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A data-driven fault detection and diagnosis method via just-in-time learning
for unmanned ground vehicles

Changxin Zhang, Xin Xu , Xinglong Zhang, Xing Zhou, Yang Lu and Yichuan Zhang

College of Intelligence Science and Technology, National University of Defense Technology, Changsha, People’s Republic of China

ABSTRACT
Fault detection and diagnosis technologies for unmanned ground vehicles are important for
ensuring safety and reliability. Due to the complexity and uncertainty of unmannedground vehi-
cles, it is challenging to realize accurate and fast fault detection and diagnosis. For the purpose
of solving the data-driven fault detection and diagnosis problems of unmanned ground vehi-
cles, improving the diagnostic accuracy and shortening the training time, a novel fault detection
and diagnosis method is proposed, which is called JITGP-ELM. In the proposedmethod, a model
estimator based on the just-in-time Gaussian process is designed for the online residual gen-
eration to cope with the dynamics and nonlinearity of systems. A fault classifier using Extreme
Learning Machine is designed for fault identification with residuals extracted by the just-in-time
Gaussian process modelling. The proposed method has online adaptability, noise-resistant abil-
ity, and high generalization. A field test on a real unmanned ground vehicle’s steering-by-wire
system demonstrates the effectiveness of the proposed method.
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1. Introduction

Due to the development of artificial intelligence
and computing science in recent years, the level of
autonomous driving of unmanned ground vehicles
(UGVs) has been significantly promoted, followed
by the increasing complexity of their systems. This
advancement brings tremendous challenges to system
safety and reliability. For highly intelligent UGVs, the
consequences caused by their faults could be signifi-
cant because they may even threaten passengers’ lives.
Therefore, fault detection and diagnosis (FDD) strate-
gies for UGVs are getting more and more attention in
the academic area and industrial applications to ensure
reliability [1–5].

In the past decades, model-based and data-driven
fault detection and diagnosis have gained increasing
attention parallelly [6]. Model-based approaches have
been prevalent in the fault detection and diagnosis field
and have accomplished many achievements [3,7–9].
Themodel-based approaches construct residual signals
to reflect the inconsistencies between the expected and
actual behaviours by a precise physical model andmea-
surements of the system [3]. In [10], a model-based
method is proposed for fault detection of vehicle sus-
pension and hydraulic brake systems, and a rule-based
approach is used to judge the fault from model resid-
uals. In [11,12], the model-based sensor fault detec-
tion and isolation methods for UGVs are researched
from theoretical and experimental aspects, respectively.

Şahin et al. [13] propose a fault detection and isola-
tion method for the wheel slippage and actuator faults
of a holonomic mobile robot with the robot model. A
significant advantage of these methods is that they can
provide a description of the dynamic behaviour of the
system and a physical understanding of the system, and
residuals can eliminate the nonlinearity and dynam-
ics of the system. However, the model-based methods
rely on the accurate physical model of systems, which is
often difficult to obtain in practice.

Data-drivenmethods are applicable in practicewith-
out prior knowledge of systems [14–16]. Data-driven
fault detection and diagnosis approaches mainly con-
sist of multivariate statistical analysis, machine learn-
ing (ML), and signal processing. Multivariate statisti-
cal methods are popular for effectively analyzing the
available signal in UGVs, such as principal compo-
nent analysis (PCA) [17], partial least squares (PLSs)
[18], and independent component analysis [19]. Still,
the threshold-based methods will be difficult to deal
withmulti-fault diagnosis problems that are commonly
encountered because these methods can only provide
binary classification solutions. The ML-based diagno-
sis methods for fault classification are proposed to
deal with multi-fault classification, such as FDD based
on Back Propagation (BP) neural network [20], Sup-
port Vector Machine (SVM) [21], and Extreme Learn-
ing Machine (ELM) [22]. For UGVs, Lei et al. [23]
select the extremely randomized treesmodel as the best
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classification model for refrigerant leak detection in
heat pump systems of electric UGVs. In [24], a CNN-
based fault detection and classification model is used
during the V-cycle development process and applied to
the gasoline engine system. Similarly,Wallace et al. [25]
use a long short-termmemory (LSTM) neural network
to learn the fault classification boundaries for UGVs.
The fault classifier methods based on ML can learn
from historical data of the system under normal and
various fault statuses, which take classification accu-
racy as the learning target and have had a wide range of
applications. However, the generalization performance
of ML-based methods is a concern because the classi-
fication accuracy is closely related to the completeness
and representativeness of training data. Furthermore,
the selection of fault features is also challenging for
learning efficiency.

Because model-based and data-driven approaches
have their own characteristics, the researchers pro-
posed hybrid methods to improve the fault diagno-
sis algorithm and achieved impressive results. Tidriri
et al. [26] examine the characteristics of both model-
based and data-driven approaches, as well as existing
hybrid research, and point to the potential of the latter.
Besides, Khorasgani et al. [27] demonstrate a unified
framework of data-driven and model-based diagnosis
methods, which are elaborated on three cascaded tasks
of data acquisition, feature extraction and fault diagno-
sis. More specifically, Jung et al. [28] propose a hybrid
diagnostic system design that combines model-based
residuals with incremental exception classifiers to iden-
tify unknown and multiple faults. Furthermore, Jung
et al. [29] design a residual selection algorithm in a
hybrid approach to improve the performance of fault
detection and isolation. For UGVs, a nominal model
is established in [6], and the fault analysis for automo-
tive antilock braking systems is carried out by combin-
ing the support vector machine. Wolf et al. [30] use
the dynamic Bayesian network with residual genera-
tion to combine with the knowledge-based and model-
based approaches to realize fault detection, diagnosis
and prognosis for autonomous vehicles. From existing
works, the hybrid of model-based residual extraction
and the use of residual as fault features to be the inputs
of classifiers is a practical approach to improve the per-
formance of fault detection and diagnosis. However, in
these approaches, the prediction model is assumed as
prior knowledge and will not be updated in the process.
Therefore, in the presence of environmental changes
or interference, the performance of residual extraction
may deteriorate, which motivated our study.

