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Accelerometer-based algorithm for the segmentation and classification of
repetitive humanmovements during workouts
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Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

ABSTRACT
Monitoring a person’s physical activity has a wide range of applications in both sports and
medicine. With the advancement of technology for measuring human movement, it is possible
to monitor the performed activity without a need for an expert to directly overlook the trainee.
While the initial interest focused mainly on aerobic exercises, research has recently begun to
focus on strength exercises. The goal is to achieve the highest possible accuracy in tracking
movement while maintaining the low cost and energy autonomy of the monitoring device. In
this paper, an algorithm for the segmentation and classification of repetitive movements dur-
ing workouts based on 3-axis accelerometer data from a wearable device is presented. The
accelerometer signals were recorded continuously during the workout session which consisted
typically of 9 strength exercises, where 8 default movements were repeated in three sets. Seg-
mentationof the acceleration signals recordedduring theworkoutwasdoneusing the frequency
spectrum of the acceleration magnitude with an accuracy of 99.4%, while the classification of
the segmented movements was done using the Dynamic Time Warping (DTW) algorithm with
an accuracy of 85.7%.
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Introduction

Regular and moderate physical activity has a positive
effect on human health, it reduces the risk of illness
and death, and is often used as part of rehabilitation
during recovery from surgery or serious illness [1,2].
It is defined as the movement of the body that increases
energy expenditure above the level of rest and can occur
spontaneously (leisure, work or transport) or organized
(sports, physical training or exercise). Recommenda-
tions and strategies for physical activity can be found
in the publicly available literature [3,4], and it can be
briefly concluded that a person in addition to their
daily responsibilities (spontaneous activities) during
the week, should also strive for a balanced organized
programme of activities or exercise to improve aero-
bic working capacity and muscle strength. This form
of activity can be carried out in the gymnasiums, at
home or outdoors, and in order to maximize the pos-
itive effect, it is recommended to perform it with some
knowledge or in the presence of a professional expert.

Most often due to financial incapacity and depen-
dence on a pre-planned training schedule, people with
inadequate knowledge approach exercise on their own,
which often leads to loss of motivation and giving up,
ineffective training or in the worst case even to injuries
[5–7]. If a person still decides to apply some form
of supervised exercise, it is often in a group, rather

than individualized, which is a challenge for trainers to
systematically monitor an individual [8]. In addition,
the existing measurement instruments (tests, question-
naires, assessment scales) used in the evaluation of the
exercise [9] can be improved in terms of automation,
objectivity and reliability [10,11].

The rapid development of technology in the last
decade has greatly enabled and facilitated the process
of digital recording of human movement [12]; there-
fore, it can present a possible solution for the develop-
ment of intelligent supporting devices or systems that
would additionally help a professional expert or could
even replace them in certain situations. Considering the
equipment and technology needed for recording, it can
be roughly divided into two groups: (a) vision-based
systems and (b) wearable-based systems. The choice of
the group primarily depends on the field of application,
type of activity and the space where the activity takes
place [13].

Vision-based systems use a set of cameras and spe-
cialized markers attached to a subject’s body to acquire
the positions of markers in the 3D space. An example is
the widely used Vicon system [14]. These systems pro-
vide high accuracy and are often considered the gold
standard [15] but they also have some drawbacks such
as a large number of cameras needed for complexmove-
ments, dependency on enclosed spaces (laboratory) or
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high costs. On the market, there are also simpler, more
portable, markerless and low-cost vision-based systems
(e.g. Microsoft Kinect [16]) but they are still lagging
behind the more expensive ones in terms of accuracy.

Unlike vision-based systems, wearable-based sys-
tems do not have cameras and, therefore, provide more
flexibility without spatial constraints [13]. In this case,
a system is compounded of different wearable devices
attached to a subject that can measure many param-
eters depending on the used sensors. Due to the low
price, sufficiently accurate measurements, portability
and availability, this paper will focus on wearable sys-
tems, specifically inertial systems. Inertial systems are
composed of miniature inertial sensors, accelerom-
eters and/or gyroscopes and often magnetometers.
This combination of sensors is frequently used with a
microcontroller, internal memory and a communica-
tion module and together they form a wearable sen-
sor device called Inertial Measurement Unit (IMU)
[17–19].

Different types of physical activity can be moni-
tored with the help of wearable systems. While in the
initial research emphasis was mainly on aerobic exer-
cises [20,21], more recently attention has also begun
to focus on strength exercises. To independently moni-
tor and evaluate repetitive human movements through
this type of exercise, a proper form is to classify them
into two main categories: quantitative and qualitative
[22]. Quantitative evaluation will provide an overview
of how many repetitions are done, and qualitative eval-
uation will show whether repetition is being performed
correctly.

