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Hot-rolled strip steel is a material widely used in production activities and daily life. However, the appearance of
surface defects during its production process is inevitable. To address this issue, we introduce a new detection
method using Gold-Yolo to detect surface defects on hot-rolled strip steel. Our method effectively balances accu-
racy and real-time performance while detecting four common types of surface defects, achieving an average accu-
racy rate of 82,2 % for detecting individual types of surface defects. Experimental data prove that our method excels
in classifying and locating surface defects on hot-rolled steel strip, demonstrating broad application prospects and

promotional value.
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INTRODUCTION

Hot-rolled strip steel is a key product in the steel
industry, produced through the hot rolling process. This
process involves heating steel billets to high tempera-
tures (usually above 1 000 °C) and then rolling them in
a continuous mill set in their hot state to achieve the
desired thickness and width. This manufacturing meth-
od endows the steel with good plasticity and ductility,
making it suitable for subsequent processing and appli-
cations. It is widely used in construction, the automo-
tive industry, shipbuilding, and machinery manufactur-
ing, among other fields. However, even minor surface
defects can lead to serious structural problems, espe-
cially in applications where there are strict requirements
for material strength and durability. Therefore, defect
detection in modern industry is necessary.

In the past, the detection of surface defects on steel
plates mainly relied on manual methods, which had sig-
nificant subjectivity and could not be performed in real-
time. In recent years, with the development of machine
vision and image processing technologies, most manu-
facturers have begun to adopt these technologies. Cur-
rent steel plate surface defect detection techniques
based on machine vision and Convolutional Neural
Networks (CNN) have achieved good results. However,
traditional machine vision technologies have some
shortcomings, such as poor adaptability.

In view of this, we propose a single-stage steel plate
surface defect detection method based on Gold-Yolo.
This method introduces new features and improvements
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while retaining the basic framework, enabling it to clas-
sify defects and determine their locations, thereby sig-
nificantly increasing the detection speed. Compared to
traditional methods, Gold-Yolo offers higher efficiency
and precision, especially when dealing with complex or
irregular surfaces. Through this method, we can more
effectively identify and locate various defects on steel
plates, thereby ensuring product quality and improving
production efficiency.

RALATED WORK

In the development of surface defect detection and
classification methods for hot-rolled steel strips, early
methods relied on manual summarization of image fea-
tures and used matching methods to detect defects. For
example, literature [1] proposed an “anti-noise method
based on complete local binary patterns” and construct-
ed a dataset based on NEU-DET. However, manual
summarization and matching of defect images require
domain experts to analyze images in specific environ-
ments to obtain more precise features.

Subsequent research, such as in literature [2], pro-
posed a method based on CNN (Convolutional Neural
Networks) for detecting surface defects on hot-rolled
steel strips. Literature [3] introduced a method based on
Random Forest and Support Vector Machines. Com-
pared to traditional machine learning methods, deep
neural networks are more prominent in the field of auto-
matic image feature extraction, with CNNs being wide-
ly applied. Literature [4] proposed a defect detection
algorithm combining Swin Transformer and a multi-
threshold structure.

To effectively meet the high-performance require-
ments during the production of hot-rolled strip steel,
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Figure 1 The network structure of Gold-Yolo
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Figure 2 Gather-and-Distribute structure

this article adopts the latest Gold-Yolo model. Gold-
Yolo introduces the “Gather-and-Distribute” (GD)
mechanism, effectively overcoming the limitations of
traditional FPN (Feature Pyramid Network) structures
in information transmission and enhancing the detec-
tion capability for objects of different sizes. Specifical-
ly, Gold-Yolo’s Low-Order Gather and Distribute
(Low-GD) and High-Order Gather and Distribute
(High-GD) branches can efficiently process defect fea-
tures of varying sizes. The low-order branch focuses on
capturing small-sized defects, while the high-order
branch is more suited for detecting large-sized defects.
In this way, Gold-Yolo maintains both high accuracy
and speed, meeting the strict real-time performance re-
quirements in the production of hot-rolled steel strips.