Based on the above analysis, we propose a JITGP-
ELM method for multi-fault detection and diagnosis
for unmanned ground vehicles in this paper. In the
proposed method, a residuals generator based on a
just-in-time Gaussian process regression (JITGP) is
designed to adapt to the dynamics and nonlinearity.

Figure 1. Comparison between the model-based and the pro-
posed methods for fault detection and diagnosis. (a) Model-
based method and (b) JITGP-ELM.

Then, a fault classifier using Extreme LearningMachine
is designed for fault diagnosis with residuals extracted
by just-in-time Gaussian process modelling. The pro-
posed approach adopts JITGP modelling, inheriting its
advantages of online adaptation, noise immunity, and
low computational cost. Furthermore, the ELM net-
work has advantages in learning speed and generaliza-
tion ability. In the fault detection anddiagnosis problem
on the steering-by-wire system of a UGV, the proposed
method effectively provides an application solution.
The comparison between the conventional methods
and the proposed method is shown in Figure 1.

The main contribution of the work includes the fol-
lowing two aspects. First, a fault detection and diagno-
sis method named JITGP-ELM is proposed to realize
adaptive residual extraction and high generalization
fault status classification in UGVs. Compared with pre-
vious works [6,14,30], our approach is designed for
realizing adaptive residual generation, and crucially,
JITGP is utilized to improve the flexibility to environ-
mental changes or interference with noise immunity.
Second, experiments have been performed using our
approach for solving a real-world fault detection and
diagnosis problem under three fault statuses on a UGV
steering-by-wire system. The experiment results show
that the approach is practical and effective. Also, the
proposed method is data-driven and does not rely on
the physical model of the system. So another advantage
of our work is that it could be extended to fault detec-
tion and diagnosis problems of other systems like ships
or aircraft.

The organizational structure of this paper is as fol-
lows. In Section 3, a fault detection and diagnosis prob-
lem formulation for a dynamic nonlinear system and
the GP model for system modelling are introduced. In
Section 4, the JITGP-ELM algorithm is presented. In
Section 5, an application to a UGV and the experi-
mental results are provided to illustrate the effectiveness
of the proposed JITGP-ELM algorithm for fault detec-
tion and diagnosis. Finally, conclusions are drawn in
Section 6.
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2. Related works

Within fault detection and diagnosis domains, there
have been many previous works on UGVs [1–5]. The
previous work is mainly divided into the model-based
[10–13] and data-driven [17–19,23–25] methods, as
well as their hybrid [6,30]. A heuristic idea of the
hybrid method is to generate residuals through a pre-
diction model and then diagnose faults with the resid-
uals [26–29]. Our work inherits this idea with data-
driven adaptivemodelling and fault classification based
on machine learning methods.

To realize the above idea, modellingmethodsmainly
include physical formulation and ML-based modelling
in the previous works. In the field of UGV fault diag-
nosis, the residual generators are mainly realized by
physical modelling [6,10–12] and offline data training
[30,31] with the inability to adapt to changes in vehi-
cle dynamics and environment, which is inevitable in
the working process of UGVs. Different from previous
works, our work considers the need for such adaptabil-
ity. As a popular local learningmethod, JITL establishes
local predictive models for each test sample based on
similar samples selected from the dataset [32,33], which
has the advantage of low computational cost. Neverthe-
less, conventional JITL with linear local models could
be sensitive to noise in the small sample case, lead-
ing to a conflict between speediness and accuracy in
practice. The just-in-time Gaussian process (JITGP)
algorithm, whose local models are developed by the
Gaussian process (GP) model instead of linear mod-
els, was used in [34–36] to predict industrial processes
with noise immunity. Furthermore, the GP model can
provide the prediction variance reflecting probabilistic
information.

In the second half of the idea, a fault classifier based
on machine learning is considered for multi-fault diag-
nosis. There are many standard classifiers, like BP [20],
SVM [21], CNN [24], LSTM [25] and other machine
learning methods [6,23,30] for multi-fault detection
and diagnosis problems. Among them, the ELM was
proposed in [37] with a structure of single-hidden
layer feedforward neural networks (SLFNs), which is
believed to have the ability to provide high general-
ization and training speed. Therefore, the JITGP-ELM
is proposed in this paper to realize adaptive residual
extraction and high generalization fault status classi-
fication for fault detection and diagnosis problems of
UGVs.

3. Problem formulation and research
backgrounds

This section will introduce a fault detection and diag-
nosis problem formulation for a time-delay dynamic
nonlinear system. Then, a brief preliminary on Gaus-
sian process regression for the process estimation with
noise will be provided.

3.1. FDD problem for a dynamic nonlinear system

When a fault occurs in a system, the manifestation of
the system will be changed by the fault. The changes
could include the mapping between input and output,
which can be indicated by adding a fault signal in the
mapping function. The fault signal varies depending on
the fault locations, types, or other properties, which can
be described as fault statuses. To model a multi-input
multi-output (MIMO) dynamic nonlinear system with
a fault, the output is as follows:

y(k) = f (x(k)) + ffault(x(k), status) + ε, (1)

where x(k)= [yT(k− 1), yT(k− 2), . . . , yT(k− ky),uT
(k − kd − 1),uT(k − kd − 2), . . . ,uT(k − kd − ku)]T
consisted of control inputs and delay outputs at k, in
which u = [u1, u2, . . . , ud]T and y = [y1, y2, . . . , ym]T
are respectively the input and output vector, ky and ku
respectively represent historical steps of y and u which
constitute the state x(k), kd is the time delay of the pro-
cess, k represents a consecutive number of sample, ffault
represents an unknown fault function which could be
in any form where the status represents a fault state dis-
cretely, and ε is white noise. In this paper, the FDD
method aims to determine the fault status of the system
using its measurable input and output.