Several research groups have successfully tackled
this issue of monitoring strength exercises, but some
issues still remain open. Further in the text, gaps are
listed which certain systems have left open so those
systems are particularly incomplete in terms of quan-
titative and qualitative evaluation.

When it comes to exercises, the emphasis is often on
individual extremities rather than whole-body activa-
tion [8,23–26].

The system detects the number of performed rep-
etitions but there is no information about the begin-
ning and end of repetitions so the trajectory of move-
ment between the starting and ending point remains
unknown [5,27,28].

A certain amount of data is needed in the training
phase for the system to be able to perform repetition
segmentation [1,29,30].

Taking into consideration the previous research and
gaps, we propose an accelerometer-based algorithm for
the segmentation and classification of repetitive human
movements during a workout. The proposed algorithm
leaves the emphasis on accuracy in tracking movement
while maintaining low cost and low energy consump-
tion of the device. Segmentation of the movement was
done using the frequency spectrum of the acceleration

magnitude, while the classification of the segmented
movement was done using the DTW algorithm. For
this research, volunteers performed 9 different strength
exercises (Appendix, Table A11).

The remainder of the paper is organized as fol-
lows: Section “Materials and methods” describes the
methodology, followed by results and discussion in
section “Results and discussion” and section “Conclu-
sions” concludes the paper and points out the important
practical implications of this study with future work.

Materials andmethods

This section describes the methods used to develop
and test an algorithm for the segmentation and clas-
sification of human movements during exercise. The
function of the algorithm is to separate the accelerom-
eter data obtained by measurements during repetitive
exercises into individual repetitions of the default exer-
cise movement and then to determine which exercise is
characterized by the signal of that repetition. We gen-
erated our own data set for this experiment. For all
calculations and analyses in this study, we used Matlab
R2020a.

Experimental set-up

Participants and performed exercises
For this research, four healthy male subjects were
selected, whereby no subject had a current or recent
musculoskeletal injury that would impair their exercise
performance. Information on age, body weight, height
and exercise experience are listed in Table 1. Each sub-
ject performed a cycle of exercises (workout) according
to a pre-agreed protocol (number of repetitions and
sets) in the presence of an expert. Thereby, one com-
plete movement of the exercise is called repetition, and
several such repetitions without any rest between them
form a set. The task of the expert was to explain to
the subjects how to perform a particular exercise and
to keep records of performed movements, i.e. repeti-
tions. Theworkout consisted of 9 strength exercises that
focused on activating the whole body, not just indi-
vidual extremities. The workout included (1) Standing
Front Dumbbell Raise, (2) Standing Dumbbell Lateral
Raise with Arms Straight, (3) Standing Side Dumb-
bell Shrug, (4) Standing Dumbbell Curl with Rotation,
(5) Bent-over Dumbbell Row, (6) Push-up, (7) Dumb-
bell Step-up, (8) Box Squat and (9) Heel Touch. The
pace of exercise execution and breaks between sets and
between individual exercises were adjusted by the par-
ticipant in agreement with the expert, and the order of
performing the exercises was the same for all subjects.
Subject A performed the given workout once, subject B
3 times, subject C 2 times and subject D 2 times, leading
to a total of 8 different sets of data from the measure-
ments. The duration of the workout of each subject was
approximately 30min.
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Table 1. Subject information.

Subject Age Weight [kg] Height [cm] Gym experience

A 61 68 168 Weak,< 1 year gym
B 31 79 181 Good,> 1 year gym
C 25 85 176 Weak,< 1 year gym
D 32 93 185 Good,> 1 year gym

Figure 1. The 3 IMUs positions: (1) right wrist, (2) chest and (3)
right thigh (mid-point, lateral surface).

Position and number of IMUs
For data acquisition, the Shimmer3 IMU was selected.
As mentioned earlier, only accelerometer data were
acquired. For monitoring the performance of a partic-
ular exercise, we searched for the optimal position of
the IMUs. The position of the IMUs should allowmon-
itoring of all performed exercises. The idea is to use as
few IMUs as possible and a single algorithm. Based on
our previous experience with tracking physical activ-
ities, we decided to place at least one IMU per body
segment that is primarily involved in the performance
of the selected exercises. This includes a minimum of
3 IMUs, which were placed on the wrist of the right
hand, themiddle of the chest and the right thigh (Figure
1). Table 2 lists the exercises and the IMU from which
the accelerometer readings were taken for data process-
ing of the corresponding exercise. The accelerometer
range was set to ±4 g and the sampling frequency at
128Hz. To ensure the highest possible accuracy of the
sensors, calibration was performed using the Shimmer
9DoF Calibration application.

