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ARTICLE

Set-based fast gradient projection algorithm for model predictive control of
grid-tied power converters
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Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

ABSTRACT
Model Predictive Control (MPC) has attracted much attention and is widely used in power
electronics. However, implementing the MPC algorithm is still a difficult task due to the fast
dynamics of power converters and strict time constraints. In this paper, a computationally
efficient MPC algorithm for grid-tied power converters based on the fast gradient projection
method and invariant set theory is proposed. The algorithm is implemented and tested through
hardware-in-the-loop simulations using Texas Instruments digital signal processors and Xilinx
Field Programmable Gate Arrays platforms.
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1. Introduction

In recent years, the use of Model predictive con-
trol (MPC) in power electronics applications has
seen an increased use, mainly owing to the increase
in computing power and the inception of power-
ful embedded devices [1–3]. Two distinct approaches
to model predictive control of power converters are
seen in the literature, the finite control set (FCS-
MPC) and the continuous control set (CCS-MPC).
Due to their switching nature, power converters pos-
sess a finite number of control vectors; this, in com-
bination with short prediction horizons of length
one or two, allows FCS-MPC algorithms to simply
check all the switching states to find the optimal one,
which is then directly applied to the power converter’s
switches. Predictive controllers using CCS-MPC need
to solve an optimization problem at each sampling
time and output the optimal continuous control vec-
tor that is then applied to the power converter using a
modulator.

The use of the FCS-MPC approach allows for sim-
ple and fast optimization algorithms but requires addi-
tional care in controller design to ensure stability, since
the control signal is always selected from the finite con-
trol set [4–6]. In addition, an extension of the control
horizon has also been considered, but this may lead to
intractable optimization problems requiring advanced
optimization algorithms [7,8].

By overlooking the discrete nature of the power
converter, the CCS-MPC allows for longer prediction
horizons, and the constant switching frequency also

provides an additional advantage to the CCS-MPC [9].
This fact is especially important for power convert-
ers using LCL filters, as the filters are designed for
particular switching frequencies [10].

Themain challenge in implementing controllers that
use either approach is meeting the strict execution time
constraints imposed by the fast dynamics of power con-
verters. Recently, significant progress has been made in
the area of numerically efficient predictive control algo-
rithms, and intensive research continues in this area
in both academia and industry. One of the simplest
and most widely used approaches to efficiently solv-
ing finite-horizon optimal control problems is based on
the well-known fast (accelerated) gradient projection
method (FGM), first introduced by Nesterov in 1983
[11]. However, the FGM algorithm can only be used
for MPC problems with input constraints where the
set of input constraints is relatively simple and allows
efficient projection of the candidate solution onto the
set of input constraints. Several solutions have been
proposed to enable FGM to handle state constraints
as well. Among them, a dual FGM has attracted the
most interest.

The use of FGM in the control of power convert-
ers can be found in the literature for applications such
as controlling the grid-tied rectifier [11] or driving the
permanent magnet synchronous machine [12]. Both
approaches use standard quadratic-costMPCwith only
input constraints, with the former approach requiring
the use of horizons of length three or more, owing to
the higher-order LCL filter.
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In the literature, embedded devices used to con-
trol power converters are mainly Digital signal pro-
cessors (DSP) and Field Programmable Gate Arrays
(FPGA). Due to its inherent parallelism, FPGA is the
most promising solution for implementing MPC. Tra-
ditionally used as hardware interface logic circuits, they
have seen a dramatic price reduction over the past
decadewhile increasing the density of logic elements on
a chip. In addition, FPGAs offer advantages overmicro-
controllers or DSPs in power converter applications by
reducing computation time, resulting in lower control
delay and better dynamic performance [13].

This paper presents a set-based fast gradient
approach to control of grid-tied power converters with
an LCL filter and proposes an efficient implementation
of a set-based MPC algorithm using the modified fast
gradient projection method for solving the optimiza-
tion problem. The need for use of the Dual FGM to
handle state constraints in the optimization problem
is here circumvented by transforming the state con-
straints to input constraints using invariant sets theory;
as the input constraints are ellipsoidal sets they allow for
an efficient projection operation in the FGM. The pro-
posed control approach, which is based on a sequence
of one-step control invariant sets, also provides an
explicit guarantee of closed-loop stabilitywithout intro-
ducing the additional conservatism found in MPC
controllers with guaranteed stability. Furthermore, by
extending this approach to linear parameter varying
(LPV) systems, the MPC algorithm is made robust to
the uncertainties in the variation of the grid inductance.
The proposed approach was tested in hardware-in-the-
loop simulation.

