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This paper introduces a novel diagnostic approach for bearing ball failures: a synergistic implementation of a bidi-
rectional Long Short-Term Memory (LSTM) network, empowered by Gradient Minimum Mean Square. This method 
leverages deep analysis of operational data from bearings, enabling the precise identification of incipient bearing 
ball failures at early stages, thus markedly improving prediction accuracy. Our empirical results underscore the su-
perior performance of this composite methodology in accurately detecting a spectrum of five mechanical bearing 
ball failure types, achieving a substantial enhancement in diagnostic precision.
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INTRODUCTION

In the metallurgical sector, the paramount challenge 
to safety stems predominantly from equipment mal-
functions and human operational errors. A critical as-
pect of this is the failure of bearing balls, which are in-
tegral to the stability and efficiency of entire mechani-
cal systems [1]. It is noteworthy that over half of the 
failures in rotating machinery have a direct correlation 
with bearing malfunctions. Rolling bearing failures can 
induce intense vibrations in equipment, leading to op-
erational shutdowns, production stops, and even human 
casualties. Early detection of such faults, often subtle 
and intricate in their initial stages, poses a significant 
challenge. The burgeoning interest in bearing ball fault 
detection and diagnosis in recent years has foreground-
ed vibration signal analysis as a pivotal and effective 
diagnostic tool. The correlation between the extent of 
bearing wear and the amplitude of vibration signals is a 
crucial indicator of system performance. The ability to 
detect these vibrations without disrupting production 
processes presents significant cost-saving opportuni-
ties. Bearing ball vibration analysis thus plays a vital 
role in fault detection and the broader context of me-
chanical health monitoring.

The deep learning paradigm, especially in the con-
text of bearing ball safety monitoring, has unveiled con-
siderable potential. Deep learning algorithms facilitate 
the extraction of pivotal features from extensive and 
complex operational datasets, enabling the precise pre-
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diction of early-stage bearing ball failures. This meth-
odology not only improves fault detection accuracy but 
also substantially minimizes the downtime and mainte-
nance costs associated with such failures, offering ro-
bust and effective technological support for the metal-
lurgical industry’s safe operation.

This study conceptualizes the challenge of bearing 
ball fault detection in metallurgical plants as a problem 
of time series analysis. It leverages a Bidirectional Long 
Short-Term Memory (BiLSTM) network as the princi-
pal network to capture the temporal sequential features 

Figure 1 The structure of GLMS-BiLSTM
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in bearing fault scenarios. This model is further refined 
through the integration of one advanced machine learn-
ing optimization algorithms, which optimize the weight 
parameters and the optimal number of units in the se-
quential neural network. To validate the efficacy of the 
GLMS-BiLSTM model in the classification of bearing 
faults, an extensive evaluation is conducted on a spe-
cialized bearing fault detection dataset.

GLMS-BiLSTM MODEL

In this paper, i introduce a cutting-edge solution for 
detecting bearing ball faults in metallurgical facilities, 
embodied in a BiLSTM that synergistically incorpo-
rates GLMS, as depicted in Figure 1. This novel ap-
proach is adept at conducting an in-depth analysis of 
vibrational data from bearings, thereby enabling a more 
precise detection of even the most subtle fault signals. 
The integration of the GLMS algorithm significantly 
refines the learning process of the network, thereby 
boosting the efficiency and accuracy of fault prediction.

This innovative methodology not only improves the 
accuracy in fault detection but also serves as a powerful 
technological pillar for ensuring safety within the metal-
lurgical industry. It marks a significant advancement in 
enhancing both the efficiency of production processes 
and the reliability of equipment. This approach exempli-
fies the effective integration of advanced machine learn-
ing techniques with practical engineering applications, 
setting a new standard in the field of mechanical fault 
diagnosis and offering a valuable tool for the mainte-
nance and operational optimization in heavy industries.

In managing vibration data from bearings, the 
GLMS-BiLSTM model employs a BiLSTM frame-
work, adept at encapsulating the nuances of time series 
data. This proficiency is rooted in the model’s complex 
architecture, which is depicted in Figure 2. Central to 
this architecture are the input gates, forget gates, output 
gates, and cell states. Each of these components plays a 
pivotal role in the model’s functionality:

	 � (1)

	 � (2)

Next, the GLMS-BiLSTM model uses its forget gate 
to decide which information to discard from the cell 
state. This gate examines ht–1 and xt through a sigmoid 
layer, outputting a number between 0 and 1 for each 
number in the cell state Ct–1. A value of 1 signifies ‘com-
plete retention,’ while 0 indicates ‘complete discard.’

	 � (3)

The model then updates the cell state by combining 
the information from the input and forget gates, filter-
ing, and storing important information.

	 � (4)

Finally, the output gate of the GLMS-BiLSTM mod-
el determines the value of the next hidden state. This 
hidden state contains information from previous time 
steps and is also used for prediction.

	 � (5)

	 � (6)

where σ denotes the sigmoid function, tanh represents 
the hyperbolic tangent function, and * signifies ele-
ment-wise multiplication. W and b respectively repre-
sent weight matrices and bias vectors, xt is the input at 
the current time step, ht is the hidden state, and Ct is the 
cell state. Through this mechanism, GLMS-BiLSTM 
effectively captures both long-term and short-term de-
pendencies in time series data, making it apt for sequen-
tial data processing tasks in bearing roller vibration data 
analysis.

