analysis of potential issues. This method is 
particularly well-suited for handling nonlinear and non-
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stationary time series data, providing a robust solution 
for diagnosing faults in transmission components.

METHOD

The data processed through EMD and subsequently 
subjected to feature extraction via CNN constitutes a 
powerful combination, particularly suitable for the 
analysis and pattern recognition of complex data. The 
detailed steps are as follows:

In the first step, I will employ EMD to decompose 
the time series data s(t) of the metallurgical lathe’s 
transmission components into a series of intrinsic mode 
functions (IMFs). Using interpolation, upper and lower 
envelope lines are constructed. The average of these up-
per and lower envelope lines is calculated, and this av-
erage is subtracted from the original data. The resulting 
outcome serves as a new dataset, and the above steps 
are iteratively repeated until the conditions for IMF are 
met. The decomposed IMF is subtracted from the origi-
nal data, and the entire process is repeated for the re-
maining data until all data is decomposed into IMFs.

	 � (1)

where IMFi(t) is the i-th Intrinsic Mode Function, and 
r(t) is the residual function representing the trend com-
ponent in the data. For IMFi(t), the difference in the 
number of local maxima and minima is at most one over 
the entire length of the dataset, and at any given mo-
ment, the average of the upper envelope formed by all 
local maxima and the lower envelope formed by all lo-
cal minima is zero. The EMD decomposition is illus-
trated in Figure 1.
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The original signal is composed of two oscillatory 
modes (IMF1 and IMF2) and a linear trend. The plot 
shows these components separately, following the prin-
ciple of EMD where a complex signal is broken down 
into its intrinsic oscillatory modes and a residual trend.

The second step involves applying layer normaliza-
tion to each IMF to ensure they have appropriate mean 
and variance. This contributes to improving training 
stability and convergence speed. Representing an IMF 
as x = [x1,x2,…,xn], where n is the length of the IMF, the 
corresponding mean and variance are computed as per 
formulas (2) and (3).

	 � (2)

	 � (3)

Standardizing the IMF using mean and variance,

	 � (4)

where ε is a small constant employed to prevent divi-
sion by zero errors. The standardized IMF undergoes 
scaling and shifting to obtain the final output of layer 
normalization.
	 � (5)

where γ and β are learnable parameters that enable the 
network to learn appropriate scaling and shifting.

The third step involves constructing a CNN net-
work, where each convolutional layer comprises a set of 
learnable filters that slide over the input data (convolu-
tion operation) to generate feature maps. This process 
contributes to the building and feature extraction. For a 
given input X and filter K, the convolution operation 
can be expressed as

	 � (6)

where * denotes the convolution operation, and F(i,j) is 
an element on the feature map. Following each convo-

Figure 1 The EMD decomposition diagram

Figure 2 The ReLU curve diagram

lutional layer, a non-linear activation function Rectified 
Linear Unit (ReLU) as shown in Figure 2 is applied to 
enhance the network’s non-linear characteristics, ena-
bling it to learn more complex features.

The ReLU function is defined as shown in formula (7).

	 � (7)

Achieving average pooling is implemented by com-
puting the mean over each pooling window. Assuming 
we have a pooling window of size k×k, for each position 
(i, j) in the feature map, the output Oij of average pool-
ing is calculated as follows:

	 � (8)

where I is the input feature map, (i + p – 1, j + q – 1) 
represents the position in the pooling window.

After the fully connected layers, it is common to use 
the softmax function to transform the network’s output 
into a probability distribution for classification. Assum-
ing we have an output vector z = [z1, z2,…, zC] with C 
categories, where zi represents the network’s score or 
activation value for the i-th category. The calculation 
formula for the softmax function is as follows:

	 � (9)

where softmax(z)i is the probability of the i-th category 
calculated through the softmax function. This function 
transforms each score into a probability value, ensuring 
that the sum of probabilities for all categories is equal to 1.

In practical applications, the softmax function is 
commonly used in conjunction with the cross-entropy 
loss function to minimize the gap between the model’s 
output and the actual labels during training. Let y = [y1, 
y2,…, yC] represent the one-hot encoded actual category 
labels, where only one element is 1, and the rest are 0. 
The cross-entropy loss function is as follows:

	 � (10)
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In our study, we employ accuracy (Acc) as the met-
ric to evaluate the performance of fault diagnosis mod-
els. The formula for calculating Acc is as follows:

	 � (11)

where TP represents the instances where the model cor-
rectly predicts the presence of faults in the transmission 
components. TN indicates the instances where the mod-
el accurately predicts the absence of faults in the trans-
mission components. FP signifies the instances where 
the model incorrectly predicts normal samples as hav-
ing faults in the transmission components. FN denotes 
the instances where the model erroneously predicts 
samples with faults in the transmission components as 
normal.

TRANSMISSION COMPONENTS OF 
METALLURGICAL PLANT MACHINERY

Figure 3 The exemplar of transmission components

Figure 4 The signal of transmission components

where a), c), e) represents the time domain vibration 
signal and b), d) and f) denotes the corresponding fre-
quency spectrum

The experiments in this paper involve spiral trans-
mission devices of two types of dynamic axle-wheel 
systems. The wear and tear of the devices under differ-
ent usage durations is analyzed using time-domain vi-
bration signals and frequency spectrum signals. The 
exemplar of transmission components is depicted in 
Figure 3, with its corresponding signals illustrated in 
Figure 4.

After five rounds of cross-validation, we success-
fully trained a model for detecting faults in transmission 
components. The model demonstrated encouraging per-
formance on various subsets of data, achieving an aver-
age accuracy of 98,97 %. This significant improvement 
in accuracy indicates the efficient capability of our 
model to detect potential faults in the devices.

CONCLUSION

It propose a fault diagnosis approach for spiral trans-
mission devices in dynamic axle-wheel systems by 
EMD and a CNN network model. This method decom-
poses complex data signals into simpler components, 
employing deep learning techniques to identify and an-
alyze potential fault issues. It provides a robust tool for 
fault diagnosis.
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