The paper is divided into sections as follows:
Section 2 introduces the mathematical model of
a grid-tied two-level inverter with an LCL filter;
Section 3 presents a set-based model predictive control
algorithm; and Section 4 presents a modified fast gradi-
entmethod for solving theMPC optimization problem.
Section 5 describes the LPV model and needed modi-
fications to the MPC algorithm to allow for the robust
handling of variation in grid inductance, and Section 6
describes the offline precomputation of data needed for
implementation in embedded systems. Section 7 shows
the simulation results of a proposed algorithm, and
Section 8 concludes the paper.

2. Mathematical model of a grid-tied inverter
with an LCL filter

For a two-level, grid-tied, three-phase inverter with
an LCL filter shown in Figure 1, define vectors i1 =
[i1a i1b i1c]�, vc = [vca vcb vcc]�, i2 = [i2a i2b i2c]�
that represent three-phase quantities of inverter side
currents, capacitor voltages, and grid side currents,
respectively.

Figure 1. Two-level grid-tied inverter with an LCL filter.

Using Park’s transformation

Tdq(θ) = 2
3

⎡
⎢⎢⎢⎣
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)
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(1)

three-phase quantities are written in the dq rotating
reference frame as

[
zd
zq

]
= Tdq(θ)

⎡
⎣za
zb
zc

⎤
⎦ (2)

where z ∈ {i1, vc, i2, vg}.
Define x(t) = [i1d(t) i1q(t) vd(t) vq(t) i2d(t) i2q(t)]�

as the state vector with quantities in rotating refer-
ence frame, voltages applied by the inverter as vector
u(t) = [ud(t) uq(t)]� and the grid voltages as v(t) =
[vgd(t) vgq(t)]�. The grid injected currents represent
the systems controlled output y(t) = [i2d(t) i2q(t)]�.
From this, the linear state-space model in continuous
time is written as

ẋ(t) = Ax(t) + Bu(t) + Dv(t)

y(t) = Cx(t) (3)

with system matrices defined as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− r1
L1
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−ω − r1
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0 − 1
L1

0 0
1
C

0 0 ω − 1
C

0

0
1
C

−ω 0 0 − 1
C

0 0
1
L2

0 − r2
L2

ω

0 0 0
1
L2

−ω − r2
L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1/L1 0
0 1/L1
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0

−1/L2 0
0 −1/L2

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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and

C =
[
0 0 0 0 1 0
0 0 0 0 0 1

]
,

where ω = 2π f , with f denoting the grid frequency.
Grid side inductance L2 is comprised of filter induc-
tance Lf , and grid inductance Lg (here assumed known
and constant), i.e.

L2 = Lf + Lg . (4)

To obtain the discrete-time representation of the sys-
tem with a constant sampling rate Ts the forward Euler
approximation is used, which gives

x(k + 1) = Adx(k) + Bdu(k) + Ddv(k)

y(k) = Cdx(k) (5)

with

Ad = I + TsA,

Bd = TsB,

Dd = TsD,

Cd = C.

3. Ellipsoidal set-basedMPC

Let us first introduce some basic definitions.

Definition 3.1: Let X ⊆ R
n be the set of admissible

states of a discrete-time system

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) (6)

and U the set of all admissible control inputs. Set T ⊆
X is said to be control invariant for the system if for
every x(k) ∈ T there exists u(k) ∈ U such that x(k +
1) ∈ T .

Definition 3.2: For a system (6) define an pre-set of a
set S as

�(S) = {
x(k) ∈ R

n | ∃u(k) ∈ U , x(k + 1) ∈ S
}
.
(7)

For a given set T for a system (6) a sequence {Tn}n
of one-step controllable sets is defined by the following
recursion

T0 = T
Tn = �(Tn−1) ∩ X .

(8)

That is to say that every set in a sequence of sets {Tn}n∈N

contains the states that can be steered to Tn−1 using a
single control action.

As the exact sets {Tn}n∈N may be prohibitively com-
plex for real-time use, inner approximations of these sets

are of interest. This leads to the following recursion,
with T control invariant for a system (6),

T̃0 = T

T̃n = In
(
�(T̃n−1) ∩ X

)
, (9)

where In denotes the operation of finding an inte-
rior approximation of a given set (according to some
predefined criterion).

In this paper, ellipsoidal inner approximations of
such sets are used.

Definition 3.3: Let P ∈ R
n×n be a symmetric positive

(semi)definite matrix. Ellipsoidal set EP generated by
matrix P, and centred at the origin, is defined as

EP =
{
x ∈ R

n | x�Px ≤ 1
}
. (10)

If the generating matrix P is positive semidefinite it is
said that the ellipsoid is degenerate.

Note that the degenerate ellipsoids have non-empty
interiors and are unbounded in the directions of some
of their semi-axes.