3.2. System dynamicsmodelling with Gaussian
processmodel

TheGaussian processmodel is a non-parametricmodel
in Bayesian statistics, which has been used for dynamic
system estimation in [38]. In general, the system mod-
elling with GP model includes three phases as follows:

3.2.1. GP prior model
As a common type of priors over a function, the GP
model assumes that f (x) is a Gaussian random variable
N (μ, σ 2) at any point x, where μ and σ are indepen-
dent constants. Thus, the joint multivariate Gaussian
distribution over a set of variables can be expressed
as f (x1), . . . , f (xN) ∼ N (0,�), where � ∈ R

N×N is a
matrix and �pq can be formulated as �pq = C(xp, xq)
that denotes the covariance between f (xp) and f (xq).
The C(·, ·) is a covariance function whose standard
form is

C
(
xp, xq

) = v1 exp

(
−1
2

D∑
i=1

θi

∣∣∣xpi − xqi
∣∣∣2
)
. (2)

where D is the dimension of x, θi > 0 are parameters
denoting the importance of xi on f (x) and parameter
v1 controls the variational vertical scale.

For an unknown function y = f (x) + ε, x ∈ RD,
where ε is a white noise with a variance of v0, i.e. ε ∼
N (0, v0), we have y1, . . . , yN ∼ N (0,K) with Kpq =
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�pq + v0δpq following theGPprior probabilistic frame-
work, where δpq = 1 if p = q, 0 otherwise. More details
about the GP model can be found in [38,39].

3.2.2. Hyperparameters optimization
Given N observation states x1, . . . , xN and their tar-
get outputs y1, . . . , yN , the probability distribution
p(Y |X,�) gives a likelihood of training data [38]:

L(�) = log(p(Y |X,�))

= −1
2
log(|K|) − 1

2
YTK−1Y − N

2
log(2π),

(3)

where Y = [y1, . . . , yN]T ∈ R
N is the training target

matrix,X = [x1, . . . , xN]T ∈ R
N×D is the training state

matrix,� = [v0, v1, θ1, . . . , θD]T is the vector of hyper-
parameters, and K ∈ R

N×N is the training covariance
matrix. The hyperparameters can be estimated bymax-
imizing the likelihood:

�∗ = argmax
�

L(�), (4)

where the optimization needs to compute the partial
derivative of L to each of the hyperparameters:

∂L(�)

∂�i
= −1

2
trace

(
K−1 ∂K

∂�i

)
+ 1

2
yTK−1 ∂K

∂�i
K−1y.

(5)

3.2.3. Prediction
Once the estimation of hyperparameters �∗ is given,
we can predict the output y∗ at any untested state
x∗ based on the relevant state-output pairs (xi, yi)
for i = 1, . . . ,N. Thus, the unbiased prediction of
y∗ can be obtained by the predictive distribution
p(y∗ |Y,X, x∗) = p(Y, y∗)/p(Y |X) with mean and
variance [38]:

μ
(
y∗) = k

(
x∗)T K−1Y, (6)

σ 2 (y∗) = k
(
x∗)− k

(
x∗)T K−1k

(
x∗)+ v0, (7)

where k(x∗) = [C(x1, x∗), . . . ,C(xN , x∗)]T is the
covariance vector between the test and training states
and k(x∗) = C(x∗, x∗) is the covariance between the
test state and itself.

4. The JITGP-ELM approach

Aiming at the problem formulated in Section 3.1, we
will introduce the proposed JITGP-ELMmethod in this
section. Figure 2 shows the block diagram of the pro-
posed method. The JITGP-ELM method includes two
procedures: fault feature extraction by JITGP and fault
status determination by ELM with the fault feature,
where the fault feature is the estimation residuals gener-
ated by JITGP. In the following, we will first present the

Figure 2. The framework of JITGP-ELM.

framework of JITGP-ELM, then the JITGP modelling
algorithm for fault feature extraction, and the offline
ELM training process.

4.1. Framework description of the JITGP-ELM
approach

The proposed method is under the JITL scheme, which
has three steps [40]. (1) Select a set of samples from the
dataset based on some similarity criterion. (2) Estab-
lish a local model with the selected samples to predict
the process output. (3) When a new sample needs to
be predicted, we build a new local model by repeating
the above two steps. This paper uses the GP model to
improve conventional JITL to develop noise-resistant
estimation and obtain high-quality residuals as a fault
feature.

In conventional methods, the fault status is deter-
mined by a thresholdwith residuals between estimation
and observation. Thus, the threshold-based methods
could with two problems: the improper design of the
threshold value and incompetence for multi-fault diag-
nosis problems. In the JITGP-ELM approach, the resid-
uals are analyzed by an ELM classifier model that deals
withmulti-fault diagnosis problems without thresholds
and is entirely data-driven. After the process estimation
by JITGP, the extracted residuals will be input to the
ELM fault classifier model, whose output is the FDD
decision of fault status, where the ELMmodel is trained
offline.

Based on the previous discussion, the JITGP-ELM
framework can be described in Algorithm 1. In the
JITGP-ELM algorithm, the fault feature extraction is
integrated into the JITGP algorithm, and the train-
ing process of the ELM-classifier is integrated into the
ELM-training algorithm, which will be discussed in the
following subsections.