METHODOLOGY

The network structure of Gold-Yolo is as shown in
Figure 1, it is very similar to the traditional Yolo model,
but it differs in the Neck stage.

The Yolo series utilizes the classic FPN (Feature
Pyramid Network) architecture in its intermediate lay-
ers. This architecture achieves multi-scale feature fu-
sion through multiple branches. However, this structure
mainly optimizes the integration of features between
adjacent layers, relying on an indirect, recursive method
for information fusion at more distant levels.

In the traditional FPN structure, there is a significant
issue in information transmission: a considerable
amount of information may be lost during the transfer
process. This is because the interaction between layers
is primarily limited to the information selected by the
intermediate layers, with unselected information being
lost during transfer. As a result, the information from a
specific level mainly provides effective support only to
its adjacent layer, offering limited assistance to the
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broader global hierarchy. Therefore, overall, the effec-
tiveness of information fusion may be somewhat re-
stricted.

Gold-Yolo has improved the traditional Feature Pyr-
amid Network (FPN) structure by adopting a novel
“Gather-and-Distribute” (GD) mechanism. In conven-
tional FPN structures, the fusion of features from differ-
ent levels often leads to information loss. This is espe-
cially true during cross-level information exchange,
where the transmission of information is not direct
enough, resulting in inefficiency and information loss.
Gold-Yolo addresses this issue with its innovative GD
mechanism, which uses a unified module to collect and
fuse information from different levels, and then effec-
tively distributes this information to each level. This not
only prevents information loss during transmission but
also enhances the information fusion capability without
significantly increasing latency.

The GD mechanism of Gold-Yolo includes three
main modules: the Feature Alignment Module (FAM),
the Information Fusion Module (IFM), and the Infor-
mation Injection Module (Inject). The FAM is responsi-
ble for collecting and aligning features from different
levels, while the IFM fuses these features to generate
global information. Finally, the Inject module distrib-
utes this information to each level, enhancing the detec-
tion capability of the branches through simple attention
operations. Additionally, Gold-Yolo has developed two
branches: the Low-GD branch and the High-GD branch.
These branches extract and fuse features from large and
small-sized feature maps, respectively, to enhance the
model’s detection capabilities for objects of different
sizes.

In Figure 2, the Low-Order Stage Branch features
the Low-Order Feature Alignment Module (Low-FAM)
and the Low-Order Information Fusion Module (Low-
IFM), collectively known as the Low-Order Gather and

METALURGLA 63 (2024) 3-4, 423-426



I H. REN et al.: AMETHOD FOR DETECTING SURFACE DEFECTS IN HOT-ROLLED STRIP STEEL BASED ON... s

B
4

=1
EE Y evopoct —
C=H

Multi-Head ‘é I!

Attention

High-GD
iR High-IFM
.
L 5 [-Ilnjm:c_nsl
Feed- ]
Forward -.é Split '.—.I-.
e [ e
L]

: |
L] L

high-stage gather-and-distribute branch

Figure 3 Gather-and-Distribute structure

Distribute Branch (Low-GD). This branch focuses on
merging output features from the Backbone network
(e.g., B2, B3, B4, B5) to obtain high-resolution features
that retain information about small objects. Within this
branch, the Low-Order Feature Alignment Module
(Low-FAM) uses an average pooling (AvgPool) opera-
tion to downsample input features and achieve a uni-
form size. Then, information fusion is carried out
through a Transformer module to minimize computa-
tional complexity.

In Figure 3, there is the High-Order Feature Align-
ment Module (High-FAM) and the High-Order Infor-
mation Fusion Module (High-IFM), together forming
the High-Order Gather and Distribute Branch (High-
GD). This branch integrates features generated by the

Low-GD (such as P3, P4, P5). The High-Order Fea-
ture Alignment Module (High-FAM) includes the use of
average pooling (avgpool) to reduce the dimensions of
input features to a uniform size. The High-Order Infor-
mation Fusion Module employs multiple stacked Trans-
former blocks, each containing multi-head attention
blocks, a feed-forward network (FFN), and residual
connections.