To compute the ellipsoidal approximations of the
sequence of controllable sets, a computational scheme
proposed in [14] is adopted. For a given stabilizing feed-
backmatrixK for a system (6), and a non-empty invari-
ant ellipsoid E for a system x(k + 1) = (A + BK)x(k),
assuming the input constraints satisfied in the ellipsoid
E , i.e. {Kx | x ∈ E} ⊆ U , the sequence of ellipsoidal sets
is defined as

E0 = E
En = In (�(En−1) ∩ X )

= In
({
x ∈ R

n | ∃u ∈ U ,Ax + Bu ∈ En−1
}
) ∩ X

)
.

(11)

Note that the sequence obviously satisfies En ⊆ Tn, ∀n.
To obtain stabilizing feedback K for the system (6)

the LMI (linear matrix inequality) [15] approach is
adopted. To guarantee the closed-loop system stability,
poles of a system situated inside of a circle with a radius
r and centred at d, and the H∞ cost of μ the following
LMI feasibility problem is solved⎡

⎢⎣
P + P� − S ∗ ∗

1
r
(A − I)P + 1

r
BR S ∗

CP 0 μI

⎤
⎥⎦ > 0. (12)

Matrices P, S ∈ R
n×n and R ∈ R

m×n are symmetric
positive definite, with ∗ denoting appropriate trans-
posed blocks of blocks under the main diagonal. Sta-
bilizing feedback gain is computed as

K = RP−1. (13)

For proof see [16].
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From the stabilizing feedback gainK and the positive
definite matrix P computed by (12) the final ellipsoidal
set E0 is obtained by defining its generating matrix P0
as

P0 = γ

u2max
P, (14)

where umax ∈ U is the vector with the maximum mag-
nitude of an applicable control signal, and γ is a scaling
factor computed by solving the optimization problem

min
γ∈R

γ

s.t. K�K − γP ≤ 0,

γ ≥ 0.

(15)

To construct the ellipsoids En, n ∈ {1, . . .m} the proce-
dure outlined in [14] is used.

Definition 3.4: Let the space R
n × R

m denote the
extended space of all system states and all control inputs,
where m is the dimension of the control input space.
The ellipsoid in the extended space is the set

Ẽn−1 =
{[

x
u

]
∈ R

n × R
m
∣∣∣∣Ax + Bu ∈ En−1

}
. (16)

From Equation (11) and definition 3.4 it is easily
shown that

�(En−1) = {
x ∈ R

n | ∃u ∈ U ,Ax + Bu ∈ En−1
}

⊇ Projx
(
In

(
Ẽn−1 ∩ (Rn × EU ) ∩ EX

))
= En, (17)

where Projx is the projection operator from the
extended space to the state space. The sets EU and EX
represent the ellipsoids or possibly the intersection of
ellipsoids representing the input and state constraints,
respectively.

To calculate the set Ẽn−1 in the extended space as
defined in Definition 3.4, let Pn−1 be the positive def-
inite matrix defining the set En−1 in the state space, let
also families of positive definite matrices PU ,i, PX ,i rep-
resent the ellipsoidal sets that in intersection give EU
and EX . From Equations (10) and (16), it follows that
[x�u�]� ∈ Ẽn−1 if and only if

Ax + Bu ∈ En−1 ⇐⇒ (18)

(Ax + Bu)�Pn−1(Ax + Bu) ≤ 1 ⇐⇒ (19)[
x
u

]� [
A�Pn−1A A�Pn−1B
B�Pn−1A B�Pn−1A

] [
x
u

]
≤ 1, (20)

and

u�PU ,iu ≤ 1, i ∈ {1, . . . , nU }, (21)

x�PX ,ix ≤ 1, i ∈ {1, . . . , nX }. (22)

The block matrix in Equation (20) represents the gen-
erating matrix of the wanted ellipsoid Ẽn−1.

Let the positive definite matrix P represent the ellip-
soidal set ẼP in the extended space, it can be written in
block matrix form as

P−1 = Q =
[
Q11 Q12
Q�
12 Q22.