In the JITGP-ELM, the updating GPmodel is for the
residual feature generation by estimating the healthy
system states accurately and adaptively. Then, the ELM
is for the fault classification with the residual features.
Therefore, it is considered that when the system state
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estimation is relatively accurate, the updated GPmodel
will not have a great impact on the mapping relation-
ship between residual features and fault types. Thus, the
offline training ELM model will not be updated dur-
ing the working process. However, after the process, we
could retrain the ELM model with the collected data
and the actual fault label.

4.2. JITGP-based fault feature extraction

While the original data increases the useful informa-
tion for fault diagnosis, it also inevitably brings some
redundant information. Redundant features will reduce
the efficiency and accuracy of fault diagnosis. Thus,
feature extraction is necessary to improve the fault diag-
nosis performance [22]. Many methods have been pro-
posed for feature extraction in fault diagnosis. In [41],
a two-stage feature selection method, namely Hybrid
Distance Evaluation technique, was proposed to select
a subset of combined features with strong classifica-
tion ability. Luo et al. [22] extracts three types of
fault features to compose the compound feature set
based on ensemble empirical mode decomposition. In
[14,42], the system dynamics and nonlinearity are cir-
cumvented using models, and the residuals will be ana-
lyzed using a multivariate statistical method as a fault
feature to receive fault detection results. In this paper,
JITGP serves as a process model to predict the output
for generating residuals, which are used to be the fault
feature.

In the JITGP, the GP model is used to establish
the local models instead of the autoregressive model
(ARX), which is frequently used by the conventional
JITL methods [14,34]. In conjunction with the JITL,
the computational cost of the GP model is significantly
reduced due to the presence of the sample selection
step. The details of JITGP-based fault feature extraction
are discussed below, including relevant sample selec-
tionwith a similarity estimation, localmodel prediction
with GP, and a residual vector will be generated accord-
ing to the output estimation and observation at the last
step.

4.2.1. Relevant sample selection
In JITGP, a similarity evaluation is used to be the crite-
rion to select the most relevant samples to the current
sample, which needs to be predicted. With reference to
[14,33], the similarity between the current sample xq
and a historical sample xi in a dataset is measured as

Si = γ

√
e−d2(xq,xi) + (1 − γ ) cos (αi) , (8)

where γ ∈ [0, 1] is a weight parameter, αi represents
the angle between �xq and �xi, in which �xq = xq −
xq−1 and �xi = xi − xi−1; Si ∈ [0, 1] represents the
similarity and the larger Si denotes the higher simi-
larity between xq and xi. According to [14], it should

be noted that the cos(αi) in (8) has to be larger than
0, which means that the angle αi < 90◦. If αi > 90◦,
the two vectors will be considered dissimilar, and the
corresponding xi will not be taken into account when
establishing a local model. After the similarity eval-
uation, a subset of data can be constructed with the
relevant data (xk, yk) for k = 1, . . . , n with the biggest
Si, where n is the number of samples to establish a
just-in-time local model.

4.2.2. Local model prediction with GP
Consider an untested state x needs to be predicted with
tested samples (xk, yk) for k = 1, . . . , n. To simplify
modelling computation, we assume that the various
components of y at the current output are indepen-
dent of each other. Therefore, the prediction of y =
f (x) + ε can be decomposed into sub-problems: yi =
fi(x) + εi, that is a component estimation of y. Accord-
ing to Section 3.2, the prediction of yi can be obtained
by ŷi = μi(x) from (6) with mean squared error s2i =
σ 2
i (x) from (7), after the GP modelling and hyperpa-

rameters optimization. Thus, the prediction of y can be
obtained: ŷ = [ŷ1, . . . , ŷm]T .

4.2.3. Residuals generation
To generate residuals as the fault feature for fault detec-
tion and diagnosis, the JITGP simulates the nonlinear
and dynamic behaviour of the actual process. The resid-
uals are the difference between the output estimation
and the actual observation, which has eliminated the
dynamics and nonlinearity of the process and extracted
the essential information of faults. Thus, a residual is
generated by the following equation:

r = y − ŷ, (9)

where y and ŷ is the actual and predictive output of the
current state, respectively.

Because of the high computational cost of repeatedly
applying GP regression, the proposed method reduces
the computation cost by running the GP modelling in
the framework of just-in-time learning, i.e. JITGP. In
the framework of JITGP, the GP modelling is based
on a small dataset by the sample selection process.
The implementation of the techniques discussed above
requires inversions of the covariance matrix K, with
a computational complexity of O(n3) and a memory
complexity of O(n2) with n-size training data. Here,
the computational cost could be high since the require-
ment of the inversion of K in (5) [43]. This issue can
be addressed with the natural advantage of just-in-time
learning. Due to n � N, i.e. the number of training
data n is far less than the amount of data in the dataset
N, the computational load for matrix inversion of K
will be greatly reduced. Thus, the algorithm can better
meet the requirement of real-time, which is one of the
superiorities of JITGP modelling.
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Algorithm 1 The JITGP-ELM Algorithm
Input: a state-output sample (x, y) needs fault detection and diagnosis.
Dataset require: fault dataset Sf and fault-free dataset SN .
Initialization: set the nearest neighbour number n and the ELM hidden layer nodes number L.
1: Offline fault classifier training:
2: ELM-classifier = ELM-training(Sf )
3: Online decision making:
4: Calculate the residual: r = JITGP(x, y);
5: Calculate t̂ = ELM-classifier(r)
6: Determine the fault status: status = argmaxi∈{1,...,o} t̂i
7: Output: The decision of fault detection and diagnosis: fault status.