Table 2. Exercise and the IMU from which the accelerometer
readings were taken.

Exercise IMU placement

1. Standing Front Dumbbell Raise wrist
2. Standing Dumbbell Lateral Raise with Arms Straight wrist
3. Standing Side Dumbbell Shrug wrist
4. Standing Dumbbell Curl with Rotation wrist
5. Bent-over Dumbbell Row wrist
6. Push-up chest
7. Dumbbell Step-up thigh
8. Box Squat thigh
9. Heel Touch chest

Figure 2. Three raw acceleration components and event
marker signal during the performance of 3 sets of Standing
Front Dumbbell Raise exercises obtained from an IMU located
on the right wrist.

Segmentation

Signal preparation and processing
The software tool ConsensysPro was used to collect
and save data from the sensors, and Matlab was used
for processing and analysis. During the measurement,
the expert marked the beginning and end of each set
on the recorded data in real-time by an event marker
tool (ConsensysPro). Figure 2 shows three raw accel-
eration components and event marker signals during
the performance of three sets of Standing Front Dumb-
bell Raise exercises obtained from an IMU located on
the right wrist. First, individual sets were separated
using event markers. Then, acceleration components
were processed. The processing consists in removing
the mean value, scaling with a factor of g = 9.81 m

s2 and
calculating the Acceleration Vector Magnitude (AVM)
according to the following expression:

AVM[i] =
√

(ax[i])2 + (ay[i])2 + (az[i])2

where i is the current data sample ax, ay and az repre-
sent respectively the acceleration signals in the x, y and z
axes of the sensor. Acceleration andAVM are expressed
in g units (1 g = 9.81 m

s2 ). After the calculation of the
AVM, the segmentation was done. Two methods for
repetition segmentation are presented below.
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Figure 3. The process of repetition segmentation from one set.

Repetition segmentation
After extracting the individual set and calculating the
AVM, the next step is to make the segmentation of the
repetitions from each set. Because the algorithm should
be energy efficient and implementable on embedded
devices, the AVM signal should take such a waveform
that it can be easily segmented using simple and fast
functions, such as those for finding local minima and
maxima (Figure 6).

The first step in the segmentation process is to deter-
mine the frequency spectrum of the signal and the
dominant frequency in the spectrum. Figure 3 shows
the flow diagram of the algorithm by which individual
repetitions are obtained from the set. The dominant fre-
quency in the first step of the algorithm is assumed as
the frequency of the peak amplitude in the spectrum.
Figure 4 shows the spectrum of the signal from the sec-
ond set for the Heel Touch exercise performed by sub-
ject C. In the spectrum, the peak amplitude is marked
with a red circle, and the corresponding frequency is
0.4Hz.

After calculating the dominant frequency in the
spectrum, it is necessary to determine whether this
frequency is optimal for repetition segmentation. In
Figure 4, the dominant frequency is also optimal for
segmentation, but if in the frequency spectrum of the
signal, in addition to the dominant frequency, there is a
lower frequency at which the signal has a pronounced
amplitude (Figure 5), empirically it has been shown
that for segmentation it is necessary to choose a lower

frequency. In Figure 5, this amplitude in the spectrum
is indicated by a red circle.

When the optimal frequency is determined, the
AVM is filtered. A low-pass Chebyshev filter type 2 is
used for filtering. The order of the filter depends on the
passband and stopband frequency at which the signal is
filtered. The optimal frequency is taken as the passband
frequency, and the stopband frequency is twice as high
as the passband frequency (Figure 6).

Minima or maxima of the AVM are used to define
boundaries between segments, depending on the indi-
vidual exercise. In exercise 9 (Heel Touch) and exercise
3 (Standing Side Dumbbell Shrug), maxima are taken,
while in the others, minima are taken as the boundaries
between the segments.

After repetition segmentation, it is necessary to
remove the artifacts that most often appear before the
first and after the last repetition. They are easy to elim-
inate by considering two criteria – the reciprocal value
of the segmentation frequency (which roughly repre-
sents the average repetition time) and the maximum
value per amplitude in the set. The segment that lasts
less than half the average repetition time in that set and
the maximum amplitude of that segment is not in the
range determined by 50% of the maximum value in the
whole set is discarded.