]
(23)

The projection operation into the state space is given by

Projx

{[
x
u

]∣∣∣∣
[
x
u

]� [
Q11 Q12
Q�
12 Q22

]−1 [
x
u

]
≤ 1

}

= {x | x�Q−1
11 x ≤ 1}. (24)

To compute the interior approximation inEquation (17)
of an intersection of k ellipsoids represented with posi-
tive definitematrices Pj the following LMI optimization
problem to maximize the volume of the ellipsoid is
posed

max
Q≥0

log detQ11

s.t. 0 <

[
Q11 Q12
Q�
12 Q22

]
≤ P−1

j , j ∈ {1, . . . , k}.
(25)

For the case of degenerate ellipsoids represented by
positive semidefinite matrices Pj, as inverse P−1

j is not
defined, matrices can be decomposed as

Pj = U�
j �jUj (26)

where Uj is an orthogonal matrix, and

�j =
[
�̃j 0
0 0

]
(27)

with �̃j diagonal. Geometrically, non-zero diagonal
members in a matrix �j represent all the bounded
directions of ellipsoid’s semi-axes, while the zeros on
the diagonal represent unbounded directions. The opti-
mization problem (25) can then be rewritten as

max
Q≥0

log detQ11

s.t. 0 <

[
Ij
0

]�
Uj

[
Q11 Q12
Q�
12 Q22

]
U�
j

[
Ij
0

]
≤ �̃j

−1,

j ∈ {1, . . . , k},
(28)

where Q is the block matrix consisting of blocks Q11,
Q12 and Q22, and Ij the identity matrix of appropriate
dimensions.

Finally, iteratively solving the problem (28), matri-
ces Pn = Q−1

11,n defining the ellipsoids En are obtained.
As mentioned, this procedure can be carried out offline
to ease the computational burden, with the precom-
puted ellipsoidal sets then used in the real-time part of
the algorithm. The real-time Set-based ellipsoidalMPC
algorithm can now be formulated as Algorithm 1, with
some appropriate cost function J.
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Algorithm 1: Set-based Ellipsoidal MPC
Data: Discrete-time instance k = 0, state

vector x(k), precomputed ellipsoidal sets
En, system matrices A and B.

Start: Obtain measured state x(k).
Find: n(k) = min{n | x(k) ∈ En}.
Solve:

u(k) = argmin
u(k)

J(x(k), u(k))

s.t.

Ax(k) + Bu(k) ∈ En(k)−1

(29)

k = k + 1
Result: Control action u(k)
Return to Start

At every time instance k, the MPC algorithm first
finds the minimal index n(k) of all ellipsoids En that
contain the state vector x(k); after that, the optimiza-
tion problem (29) is solved to find the control action
u(k) that steers the system state to the next ellipsoid,
i.e. x(k + 1) ∈ En(k)−1.

4. Computationally efficient set-basedMPC
based on fast gradient projectionmethod

As power inverters employ very fast system dynam-
ics, with switching times in the kHz range, for real-
time use of Algorithm 1, its implementation needs to
run in the range of tens of microseconds. This section
describes the modification of the fast gradient projec-
tionmethod (FGM) to efficiently solve the optimization
problem (29) that is a crucial part of Algorithm 1.

The fast gradient projection method, originally pro-
posed by Nesterov in 1983, instead of computing the
Hessian matrix of a cost function, accelerates the stan-
dard gradient descentmethod by estimating the bounds
on its second-order differential information. Further-
more, FGM is able to handle constraints on the opti-
mization variable; to ensure the feasibility of a solution,
the candidate solution is projected on the feasible set.
As a downside, this increases the number of iterations
needed to find the optimal solution. Also, for solving
the MPC problem using FGM, one is limited to MPC
problem formulations containing only the constraints
on the control variable and not the state variable, and
requiring the input constraint set to be relatively simple
for the projection operation to be efficiently computed.

Let us assume the MPC problem in the standard
form with a quadratic cost function

J∗N(x) := min
1
2
x�
NPxN + 1

2

N−1∑
k=0

x�
k Qxk + u�

k Ruk

s.t. xk+1 = Axk + Buk, ∀k = 0 . . .N − 1

uk ∈ U , ∀ k ∈ {0, . . . ,N − 1}
x0 = x. (30)

Rewriting J as a function of the initial state and inputs,
a batch form of the problem is obtained

J∗N(x) = min JN(U; x)

s.t. U ∈ UN .
(31)

As the cost function JN(U; x) is quadratic, it is also
strongly convex, and its gradient is Lipschitz contin-
uous, which means that it can be upper- and lower-
bounded. For this class of functions, the fast gradi-
ent method can be formulated as Algorithm 2. In the
Algorithm 2 L represents the Lipschitz constant of the
gradient of the objective function, ProjUN represents
the projection operator on the feasible set UN . While
scalars βi, i ∈ {0, . . . , imax−1} represent the scaling fac-
tors that can be precomputed from the Lipschitz con-
stant L and the convexity parameter μ. Parameter μ

satisfies ∇2JN(U; x) = 2H ≥ μI. That is, μ > 0 is the
under-approximation of the minimum eigenvalue of
2H.