Algorithm 2 JITGP-based residuals extraction: JITGP(x, y, SN)
Input: a state-output pair (x, y)
Dataset require: fault-free sample set, SN = [XN ,YN].
Initialization: set the nearest neighbour number n.
1: for each xi ∈ XN do
2: Calculate the similarity Si between x and xi by (8);
3: if cos(αi) ≤ 0 then
4: Si = 0

end
5: Construct a subset Sn with n nearest neighbours from SN according to {Si} ;
6: Construct a GP prior model with the subset Sn;
7: Obtain the optimal hyperparameters �∗ from (4);
8: Calculate ŷ corresponding x by (6) with the subset Sn and �∗;
9: Calculate the residual r by (9);
Output: the estimated residual r.

Based on the above discussions, the JITGP-based
fault feature extraction algorithmcan be summarized in
Algorithm 2. In order to establish the JITGP dataset, a
large amount of offline fault-free data is required.When
a current sample demands a prediction, the most rele-
vant data in the dataset are found for building a local
model based on the measure of similarity Si from (8).
The hyperparameters of GPR are optimized by (4) to
build the local model. Then, the output prediction of
the current sample is obtained by (6), and a residual
could be computed by (9).

Since the JITGP is used to extract the residual fea-
tures by estimating the output of the health system
whose dynamics model is unknown, the GP model in
the JITGP should be built based on fault-free data by
selecting relevant data in the fault-free dataset. The
fault-free dataset will be updated when judging that
the system sensor is not faulty, so the GP model in
the proposed method is updated based on an updated
fault-free dataset for coping with the dynamic change
of the system. Furthermore, compared to building a GP
model based on a whole fault-free dataset, the selec-
tion of samples in just-in-time learning could reduce
the computational burden because of the reduction in
training data.

After that, a fault classification model will make the
fault decision by analyzing residuals. Theoretically, the
fault diagnosis can be obtained by a classifier, such as

BP or SVM, when it is appropriate. Here, We use ELM
as the fault classifier because of some of its excellent
characteristics.

4.3. ELM fault classifier training

ELM is a single-hidden layer feedforward neural net-
work whose hidden layer parameters are generated in
an arbitrary way [37]. Compared with other learning
methods, such as Single Layer Perceptron and SVM,
ELM is believed to have advantages in learning speed
and generalization ability. Figure 3 shows the network
structure of ELM.

With an m-dimensional input r, the output of an
SLFN is

t̂ =
L∑

i=1
βig (wi · r + bi) =

L∑
i=1

βihi(r), (10)

where L represents the number of hidden nodes, wi =
[wi1, . . . ,wim]T is the input weight vector connecting
the input and the ith hidden node, βi = [βi1, . . . ,βio]T

is the output weight vector of ith hidden node in which
o is the number of the output nodes, g(·) denotes the
activation function of the hidden layer, bi denotes the
threshold of the ith hidden node, and hi(r) is the output
of ith hidden node with input r.
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Figure 3. The network structure of ELM.

Thus, given N samples (ri, ti) for i = 1, . . . ,N,
where ri = [ri1, . . . , r

i
m]T ∈ R

m and ti = [ti1, . . . , t
i
o]T ∈

R
o, there are N equations in (10) format which can be

compacted as

Hβ = T, (11)

where

H =

⎡
⎢⎣
g (w1 · x1 + b1) · · · g

(
wÑ · x1 + bL

)
...

. . .
...

g (w1 · xN + b1) · · · g
(
wÑ · xN + bL

)
⎤
⎥⎦
N×L

,

β =

⎡
⎢⎣

βT
1
...

βT
L

⎤
⎥⎦
L×o

, T =

⎡
⎢⎣

tT1
...
tTN

⎤
⎥⎦
N×o

.

According to [37],H is the hidden layer output matrix,
in which Hij is the jth hidden node output with input
ri, that can be calculated after assigning random hid-
den nodes parameters (wj, bj). According to [37,44],
the smallest norm least squares solution of (11) can be
computed as

β̂ = H†T, (12)

where H† is the Moore-Penrose generalized inverse of
H. Thus, the ELM algorithm can be summarized as
follows:

For classification, the output of ELM could have o
nodes with o equal to the number of classes. If the
class label is k, the expected output vector will be t =
[0, . . . , 0,

k
1, 0, . . . , 0]T where the kth element is 1, and

the rest of the elements are 0. For multiclass problems,
the predictive class of a testing input is the index num-
ber of the output node with the highest value. Thus, the
predictive fault status of r is

status = argmax
i∈{1,...,o}

t̂i, (13)

where t̂(x) = [t̂1(x), . . . , t̂o(r)] and t̂j(r) is the output of
the jth nodes.

Figure 4. Application of sensor fault detection and diagnosis in
steering-by-wire systems of UGVs.

Therefore, themajor steps for training the ELM clas-
sifier based on residual extraction are summarized in
Algorithm 3. In order to train the ELM network, the
dataset Sf = [Xf ,Yf ,Tf ] is required, where [Xf ,Yf ] is
the state-output data under normal and various fault
conditions, and Tf is the corresponding target label of
fault statuses. Then, the training dataset [Rf ,Tf ] is con-
structed by combining process residuals Rf calculated
by JITGP, with the corresponding fault status label Tf .
After determining the parameters and activation func-
tion, the ELM training process will then complete and
obtain a fault classifier.

5. Experimental verification

In order to evaluate the performance of the proposed
method, the following experiments were completed on
fault detection and diagnosis problem for the steering-
by-wire system in a real UGV. The experimental plat-
form is a wheeled electric vehicle with a steering-
by-wire system, as shown in Figure 5(a). As a new
generation of the steering system, the steering-by-wire
system achieves autonomous steering, relying on the
electrical system instead of the traditional mechanical
transmission mechanism that becomes the basis and
guarantee of assisted or unmanned driving. However,
faults could occur in the sensors and actuators that may
affect the reliability and safety of the electrical systems.
The experiment considers the fault detection and diag-
nosis for the steering wheel angle sensor with yaw rate
and lateral acceleration sensors’ signals in unmanned
ground vehicles (Figure 4).