The last step in the segmentation process is used only
for certain exercises where it is necessary to connect
adjacent segments. This is because two adjacent seg-
ments together actually form one repetition. This most
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Figure 4. AVM and its spectrum for Heel Touch exercise. In this case, the dominant frequency (red circle) is also optimal for
segmentation.

Figure 5. AVM and its spectrum for Standing Dumbbell Lateral Raise with Arms Straight exercise. In this case, in addition to the
dominant frequency there is a lower frequency (red circle) at which the signal has a pronounced amplitude; therefore, the dominant
frequency is not optimal for segmentation.
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Figure 6. The upper part of the figure shows a low-pass filtered AVM signal for the Heel Touch exercise with the optimal frequency.
The maxima are used to determine the boundaries between the segments, i.e. repetitions (green circle), and the minima (red circle)
represent themiddle of the performedmovementwithin one repetition. At the bottomof the figure, there is an unfiltered AVM signal
with crossed-out predetermined minima and maxima.

commonly occurs with Dumbbell Step-up because of
the pronounced pause that occurswhen a person stands
on a bench and pauses before returning to the starting
position.

As already described, using this method of seg-
mentation, it can happen that the dominant frequency
does not correspond to the optimal frequency required
for filtering, which prolongs the performance of the
algorithm and also affects the accuracy of segmenta-
tion. On a set of 137 performed sets in 5 different mea-
surements, in 108 (78.8%) sets the dominant frequency
is optimal for signal segmentation, while in 29 (21.2%)
sets it is necessary to choose another frequency as opti-
mal. Table 3 shows the ranges of segmentation frequen-
cies by exercises. It can be seen from the table that in
most exercises the segmentation frequency ranges from
0.3 to –0.9Hz. This frequency range data can be used to
speed up the process of determining the optimal fre-
quency, so a new segmentation method is proposed
below.

Improved repetition segmentation with band-pass
filtering
To further automate the segmentation presented in
the previous subsection in terms of selecting the
optimal frequency, an improved repetition segmenta-
tion method has been proposed, which includes an
additional preprocessing of AVM. Preprocessing AVM

Table 3. Range of segmentation frequencies for a particular
exercise.

Exercise no. Range of segmentation frequencies

1 0.40–0.56 Hz
2 0.42–0.59 Hz
3 0.35–0.67 Hz
4 0.42–0.57 Hz
5 0.43–1.14 Hz
6 0.47–0.75 Hz
7 0.47–0.63 Hz
8 0.36–0.45 Hz
9 0.33–0.84 Hz

consists in filtering by a band-pass filter whose cut-
off frequencies are 0.25 and 1.2Hz determined using
the knowledge obtained from the previous segmen-
tation method. Figure 7 shows the modified flow
diagram. Filtering with a band-pass filter removes most
frequency components that are not relevant for repe-
tition segmentation in which it is important to obtain
prominent minima or maxima that mark the bound-
aries between repetitions in the series.

Classification

Repetition classification
The Dynamic TimeWarping (DTW) algorithm is used
for repetition classification from previously segmented
signals. DTW presents a measure of the similarity
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Figure 7. The process of improved repetition segmentation with band-pass filtering from one set.

between two signals that are compared. For each exer-
cise, the signal of a trained and experienced person is
used as a reference template. Unlike Euclidean distance,
which compares the corresponding pairs of points of
two signals and calculates their distances, DTW looks
for pairs of points that best match.

The DTW algorithm is suitable for use with signals
that do not have the same number of samples during
different durations. This is a very big advantage for sig-
nals that represent the repetition of the same exercise
and are performed at different speeds.

Before classification, the signal of each repeti-
tion was filtered by a low-pass filter with a cut-off
frequency of 2Hz, taking into account the average
time duration of individual repetitions. The classifi-
cation was done by calculating the distances between
each repetition and the nine saved templates using
the DTW function. Repetition was classified as the
type of exercise for which the distance between the
repetition and the corresponding template was the
smallest.

Results and discussion

This section presents and comments on the results
obtained using an improved method for repetition
segmentation with a band-pass filter and repetition

classification using the DTWalgorithm.Measurements
were done with 4 subjects during 9 different exercises.