Algorithm 2: Fast gradient method for con-
strained minimization
Data: Initial point u0 ∈ UN , y0 = u0, number

of iterations imax, Lipschitz constant L,
scaling factors β0, . . . ,βimax−1

for i = 0 → imax − 1 do
vi+1 = yi − 1

L∇JN(yi) = Myi + g;
Ui+1 = ProjUN (vi+1);
yi+1 = Ui+1 + β i(Ui+1 − Ui).

end
Result: Control sequence U.

Important part of FGMAlgorithm2 is the projection
operation where a candidate solution vi+1 is projected
onto input constraint setUN . In a case where input con-
straint setUN is simple (e.g., box constraints, circle), the
projection operation can be performed very efficiently.
In the following subsection, the FGM algorithm based
on ellipsoidal sets is described.

4.1. Equilibrium point

For a given reference vector r = [idr iqr]�, the equilib-
rium point [xd ud]� of a system (3) is

[
xd
ud

]
=

[
A B
C 0

]−1 [−Dv
r

]
. (32)

To obtain the error dynamics of a system (5) with
known grid voltage v and for a chosen output ref-
erence r, define e(k) = x(k) − xd as an error around



AUTOMATIKA 309

equilibrium point [xd ud]�, which leads to

e(k + 1) = Ade(k) + Bduerr(k), (33)

where uerr(k) = u(k) − ud.

4.2. Set-based fast gradient projectionmethod

For controlling the system (33), the optimization prob-
lem (29) has to be solved in real time at every time step.
The fact that the optimization problem contains con-
straints on the state-space variable, i.e., requiring that
the state in the next time step belongs to the next ellip-
soid until reaching the terminal ellipsoid, allows us to
constrain our choice of cost functions to simpler one-
step prediction formulations without sacrificing stabil-
ity but also requires the modification of the problem
by replacing the state constraints with corresponding
input constraints

uerr(k) = argmin
uerr

J(uerr(k), e(k))

s.t. uerr(k) ∈ Uk(e(k))
(34)

where the set Uk(e(k)) is defined as

Uk(e(k)) = {u(k) | Ade(k) + Bduerr(k) ∈ En(k)−1}.
(35)

This means that for a given state e(k) the set Uk(e(k))
represents a set containing all control inputs that will
steer the next state e(k + 1) to the set En(k)−1. To obtain
the set Uk(e(k)), assume e(k) in an ellipsoid Ei, the set

Ēn = In
(
Ẽn ∩ (R6 × EU )

)
(36)

is an ellipsoid in the extended space that contains the
vector [e(k)u(k)]�. This implies that the set Ēn is rep-
resented by a symmetric positive semidefinite matrix
P̄ ∈ R

8×8 as [
e(k)
u(k)

]�
P̄

[
e(k)
u(k)

]
≤ 1, (37)

written in block matrix form, with blocks P1 ∈ R
6×6,

P2 ∈ R
2×2 and P12 ∈ R

6×2, gives[
e(k)
u(k)

]� [
P1 P12
P�
12 P2

] [
e(k)
u(k)

]
≤ 1. (38)

Which is further rewritten as

u(k)�P2u(k) + 2u(k)�P�
12e(k) + e(k)�P1e(k) ≤ 1

(39)
From (39) scaled and translated ellipsoid u(k)�P2u(k)
≤ 1 is obtained as

(u(k) − a)� P2(u(k) − a) ≤ γ , (40)

where

a = −P−1
2 P12e(k), (41)

γ = 1 + e(k)�(P�
12(P

−1
2 )�P12 − P1)e(k). (42)

This implies the set Uk(e(k)) defined in (35) is written
equivalently as

Uk(e(k)) = {u(k) | (u(k) − a)�P2(u(k) − a) ≤ γ }.
(43)

To solve the problem (34) the modified fast gradient
algorithm stated in Algorithm 3 can now be employed.

Algorithm 3: Set-based fast gradient method
for constrained minimization

Data: Initial point u0 ∈ UN , y0 = u0, number
of iterations imax, Lipschitz constant L,
scaling factors β0, . . . ,βimax−1

Calculate parameters a and γ for set Uk(e(k)) ;
for i = 0 → imax − 1 do

vi+1 = yi − 1
L
∇JN

(
yi

) = Myi + g; (44)

ui+1 = ProjUk(x(k)) (vi+1) ; (45)

yi+1 = ui+1 + βi (ui+1 − ui) ; (46)

end
Result: uimax

The given algorithm, in each of its iterations, finds
a candidate solution vi+1 by making one gradient
descent step using (44); if needed, the candidate solu-
tion is projected to the input constraints set Uk(e(k))
with (45) to obtain a feasible solution ui+1; and finally
using Equation (46), a scaling factor βi is applied to
obtain a better initial value for the next iteration of the
algorithm.