METHOD OF IMPLEMENTATION

Prior to training the Gold-Yolo model, preprocess-
ing was conducted for the four categories in the NEU-
DET dataset, which included data cleaning and image
augmentation. The aim was to expand the dataset and
enhance the model’s generalization performance. The
dataset was then divided into a training set and a test set
in an 8:2 ratio. The model’s trainable parameters were
initialized randomly. The training set, after being batch-
processed, was used for training the model. Adjust-
ments to the model were made through backpropaga-
tion. After each training epoch, the model’s trainable
parameters were fixed, and the test set was used to
evaluate the model’s performance. This process contin-
ued until there was no further improvement in the mod-
el’s detection performance.

EXPERIMENT AND ANALYSIS

For our study, we selected four types of defects from
the NEU-DET steel surface defect dataset: Inclusions,
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Patches, Pitted Surface, and Scratches. These defects
were manually annotated in the dataset, with the corre-
sponding results illustrated in Figure 4.

During the training process of the Gold Yolo model,
we referred to the training configuration and network
architecture of Yolov6-3,0 (except for the middle layer
part) for setup. The model’s backbone network utilized
the EfficientRep Backbone, while the detection head
part employed an efficient decoupled head structure. To
optimize the training process, we adopted the Stochas-
tic Gradient Descent (SGD) method with momentum
and applied a cosine decay strategy for adjusting the
learning rate. Additionally, the model training included
a warm-up phase, grouped weight decay, and Exponen-
tial Moving Average (EMA). In terms of training strat-
egy, we also incorporated self-distillation and Anchor-
based Assistant Training (AAT). As for data augmenta-
tion techniques, weused methods like Mosaic and Mix-
up. After 150 epochs of training, the learning rate was
reduced to 0,01. The training was conducted on an RTX
3050 device and lasted a total of 1,5 hours.

pinterp(r,, )= max p(7) (1)
AP = 21,=0(’71+1 -7, )pinterp (rM ) 2)
k
AP
mAP = —2’2 ' 3)

Where pinterp (r, ) is the interpolated precision at a
specific recall level 7 . It is calculated by taking the
maximum precision p(7) for all recall levels 7 that are
greater than or equal to 7., o(7). This is the precision at
the recall level 7, AP Average Precision, which is com-
puted as the sum of the product of the interpolated pre-
cision pinterp (r ) and the difference in recall levels
(r,.,—r,) over all recall levels from 0 to 1, » and r .
These are the adjacent recall levels. When evaluating
the Gold Yolo model, we used the Mean Average Preci-
sion (mAP), which considers both Precision and Recall.
Precision refers to the proportion of correctly predicted
positive samples among all samples predicted as posi-
tive. Recall represents the proportion of correctly pre-
dicted positive samples among all actual positive sam-
ples. The calculation of Average Precision (AP) in-
volves averaging the precision at each recall level.
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Figure 4 Annotation sample by Labelimg

These precision values are based on the ascending order
of recall values and are derived using formulas (1) and
(2). Finally, the mAP is calculated using formula (3),
which averages the AP values for each category, where
k represents the number of categories.

CONCLUSION

The researcher selected 20 % of the images from the
training set that did not participate in the training as the
test set. On the NEU-DET dataset, the average accuracy
of the Gold Yolo model reached 82,2 %, while the aver-
age accuracy using Yolov8 under the same conditions
was only 81 %. The processing speed of this method on
an RTX 3050 graphics card was 33,3 frames per second,
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with each image’s analysis time being only 30 millisec-
onds. This speed is sufficient to meet the requirements
of surface defect detection and localization during the
high-speed operation of hot-rolled steel strip lines.
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