5.1. Data preparation

The experimental design of fault detection and diagno-
sis includes three sensor faults, which of steering wheel
angle, yaw rate, and lateral acceleration. The input of the
system is the steeringwheel angle (SW), and the outputs
are the yaw rate (YR) and the lateral acceleration (LA).
The purpose is to detect and identify different sensor
faults by analyzing the observable manifestation of the
UGV. Due to the requirement to estimate the yaw rate
and the lateral acceleration from observing the steer-
ing wheel angle, a set of data that can reflect the UGV’s
dynamics and nonlinearity needs to be collected for
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Algorithm 3 ELM fault classifier training based on JITGP: ELM-training(Sf )
Dataset require: Sf = [Xf ,Yf ,Tf ]
Initialization: set ELM hidden layer nodes number L; set a residual dataset Rf with empty; select an activation
function g(·) that is infinitely differentiable.
1: for each xq ∈ Xf , yq ∈ Yf do
2: rq = JITGP(xq, yq)
3: Store rq in the dataset Rf ;
4: end
5: Construct a training dataset [Rf ,Tf ];
6: Set network nodes numbers of input layerm and output layer o withm = numel(ri) and o = numel(ti);
7: Assign the connection weightw of the input layer and the hidden layer and the threshold b of the hidden nodes

randomly;
8: Calculate the hidden layer output matrixH with w, b, g(·) and Rf ;
9: Calculate the weight of the output layer β̂ = H†Tf ;

Output: the ELM classifier network with w, b, g(·) and β̂ , t̂ = ELM-classifier(r).

Figure 5. The experimental platform and environment. (a) UGV platform and (b) The location of the data recorded and the trajectory
of vehicle test.

the proposed data-driven method. The location of the
experimental data collection and the trajectory of the
vehicle test is shown in Figure 5(b), collecting a total of
10,800 samples of input-output data with a frequency
of 10Hz. Furthermore, the data on sharp turns, brak-
ing, and accelerating, was collected into the dataset to
ensure the persistence of excitation. When a sensor in
the system failed, the sensor’s signal was a white noise
close to zero.

From the collected data of 10,800 samples, the first
6000 samples were chosen to construct the fault-free
dataset, which supported the online JITGP algorithm
to build local models. The training dataset of fault clas-
sification was constructed from the 6001st to 10,000th
sample, which consisted of 4000 samples. These 4000
samples were divided into four categories, with 1000
samples in each category. The categories’ labels were
the fault statuses, which were fault-free, fault 1 (yaw
rate sensor fault), fault 2 (lateral acceleration sensor
fault), and fault 3 (steering wheel angle sensor fault),
respectively. Finally, the remaining 800 samples were

used to form a test set for algorithm testing, which
was also divided into four groups with 200 samples
in each group, respectively corresponding to the above
four fault statuses.

5.2. Fault feature extraction of steering-by-wire
system

The experiments were conducted in the test set of 800
samples. In order to compare the estimation abilities
of JITGP and conventional JITL, Figure 6 shows the
output estimations of yaw rate and lateral acceleration
for 200 fault-free samples. The JITL’s local models are
developed by conventional ARX models, while the GP
model develops the local model of JITGP. The princi-
ple of parameter selection is to minimize the cost of
calculation to ensure the performance of the algorithm.
The parameters were set as follows: the amount of rel-
evant data for JITGP and JITL local model, n = 15,
using a small sample for speediness; the number of steps
constructing local model states, l = 2.
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Figure 6. Estimations of the yaw rate (YR) and the lateral acceleration (LA) by conventional JITL (JITL-ARX) and JITGP under the fault-
free condition. (a) shows the estimations of yaw rate where the mean-square errors of conventional JITL and JITGP are 1.141 and
0.779, respectively; (b) shows the estimations of lateral accelerationwhere themean-square errors of conventional JITL and JITGP are
0.816 and 0.179, respectively.

The estimated results comparison between conven-
tional JITL and JITGP under the fault-free condition
are shown in Figure 6. Figure 6(a) shows the esti-
mations of yaw rate where the mean-square errors of
JITL-ARX and JITGP are 1.141 and 0.779, respectively.
Both perform well in estimating the yaw rate when the
actual observation curve is relatively smooth, where
JITGP estimation curve has fewer fluctuations than
JITL-ARX. However, the actual observation curve of
lateral acceleration shook violently due to the uneven
road surface. Figure 6(b) shows the estimations of lat-
eral acceleration where themean-square errors of JITL-
ARXand JITGPare 0.816 and 0.173, respectively.When
estimating the lateral acceleration, the performance of
JITL-ARX is unsatisfactory, and JITGP still maintains
good performance. The results show that JITL-ARX is
sensitive to noise and interference, while JITGP can
obtain a smoothing and close estimated result with the
observation. Hence, the estimation results show that
JITGP improves conventional JITL effectively.

Furthermore, 800 samples were divided into four
groups to simulate different fault statuses. In the sim-
ulation, the 201st–400th samples (20–40 s) are in fault
1; the 401st–600th samples (40–60 s) are in fault 2; the
601st–800th samples (60–80 s) are in fault 3. The resid-
uals as fault features generated by JITL-ARX and JITGP
in different fault statuses are shown in Figures 7–9.
From the residual results, we can find that if a fault
occurs to one of the sensors of yaw rate and lateral
acceleration, the residuals between the observations
and estimations of corresponding output will increase
(Figures 7 and 8). Another case is when a fault occurs
to the steering wheel angle’s sensor, which means that
the input of the predictive model is a fallacious value
observed by the sensor with fault. In this case, the two
outputs’ residuals will both increase (Figure 9). The
residual results in Figures 7–9 show that the faults and
fault-free characteristics are separated more obviously
with JITGP than with JITL-ARX, which is even more
pronounced in lateral acceleration residuals. Predictive

precision is the essential factor affecting the quality
of residual information, and the extracted features are
beneficial to the fault classification task in the following
procedure.