The projection operation in Equation (45) is defined
as

ui+1 = ProjUk(x(k))(vi+1)

=
⎧⎨
⎩
vi+1, ‖vi+1 − a‖P2 ≤ γ ,

vi+1 − a
‖vi+1 − a‖P2

· γ + a, ‖vi+1 − a‖P2 > γ ,

(47)

where the norm ‖ · ‖P2 is defined as

‖x‖P2 =
√
x�P2x. (48)

5. Control under variable grid inductance

As an extension of the presented Set-based MPC
algorithm, in this section, the grid inductance is
allowed to vary over time. The grid-side inductance L2
is modelled as

L2 = Lf + Lg (49)

whereLf represents the LCLfilter inductance andLg the
possibly varying grid inductance. To model the uncer-
tainty in the grid inductance, assume the quantity Lg
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to be bounded, i.e. contained in an interval [0, Lmax];
obviously, the parameter L2 is then constrained in

Lf ≤ L2 ≤ Lf + Lmax. (50)

Setting θ = 1
L2 , θmin = 1

Lf +Lmax
and θmax = 1

Lf
, the

parameter θ can be expressed as a convex combination
of parameters θmin and θmax

θ = α1θmax + α2θmin, (51)

with 0 ≤ α1,α2 ≤ 1 and α1 + α2 = 1. This enables us
to write the system model (3), with respect to this
uncertainty, as a polytopic LPV model [15]. The poly-
topic model consists of two vertices (Ac,i,Bc,i,Dc,i,Cc,i),
i ∈ {1, 2} that represent two possible extremes of
parameter L2 and define a polytopic matrix family in
which systemmatrices for every permissible value of L2
are obtained as a convex combination of the vertices, i.e.

A(α) = α1Ac,1 + α2Ac,2, (52)

B(α) = α1Bc,1 + α2Bc,2, (53)

D(α) = α1Dc,1 + α2Dc,2, (54)

C(α) = α1Cc,1 + α2Cc,2, (55)

finally the system can be written as

ẋ(t) = Ac(α(t))x(t) + Bc(α(t))u(t) + Dc(α(t))v(t)

y(t) = Cc(α(t))x(t) (56)

where α : R+
0 → R

2 is a function of time that for every
t ≥ 0 provides scalars α1 and α2. (For clarity, argument
t of a functionα is omitted in the rest of the paper.) Sim-
ilarly to procedure in Section 2, system (56) is written
in discrete time as

x(k + 1) = Ad(α)x(k) + Bd(α)u(k) + Dd(α)v(k)

y(k) = Cd(α)x(k). (57)

Assuming the uncertain system parameter Lg is known
at every time instance (i.e., is estimated) for a given
reference vector r = [idr iqr]� the equilibrium point
[xd ud]� of a system (56) is

[
xd
ud

]
=

[
A(α) B(α)

C(α) 0

]−1 [−D(α)v
r

]
. (58)

The error dynamics of a system (57) are also written as
a polytopic LPV model

e(k + 1) = Ad(α)e(k) + Bd(α)uerr(k), (59)

where e(k) = x(k) − xd, u(k)err = u(k) − ud and

Ad(α) = α1Ad,1 + α2Ad,2 (60)

Bd(α) = α1Bd,1 + α2Bd,2, (61)

for α1,α2 ∈ [0, 1] and α1 + α2 = 1.

To obtain a robust stabilizing control law K, i.e., one
that stabilizes the system (57) for every value of α, LMI
feasibility problem (12) is extended as⎡

⎢⎣
P + PT − Si ∗ ∗

1
r
(Ad,i − dI)P + 1

r
Bd,iR Sj ∗

Cd,iP 0 μI

⎤
⎥⎦ > 0 (62)

for i ∈ {1, 2} and j ∈ {1, 2}, effectively constraining the
closed-loop system behavior in its two extreme ver-
tices (with ∗ denoting appropriate transposed blocks of
blocks under the main diagonal).

For calculating the sequence of robust one-step con-
trollable ellipsoidal sets {En}n that guarantee the exis-
tence of control input for every value of α and lead
the system to the next ellipsoid, it is sufficient to com-
pute the inner ellipsoidal approximation of a pre-set
obtained at the system’s vertices

�(En−1) = {x ∈ X | ∃u ∈ U ,Aix

+Biu ∈ En−1, i ∈ {1, 2}}
⊇ Projx

(
In

(
Ẽ1
n−1 ∩ Ẽ2

n−1 ∩ (R6 × EU )
))

= En, (63)

where Ẽ i
n−1 is calculated using Equation (20) at both

system vertices.
Based on the robust ellipsoid sequence {En}n∈N,

the evaluation of a set Uk(e(k)) needed for solving
the optimization problem (34) is done analogously to
the procedure described in Section 4 after changing
Equation (36) to

Ēn = In
(
Ẽ1
n ∩ Ẽ2

n ∩ (R6 × EU )
)
. (64)

6. Set-basedMPC for embedded platforms

In this section, Algorithm 1 is prepared for implemen-
tation and synthesis on a microcontroller and an FPGA
by precomputing all the necessary data required by the
algorithm and by exploiting its structure to further ease
the computational burden. Steps of the algorithm are
shown in Figure 2.