Figure 2 The network structure of LSTM

The GLMS-BiLSTM model initially employs its in-
put gate to determine which pieces of bearing fault in-
formation need to be updated. This gate comprises two 
parts: a sigmoid layer that decides which values require 
updating, and a tanh layer that creates a new candidate 
value vector, which may be added to the cell state.

Figure 3 �Gradient Least Mean Squares optimization weight 
process

The GLMS method, with its high robustness to 
noisy data, combined with the unique advantages of Bi-
LSTM in capturing long-term dependencies in data, 
presents a novel solution for processing time series data 
with noise. This approach not only enhances the net-
work’s adaptive capability in dynamic environments 
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but also improves the precision and stability of the pre-
dictive model. As illustrated in Figure 3, the GLMS al-
gorithm optimizes the weights and biases of the Bi-
LSTM network by iteratively minimizing the mean 
square of prediction errors. It employs the logic of gra-
dient descent optimization to compute the gradient of 
the prediction error, subsequently adjusting network 
parameters based on this calculation. This effectively 
reduces error margins and enhances the overall predic-
tive capacity of the model.

To elaborate, the optimization of the BiLSTM 
through GLMS in the GLMS-BiLSTM model typically 
involves two critical steps:

The first step involves computing the error between 
the current prediction and the actual value. This can be 
mathematically represented as:

	 � (7)

where e(t) is the error at time t, d(t) is the actual value, 
w(t) is the weight vector, and x(t) is the input feature 
vector.

The second step updates the weights based on the 
gradient of the error, as shown in:

	 � (8)

where µ is the learning rate.
These steps underpin the GLMS-BiLSTM’s optimi-

zation strategy, which is pivotal in accurately calibrat-
ing the Bi-LSTM network for efficient and precise fault 
detection in mechanical systems. By continuously ad-
justing the weights in response to the calculated error 
gradients, the model effectively minimizes prediction 
errors, enhancing its reliability and accuracy in fault di-
agnosis. This optimization process not only reflects the 
sophistication of the GLMS-BiLSTM model but also 
underscores its suitability for complex, real-world ap-
plications in mechanical fault detection.

	 � (9)

where frb represents the bearing rotation ball failure fre-
quency, n is the number of rolling elements, d is the di-
ameter of rolling elements, D is the diameter of bearing 
pitch, α is the contact Angle of rolling elements, and N 
is the bearing rotation frequency. Fault data of 1,2,3,4 
HP motor loads and a non-fault vibration signal are 
used respectively, as shown in Figure 5.

Figure 4 Ball data sample

(a) ball with damage (b) ball without damage

Roll ball data analysis

The dataset for the bearing ball faults, exemplified 
in Figure 4, is modeled after the bearing ball dataset 
from the Case Western Reserve University collection. 
We have meticulously gathered fault data from the fan 
end bearings, specifically those with a fault diameter of 
approximately 0,18 millimeters, under a sampling rate 
of 2kHz. The formula used for calculating the charac-
teristic frequency of these bearing ball faults is deline-
ated in Equation (9).

(a)

(b)

(c)

(d)

(e)

Figure 5 Vibration signal of bearing ball

where (a) is 1 HP motor loads, (b) is a non-fault vibra-
tion signal, (c) is 2 HP motor loads, (d) is 3 HP motor 
loads, (e) is 4 HP motor loads.

Figure 6 �The ablation experiment affects the change, a 
represents the use of Bi-LSTM for fault bearing 
rotation diagnosis, b represents that GLMS-BiLSTM 
does not use GLMS optimization, and c represents 
the diagnostic performance of GLMS-BiLSTM.

(a)

(b)

(c)

In our study, we employ accuracy (Acc) as the met-
ric to evaluate the performance of fault diagnosis mod-
els. We conducted a comparative analysis across three 
different models: a support vector machines (SVM) 
model [2], an LSTM model [3], and a Bi-LSTM model 
[4]. The comparative results of fault diagnosis using 
these models are presented in Table 1. The formula for 
calculating Accuracy (Acc) is as follows:
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	 � (10)

The experimental results, as shown in Table 1, 
demonstrate that the proposed GLMS-BiLSTM model 
achieved an average accuracy of 95,65 %, surpassing 
all baseline fault diagnosis methods.

poral characteristics of bearing ball faults. The paper 
conducts comparative and ablation experiments across 
five different fault categories, affirming the model’s ef-
fectiveness. This approach offers a new direction for 
enhancing safety in metallurgical plant operations.
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Table 1 Diagnostic results of different models

Model Acc(%)

SVM 85,34
LSTM 90,42
Bi-LSTM 93,18
GLMS-BiLSTM 95,65

In addition, we performed ablation studies on the 
GLMS-BiLSTM model to investigate its performance 
without the use of GLMS, as shown in Figure 6.

CONCLUSION

This paper introduces a novel method for diagnosing 
and detecting bearing ball faults in metallurgical appli-
cations, based on the GLMS-BiLSTM network model. 
This model leverages machine learning to bilaterally 
optimize its parameters, effectively extracting the tem- Note: �The responsible for English language is the lector from University.