5.3. Fault diagnosis of steering-by-wire system

5.3.1. Fault diagnosis based on JITLmodelling
After modelling the system with JITLs, the residuals
are generated as fault features, and the following work
uses the extracted fault features for fault diagnosis. Six
methods are BP, ELM, JITL-BP, JITL-ELM, JITGP-BP,
and JITGP-ELM, whose performance was compared
by being tested on the fault detection and diagnosis
problem mentioned above. Among them, The BP and
ELM networks were compared with fault classification,
where the fault features to train the networks differed.
In the JITL-based and JITGP-based methods, the fault
features are residuals generated by the JITL-ARX and
JITGP output estimations, respectively. On the other
hand, the fault feature in BP and ELM only was original
input and output data.

The parameters in algorithms should be set con-
sistently in order to compare the performance of the
algorithm. For the three-layer networks, there is a rela-
tionship between the number n1 of input layer nodes
and the number n2 of hidden layer nodes: nhadden =
2 × ninput + 1. Thus, if we consider 10 historical steps,
the network structures of BP and ELM are 20-41-4
for the residual-based methods and 30-61-4 for the
direct method. The network performance function of
BP is the mean square error. The learning algorithm
adopted the steepest descent method, and the error
target of learning was 0.001. The transfer function of
the hidden and output layer are the hyperbolic tangent
S-type transfer function (tansig) and the linear trans-
fer function (purelin), respectively. And the activation
function used in ELM is a simple sigmoid function
g(x) = 1/(1 + exp(−x)). Before training the networks,
all data samples need to be normalized to avoid the
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Figure 7. Residual features of fault 1 (20–40 s) extracted by JITL-ARX (a) and JRTGP (b).

Figure 8. Residual features of fault 2 (40–60 s) extracted by JITL-ARX (a) and JRTGP (b).

error of fault diagnosis structure caused by the differ-
ences between different data sets.

The comparison of methods’ accuracy of fault diag-
nosis based on JITLs is shown in Figure 10. The
results are the classification accuracies, which is the
ratio of correctly classified samples to the total num-
ber of samples. The diagnostic accuracies of BP, ELM,
JITL-BP, JITL-ELM, JITGP-BP, and JITGP-ELM are
84.88%, 84.12%, 95.55%, 97.78%, 96.20%, and 99.46%,
respectively, where JITL-BP, JITL-ELM, JITGP-BP, and

JITGP-ELM are in the proposed scheme with different
model estimates and fault classifiers for comparing the
performance; BP [20] and ELM [22] are existing fault
classifier methods. The inputs of these methods are
UGV state values, and outputs are fault status. The
results show that the accuracy of methods in the pro-
posed scheme is higher than methods in the conven-
tional scheme. Furthermore, the JITGP-ELM has the
best performance among methods in the proposed
scheme. The experimental results show that BP only
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Figure 9. Residual features of fault 3 (60–80 s) extracted by JITL-ARX (a) and JRTGP (b).

Figure 10. Methods comparison: the diagnostic accuracies of BP, ELM, JITL-BP, JITL-ELM, JITGP-BP, and JITGP-ELM are 84.88 ± 0.73%,
84.12 ± 1.09%, 95.55 ± 2.02%, 97.78 ± 0.66%, 96.20 ± 2.30%, and 99.46 ± 0.72%, respectively, where JITL-BP, JITL-ELM, JITGP-BP,
and JITGP-ELMare in theproposed schemewithdifferentmodel estimates and fault classifiers for comparing theperformance; BP [20]
and ELM [22] are existing fault classifier methods. The error bar represents the standard deviations of the results in 30 experiments.

is better than ELM, and ELM is better than BP when
analyzing residuals as classification input. In the case of
BP and ELM only, information needs to be extracted
from more complex data in the classification process.
BP has more parameters to optimize in this case, which
is more conducive to extracting fault information from
the original data. In the case with residuals as fault
features extracted by JITL and JITGP, the fault fea-
tures are more pronounced because the residuals have

eliminated the system dynamics and nonlinearity; in
this case of small samples, BP may suffer overfitting,
while ELM has an advantage in the generalization abil-
ity to prevent overfitting. The proposed method has a
mean accuracy of 99.46%, which is 1.68% higher than
97.78% for JITL-ELM. Themain reason is that the ELM
has a high generalization to deal with the noisy residual
features, which illustrates the significance of the selec-
tion of the fault classifier. With the ELM as the fault
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Figure 11. Fault features and diagnosis results of JITGP-ELM.

classifier, the proposed method has further performed
the highest accuracy diagnosiswith the advantage of the
fault feature.

Figure 11 shows the fault diagnosis results of JITGP-
ELM, and it can be seen that the residual is valid as a
fault feature. The high-quality fault features depend on
the accuracy of the system’s prediction, and JITGP pro-
vides this online adaptive prediction at a low compu-
tational cost. The separation of fault features influences
FDDperformance significantly, and the residual as fault
feature is effective for fault diagnosis. In summary, the
data-driven fault detection and diagnosis method pro-
posed in this paper has characteristic high classifica-
tion accuracy. The diagnostic accuracy of the test set is
99.46%. Two samples of fault 2 aremiss diagnostics, and
two samples of fault 3 are wrongly diagnosed as fault 1.