Based on the procedure outlined in Section 3, the
matrices Pn, for n = 0, . . . , nmax representing the ellip-
soidal sets En, are computed. To check whether the
error state vector e is contained in an ellipsoid En
quadratic form, e�Pne needs to be evaluated; this oper-
ation, in m-dimensional state space consists of (m +
1)m multiplications and (m + 1)(m − 1) adding oper-
ations. Because matrices Pn are positive-definite, they
admit the Cholesky factorization, i.e.,

Pn = R�
n Rn (65)

where Rn are right triangle matrices. Now the quadratic
form

e�Pne = e�R�
n Rne = (Rne)�(Rne) (66)
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Figure 2. Flow chart of the Set-based MPC algorithm.

can be evaluated with 1
2m(m + 3) multiplications and

1
2 (m + 2)(m − 1) additions.

To find the index of a minimal ellipsoid, a simple
parallel reduction procedure is done for all the indexes
satisfying

e�Pne ≤ 1 (67)

that finds the minimum with m−1 comparison opera-
tions in log2m “steps”.

Based on the found ellipsoid index n, the fast gra-
dient method is used to solve the MPC optimization
problem with an appropriate cost function

Jn(u) = (Ae + Bu)�Pn−1(Ae + Bu), (68)

the gradient of which is

∇Ji(u) = 2B�Pn−1Bu + 2B�Pn−1Ae. (69)

Figure 3. Comparison of computational times between DSP
and FPGA implementations for different values of maximum
number of iterations.

Now the gradient step in Algorithm 3 can be computed
as

vi+1 = Myi + g, (70)

with

M = I − 2
L
B�Pn−1B (71)

and

g = −2
L
B�Pn−1Ae =: He, (72)

where M and H are computed offline. Similarly, the
matrices used in the projection step of the algorithm
are precomputed using formulas (41) and (42).

7. Results

To check the real-time computation ability of the pro-
posed controller, Algorithm 3 is first implemented on
Texas Instruments TMS320F28335 DSP and a Xilinx
Artix-7 XC7A200T FPGA device. Although the FGM,
due to the projection step, guarantees feasibility at any
number of iterations, the quality of the solution (in
terms of steady-state error, harmonic distortion, etc.)
increases with the number of iterations taken. The
computational times were recorded depending on the
number of iteration steps in FGM algorithm. The com-
putational limit is set at 100 μs, which corresponds
to the switching time of SVPWM. As can be seen in
Figure 3, execution time depends on the maximum
number of FGM iterations, with Texsas Instruments
DSP reaching the limit for five maximum iterations,
while Xilinx FPGA shows promising results with 7 steps
taking less than 3 μs.

Table 1 shows the FPGA resources utilized to imple-
ment the proposed controller, proving the design viable
on a commercial FPGA device.
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Table 1. FPGA resources occupied by FGM depending on the
number of iterations imax.

imax LUT (% of 133 800) DSP blocks (% of 740)

1 60 508 (44%) 363(49%)
2 65 135 (48%) 393(53%)
3 70 349 (52%) 423(57%)
4 75 155 (55%) 453(61%)
5 79 995 (59%) 483(65%)
6 84 834 (63%) 513(69%)
7 89 669 (66%) 543(73%)

Figure 4. Simulation diagram of the grid-tied power converter.

The dynamical response of a system controlled
with the proposed algorithm was tested in simula-
tion.MATLAB/Simulinkwas used for the simulation of
the power converter, LCL filter, and grid, while the con-
trol algorithmwas implemented on an FPGA device, as
shown in Figure 4 (the communication between MAT-
LAB and the FPGA board was realized using a JTAG
connection).