Improved repetition segmentation with band-pass
filtering

This segmentation method uses the knowledge learned
from the method presented in section “Repetition
segmentation”. The AVM is further filtered through
a band-pass filter with cut-off frequencies of 0.25
and 1.2Hz in order to find the optimal frequency
(explained in section “Improved repetition segmenta-
tionwithband-pass filtering”). Starting and ending time
points of each segmented repetition were compared
with manually selected points marked by the same
expert who was supervising the subjects during the
experiment. Out of 8 different sets of data from mea-
surements, 1652 repetitionswere accurately segmented,
4 repetitions were not segmented (once exercise 2,
once exercise 6 and twice exercise 5) and 6 signal seg-
ments were incorrectly classified as repetitions, i.e. this
method of segmentation achieves an accuracy of 99.4%.

Repetition classification

For the classification procedure it was necessary to store
one repetition of each exercise. One filtered repetition
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Figure 8. Repetition templates for all exercises.

from each exercise performed by subject B was taken
as repetition template. Signals obtained from subject
B were taken as a reference because subject B had the
greatest experience in performing strength exercises.
The templates are visible in Figure 8. The classification
results for each of themeasurements are given in Tables
A1–A10 (Appendix).

From the total results of the classification, 1415 out
of 1652 repetitions or 85.7% were accurately classified.
However, the results differ considerably in terms of
subjects and measurements.

When looking at the results by subjects, 145 of 204
repetitions or 71.1%were correctly classified for subject
A, 554 of 578 (95.8%) for subject B, 375 of 439 (85.4%)
for subject C and for subject D 341 out of 431 move-
ments (79.1%). The results for subject B proved to be
the best, which is very likely related to the fact that the
templates for each of the exercises were taken from the
measurements performedby subject B, so its repetitions
are most similar to the templates. In subjects C and D
the results are very good, in both subjects, the accuracy
of classification is higher than 75%, while in subject A
who performed one measurement the result is slightly
worse.

Referring to the exercises (Table A10), the results of
the classification are quite different. For five exercises (3.
Standing Side Dumbbell Shrug, 4. Standing Dumbbell
Curl with Rotation, 6. Push-up, 7. Dumbbell Step-up
and 9. Heel Touch) the accuracy of the classification is
over 90%, and for two it is 100%. In exercise 8 (Box
Squat), the accuracy is 76.4%, and incorrectly classified

movements are in all cases classified into exercise 1
(Standing Front Dumbbell Raise). The signals for these
two exercises were taken from two different IMUs so it
would be expected that these two exercises could be bet-
ter classified. For exercise 5 (Bent-over Dumbbell Row)
the result is very good (87.8%), in this exercise the mis-
classifiedmovements are classified as exercise 2 (Stand-
ing Dumbbell Lateral Raise with Arms Straight). In
exercise 1 (Standing Front Dumbbell Raise) the result is
also good (77.3%), in the case of incorrect classification
the movements from that exercise were classified into 4
other exercises. The result for exercise 2 is poor (42.1%),
in a large number of cases the movements of this exer-
cise are classified either as exercise 1 (37.6%) or exercise
4 (11.2%). This can be expected to some extent because
performing the first and second exercises is very similar.
If these two exercises were viewed as the same exer-
cise, then the overall classification accuracy for the two
would be 81.5%, which would be a good result.

Discussion

To develop a wearable system that would make it easier
for a professional expert to monitor a person who per-
forms exercise or enable people to train independently
with good form quality and motivation, it is necessary
that the system has satisfactory feedback to the user
[4,7,8,17,23]. In the development of system feedback,
where a workout consists primarily of strength exer-
cises, it is possible to take advantage of the fact that
humanmovements are repetitive. The form of feedback
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in this case should contain two important parameters,
quantitative and qualitative, i.e. the number of per-
formed repetitions of a particular exercise and the qual-
ity of the performed repetitions [22,31]. For successful
counting and assessment of repetition quality, repeti-
tionmust first be detected and isolated (segmented) and
then identified (classified) to which exercise it belongs
[30]. Only after the segmentation and classification of
repetitions have been done, it is possible to start the
quality assessment.

The main objective of this research was to deter-
mine the accuracy of the developed accelerometer-
based algorithm for the segmentation and classification
of repetitive human movements during a workout. The
workout consisted of 9 strength exercises that focused
on activating the whole body; therefore, the number
and placement of IMUs were carefully selected, using
prior knowledge in monitoring physical activities. Due
to the desire to achieve an energy-efficient algorithm,
implementable on embedded systems and without the
need for a certain amount of data in the training phase,
the number of input parameters is reduced to only one
waveform (AVM) and the process of segmentation and
classification is simplified as much as possible.