5.3.2. Comparisonwith the data-driven diagnosis
approaches
To further prove the reliability novel method, it is
necessary to compare it with the existing algorithms.
One-against-one SVM [21], BP neural network [20],
and ELM [22] were selected as the control group in
these algorithms. To ensure the fairness of algorithm
comparison, the novel method and the control group
were tested with the same data set of fault diagno-
sis and the same computer (CPU at 3.2GHz, RAM
at 16GB) environment. The parameters in algorithms
should be set consistently. For the three-layer networks
of BP and ELM, the network structures are 20-41-4 for
the proposed scheme (ELM in JITGP-ELM) and 30-
61-4 for the direct method (BP and ELM) with the
nhadden = 2 × ninput + 1 principle. For ELM, the acti-
vation function is the sigmoid function. For BP, the
transfer function of the hidden and output layer are
the hyperbolic tangent S-type transfer function (tansig)
and the linear transfer function (purelin), respectively;
the network performance function is the mean square
error (MSE); the learning algorithm adopts the steep-
est descent method; the error target of learning is set as
0.001; the learning rate is set as 0.02; the neural weights

are initialized with random values in the range [−0.1,
0.1]; the maximum epochs of learning is set as 1000;
the learning rate is set as 0.1. For SVM, there are six one-
against-onemodels with the same parameters. For each
of them, the kernel function is the radial basis func-
tion (RBF); the best penalty parameter c and the best
kernel parameter g are searched by the cross-validation
approach; the error target of learning is set as 0.001; the
learning rate is 0.02. The training set and test set are
consistent. The input and output of these models are
10 historical steps of vehicle state data and fault sta-
tus, respectively. The classifier directly classifies these
data in the direct method (ELM, SVM and BP), where
the features are the states of the UGV, i.e. the data of
steering wheel angle, yaw rate and lateral acceleration.
In the proposed method, yaw rate and lateral accelera-
tion are predicted according to steering wheel angle so
that residuals are generated, and then residual features
are used for fault classification.

The comparison of the results of four kinds of diag-
nosis methods is given in Table 1. The performances
are expressed by the means and standard deviations(if
have) of the results in 30 experiments. The precision of
a fault diagnosis method is the ratio of the samples with
correctly predicted a fault to the total number of detec-
tions of this fault; the recall is the ratio of the samples
with correctly predicted a fault to the total number
of samples containing the fault. From Table 1, the
proposedmethod has the highest precisions and recalls,
except the precision of fault 1, among the compari-
son methods. The precision indicates the reliability of a
method when it announces a fault, and the recall indi-
cates the reliability of detecting the faults. Moreover,
the proposed method has the highest diagnostic accu-
racy of test samples, exceeding other methods by more
than 10%. The reason is that the action of fault feature
extraction by JITGP effectively enhances the fault diag-
nosis, while others were original input and output sig-
nals. The comparison shows that the proposed method
benefits the fault diagnosis of the steering-by-wire
system.
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Table 1. Comparison of the performances of four fault diagnosis methods.

Precision (%) Recall (%)

Methods
Training
time (s)

Running
time (s) Fault1 Fault2 Fault3 Fault1 Fault2 Fault3 Accuracy (%)

SVM [21] 0.24 0.013 76.41 ± 1.79 87.11 ± 1.52 83.90 ± 2 95.85 ± 1.97 76.53 ± 2.79 68.55 ± 2.52 79.05 ± 1.17
BP [20] 6.34 0.006 88.77 ± 0.36 88.85 ± 3.63 88.56 ± 0.22 90.67 ± 2.84 89.07 ± 2.01 75.13 ± 3.71 84.88 ± 0.73
ELM [22] 0.036 0.012 98.93 ± 1.81 76.81 ± 3.07 89.23 ± 2.06 69.72 ± 3.16 93.18 ± 1.29 88.98 ± 0.7 84.12 ± 1.08
Proposed 0.017 0.036 98.28 ± 2.46 99.97 ± 0.18 99.89 ± 0.68 100 ± 0 99.62 ± 1.39 98.50 ± 1.83 99.46 ± 0.72

The BP neural network has the longest training
time, while the proposed method has the shortest.
Because the hidden layer bias matrix and input weight
matrix of the ELM algorithm is generated randomly,
the problems of repeatedly training andmodification of
connection weights and thresholds are avoided. There-
fore, the ELM algorithm can significantly reduce net-
work training time and has a high training speed.
Moreover, the proposed method requires fewer neu-
rons than ELM because of the reduction in fault feature
dimensions. The proposed method’s running time is
the longest because of the action of extracting residu-
als as fault features. However, the running time of the
proposed method is 0.036 s and not more than 0.1 s;
that is, it can meet the real-time requirement of 10Hz.
The practical consequences show that the JITGP-ELM
devised in this paper can significantly improve recogni-
tion accuracy while ensuring real-time computation.

6. Conclusion

This paper proposes a data-driven fault detection and
diagnosis method called JITGP-ELM for unmanned
ground vehicles with unknown nonlinear dynamics. In
the proposed method, the model estimator based on
the just-in-timeGaussian process is designed for online
residuals generation to cope with the dynamics and
nonlinearity, which has online adaptability and noise-
resistant ability. Based on the model estimation residu-
als, the fault classifier using Extreme LearningMachine
is then designed for fault identification. The proposed
method can solve multi-fault diagnosis problems with-
out needing to determine the residual thresholds, which
combines fault detection, isolation, and identification
to improve the efficiency of the diagnosis framework.
Finally, the proposed method is tested in a real UGV’s
steering-by-wire system with sensor faults, and the test
results show its effectiveness. For future works, fault-
tolerant control based on the proposed JITGP-ELM
method can be considered.
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