For the grid-tied power converter with an LCL filter
and parameters given in Table 2 and zero grid induc-
tance (nominal case), the state feedback controller
Knominal is synthesized by solving the problem (12).
From the computed gain

K�
nominal =

⎡
⎢⎢⎢⎢⎢⎢⎣

49.0670 −1.0850
1.0850 49.0670
44.8137 −2.2063
2.2063 44.8137
20.3838 −3.8242
3.8242 20.3838

⎤
⎥⎥⎥⎥⎥⎥⎦
, (73)

an invariant ellipsoidal set, and a family of one-step
controllable ellipsoidal sets are computed by solving
optimization problem (28). The objective functions
defined as

J(uerr)(k)n(k) = ‖(Ade(k) + Bduerr(k))‖Pn(k)−1 (74)

where Pn(k)−1 is a matrix representing n(k) − 1 ellip-
soid, are chosen to provide a minimum time control.
Based on the objective function Jn(k), the Lipschitz con-
stant L, scaling factors β0, . . . ,βimax−1, and matricesM
and H, used in Algorithm 3, are computed offline as
described in Section 6 and used as constants in the
FPGA implementation.

Table 2. Inverter and grid parameters.

Symbol Description Value Unit

r1 Inverter resistance 0.5 �

L1 Filter inductance 1 mH
C Filer capacitance 62 μF
r2 Grid resistance 0.5 �

Lf Filter inductance 0.3 mH
Lg Grid inductance variation 0–1 mH
Vdc DC link voltage 420 V
vg Grid peak voltage 180 V
f Grid frequency 60 Hz
fPWM PWM frequency 10 kHz
fs Sampling frequency 20 kHz

Figure 5. Simulation results: reference tracking for the nomi-
nal system (top), control signal (middle), index of an ellipsoid
containing the current system state (bottom).

Figure 6. Harmonic content of the phase a injected current ia
nominal system, THD = 1.11%.

The reference tracking capabilities of a proposed
controller were tested in simulation; as observed in
Figure 5, the reference was set to id = 10A, iq = 0A at
time t = 0s, and changed to id = 3A, iq = 8A at t =
0.01 s. The system shows fast dynamic response and
accurate tracking capabilities while satisfying the input
and state constraints. As the quality of grid-injected
current is of concern, an FFT analysis of the phase
a grid current was conducted. As shown in Figure 6,
the injected current satisfies the IEEE 1547 norm con-
straints on per-harmonic content and with a THD of
1.11%, satisfies the standard’s required limit of 5%.

For the case of the grid-tied power converter with
an LCL filter and variable grid inductance in the
range 0–1mH (robust case), the robust state feedback



AUTOMATIKA 313

Figure 7. Simulation results: reference tracking for LPV mod-
elled system in vertexwith Lg = 0mH (top), control signal (mid-
dle), index of an ellipsoid containing the current system state
(bottom).

controller Krobust is synthesized by solving the prob-
lem (62). From the computed gain

K�
robust =

⎡
⎢⎢⎢⎢⎢⎢⎣

34.6422 −1.3389
1.3389 34.6422
21.7514 −1.9158
1.9158 21.7514
8.3042 −3.5936
3.5936 8.3042

⎤
⎥⎥⎥⎥⎥⎥⎦
, (75)

robust invariant ellipsoidal set, and a family of robust
one-step controllable ellipsoidal sets are computed. The
parameter-dependent objective functions are defined as

J(uerr(k);α)n(k) = ‖(Ad(α)e(k)

+ Bd(α)uerr(k))‖Pn(k)−1 , (76)

where parameter α representing the change of grid
inductance, is estimated online.

The simulation conducted for the nominal case is
here repeated for two extreme cases of grid inductance,
i.e., Lg = 0mH and Lg = 1mH. As seen in Figure 7,
the dynamic response for the first case is similar to
the nominal case, but with higher harmonic content
as seen in Figure 8 and a higher THD of 1.78% than
the nominal case. In the second case, the system shows
a slower dynamic response owing to high grid induc-
tance (Figure 9) but a lower THD of 1.19% (Figure 10).
The simulations confirm the system’s stability, good ref-
erence tracking, and high quality of the injected current
regardless of the uncertainty in the grid inductance.

8. Conclusion

In this paper, a computationally efficient MPC
algorithm for grid-tied power converters is proposed by
modifying the fast gradient projection method using
invariant set theory. The proposed algorithm was
implemented and tested through hardware-in-the-loop

Figure 8. Harmonic content of the phase a injected cur-
rent ia for LPV modelled system in vertex with Lg = 0mH,
THD = 1.78%.

Figure 9. Simulation results: reference tracking for LPV mod-
elled system in vertexwith Lg = 1mH (top), control signal (mid-
dle), index of an ellipsoid containing the current system state
(bottom).

Figure 10. Harmonic content of the phase a injected cur-
rent ia for LPV modelled system in vertex with Lg = 1mH,
THD = 1.19%.

simulation using Texas Instruments DSP and Xilinx
FPGA platforms, showing execution times that sat-
isfy timing constraints for real-time execution. Fur-
thermore, the MPC algorithm is shown to be easily
extended to include uncertainties in grid inductance
while maintaining good dynamic response in reference
tracking and low current THD.
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