Out of 1656 movements, i.e. repetitions, using the
proposed segmentation method, 1652 were success-
fully segmented, segmentation of 4 repetitions was not
successful, and 6 signal segments were incorrectly clas-
sified as repetitions. We achieved an accuracy of 99.4%,
recall of 99.7%, precision of 99.6% and F1-score of
99.7%, which we find comparable to and better than
reported in the literature. To the authors’ knowledge,
no research has been done so far with the same selec-
tion of exercises and position of IMUs, so it cannot
be directly compared with the existing literature, but
we have listed the most relevant ones. Guo et al. [23]
compared the repetition segmentation accuracy of two
different IMUs in two different positions, a smartwatch
on the wrist and a smartphone on the upper arm. They
achieved an average accuracy of 99%. It is necessary to
mention that their choice of exercises primarily referred
to exercises in which the arm represented the domi-
nant body segment and they used the data obtained
from all three sensors, accelerometer, gyroscope and
magnetometer. In [5], the authors achieved segmenta-
tion recalls a minimum of 84.1% for IMU located in
the ear to a maximum of 91.6% on the wrist. A wider
range of body activation was present during the work-
out and only accelerometer signals were used. Pernek
et al. [32] detected and separated repetitions using a
method based on the DTW algorithm. They chose a
very wide range of exercises with which they managed
to activate the whole body. The data were obtained
from an accelerometer inside a smartphone that was
located at 3 different locations, wrist, ankle or on the
top of the weights, depending on the exercise. The
average F1-score, precision and recall for all exercises

and environments were 99.3%, 100% and 98.8%,
respectively.

When it comes to recognizing segmented repeti-
tions, in [23] was achieved with an average accuracy
of 95% for a smartwatch on the wrist and 91% for a
smartphone on the upper arm. A lightweight classi-
fier (Support Vector Machine) was used on 27 features
extracted from the acceleration in the world coordinate
system. In [5] classification mean accuracy achieved a
minimumof 78.4% for IMU located in the ear to amax-
imum of 97.2% on the chest. The template for the DTW
algorithm in the process of classification was chosen
randomly 50 times to avoid redundancy. O’Reilly et al.
[8] implemented a method for tracking and recogniz-
ing lower-limb exercises with wearable sensors. They
placed 5 IMUs on subjects (on the thighs, shanks and
lumbar) and achieved 99% accuracy. Furthermore, for
a single IMU placed on the shank, they obtained 98%
accuracy.

Regardless of the small number of subjects in
the proposed research, overall accuracy is compara-
ble with the abovementioned studies. Detailed classi-
fication results can be analyzed using Tables A1–A10
(Appendix), and the authors’ observations can be found
in the previous subsection.

As indicated before, a main disadvantage of the
research is the small number of subjects, and, there-
fore, through future work, the plan is to implement the
proposed algorithm on a more extensive set of subjects
who exercise simultaneously, and to compare the accu-
racy of our algorithmwith other common classification
methods implemented on larger groups.

Conclusions

In this paper, a method for segmentation of repetitive
movements during strength exercises was successfully
done from signals acquired by three IMUs and theMat-
lab software tool. The method for segmentation of the
movement is based on the frequency spectrum of the
acceleration magnitude and we achieved an accuracy
of 99.4%. The classification of the segmented move-
ments was performed using the DTW algorithm and
we achieved an accuracy of 85.7%. As the simplicity
of performance of the methods is aimed in order to
implement the methods and algorithms in large groups
of subjects during simultaneous exercising, we con-
sider the segmentedmovements classification results as
satisfactory.
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Appendix

Table A1. Colours for accurately and incorrectly classified repetitions.

Table A2. Repetition classification results, subject A, measurement 1.

Table A3. Repetition classification results, subject B, measurement 1.

Table A4. Repetition classification results, subject B, measurement 2.
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Table A5. Repetition classification results, subject B, measurement 3.

Table A6. Repetition classification results, subject C, measurement 1.

Table A7. Repetition classification results, subject C, measurement 2.

Table A8. Repetition classification results, subject D, measurement 1.
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Table A9. Repetition classification results, subject D, measurement 2.

Table A10. Total results of repetition classification.
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Table A11. Nine strength exercises performed as part of the workout.

1. Standing Front Dumbbell Raise 2. Standing Dumbbell Lateral Raise with Arms Straight

3. Standing Side Dumbbell Shrug 4. Standing Dumbbell Curl with Rotation

5. Bent-over Dumbbell Row 6. Push-up

7. Dumbbell Step-up 8. Box Squat

9. Heel Touch
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