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Neighbourhood communication model for enhancing trust and promoting
players’ cooperative behavior: a case of iterated n-players prisoner’s dilemma
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ABSTRACT
Humanbeings collaboratewhenorganized in an unchanging network of social relationships and
if the advantage of collaboration surpasses the entire cost of collaboration with all neighbours.
Cooperation may be seen in community and natural systems when selfless action is rewarded
despite the risk of exclusion. Trust between neighbours is crucial since cooperative behaviour
spreads more rapidly and efficiently in environments with a high trust rating. In this paper,
we introduce an alternative neighbourhood communication topology to enhance the level of
trust between n prisoner’s dilemma players and promote cooperative behaviour. The proposed
topology allows players to communicate with their local neighbours and share their experiences
within the universe of other players that are not locally connected. To understand the overall
players’ behaviour locally and globally, the topology is supported by a knowledge base acces-
sible by all players. Our topology was tested against five other communication topologies over
four 1000-game tournaments. The results show that our model outperforms other strategies in
promoting cooperative behaviour among participating players in small and large populations.
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1. Introduction

Game theory is a mathematical tool used to evalu-
ate the interactions between interdependent individu-
als or competitors. The theory allows players to make
appropriate decisions in various strategic settings. The
main factors affecting these individuals’ interactions
include the participant’s payoff and strategies imple-
mented by both parties. A player can utilize game
theory to develop frameworks that mimic real-world
interactions. The models consist of individual interac-
tive frameworks, such as the different choices for the
indices that the researchers obtain through abstraction.
The other framework is the payoff functionwhich helps
to provide a numerical value for each combination of
choices.

Since game theory is strategic, it is essential for play-
ers to use it through different applications [1–5]. The
consequences of the interactions rely on the individual
player and on the decisions made by the players in the
corresponding game.

The prisoner’s dilemma, a symmetric matrix game
where the players seek to achieve the highest score
against each other, is one of game theory’s most valu-
able applications. The game involves using a transpar-
ent payoffmatrix; thus, the players have no prior knowl-
edge about the opponent’s choices before the game.
Game theory can help the players achieve the highest
score since it involves striving for the best path [6].

A one-time version of the prisoner’s dilemma occurs
when a rational player plays a single game.With limited
real-life applications, the one-shot version of the game
is not interesting for real-life scenarios. Moreover, the
game has a mutual defection strategy that depends on
the lack of future of the one-shot version. If two play-
ers meet and play several games together, it becomes an
Iterated Prisoner’s Dilemma (IPD) [7,8].

IPD allows two individuals to play together sev-
eral times and to generate new strategies based on
what they used in previous interactions. The moves
of one player significantly determine the opponent’s
behaviours. The uniqueness of the IPD is that play-
ers cannot use the single dominant strategy of mutual
defection and must favour more complex strategies.
The players’ approaches aim to maximize their payoffs.

Game developers face the complex challenge of pro-
moting cooperative behaviour in large populations for
the Iterated n-Players Prisoner’sDilemma (INPPD) [9].
The main concern is that incorporating an emulation
of cooperative behaviours requires discovering a large
population’s strategy throughout the game [10]. The
neighbourhood topologies representing the communi-
cation channels play a significant role in establishing
effective cooperative behaviours [11–13].

This study emphasizes the significance of the popu-
lation structures in developing and evolving the coop-
erative behaviour of INPPD. Prior research findings
indicate that the evolution of cooperative behaviour
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is a critical issue and the focus of numerous stud-
ies [Wang et al. 201510,14,15]. This study contributes
to the development of an alternative neighbourhood
topology capturing the essence of the universal struc-
ture in the evolving cooperative behaviour of INPPD.
The alternative structure caters to the limitations exist-
ing in the current neighbourhood topologies that act as
barriers to an effective exchange of experiences between
players. The alternative neighbourhood topology has
the advantage of providing good communication chan-
nels for improving players’ game experience. This local-
universal topology allows players to share experiences
at the local and universal levels.

This paper first provides background information
on INPDD in Section 2. The different existing neigh-
bourhood topologies in game theory and INPPD are
highlighted in Section 3, while Section 4 introduces our
alternative local-universal topology. The various perfor-
mance tests and the comprehensive supporting analysis
of the results are outlined in Section 5. Finally, section 6
provides a concluding statement for the research paper.

2. Iterated n-players prisoner’s dilemma
(INPPD)

Researchers often use the IPD game to study the evo-
lution of cooperative behaviour in biological and social
systems. The two statements defining the INPPD are as
follows [16]:

(i) The players receive higher payoffs in the game
for defecting rather than cooperative behaviour,
regardless of the actions of any of the players.

(ii) The players receive lower payoffs when both indi-
viduals choose defecting behaviour.

These two statements often create a dilemma among
the players when they are unaware of each other’s
moves until they play their turn. Consequently, most
players often hesitate to behave cooperatively since they
assume that their opponents would choose a defecting
behaviour. INPPD allows researchers to identify these
dilemmas and establish various models promoting sta-
ble cooperation, reciprocity, co-evolutionary learning,
altruism, and community structure [6]. The INPPD
model also highlights a social dilemma, which occurs
whenever there is a collective action.On the other hand,
using INPPD can lead to less desirable outcomes in sit-
uations where the individual’s defections occur at the
expense of other players.

The players in INPPD have only two options: coop-
erating (C) or defecting (D). The payoffs received by
the players depend on the number of existing coop-
erators (i). We define ci and di (for all players, where
i = 0 . . . n−1) as a given player’s payoff for cooperation
or defection, respectively. Hence, each player should
consider that i cooperators and n−i−1 defectors exist.

Since player p will receive ci or di when they cooper-
ate or defect, respectively, they do not need informa-
tion about the number of cooperators and defectors to
compute the payoff.

The primary dilemma in the game is that the defect-
ing strategy dominates the cooperative strategy. Thus,
players do not choose the dominant strategy each time
since they receive lower payoffs if they continue play-
ing with the same strategy. Alternatively, if the player
decides to cooperate and testify, and the other players
choose to defect, they receive higher payoffs than their
opponent. Therefore, it is easy for the players to estab-
lish a pattern for cooperation since it relies on rational
behaviour. The players’ fear of future punishments out-
weighs the benefits they gain if they adopt a defecting
strategy.

In contrast to the real world, the social and biological
systems are represented in the game by spatial mod-
els, and cooperation and defections occur among the
different group members. Moreover, the existence of
common finite resources leads to the development of
new behaviours, where each individual uses more than
their share of resources. These conditions can result in
collective irrationality even among rational individuals.

Numerous recent studies have demonstrated interest
in the evolution of cooperative behaviour. Most focus
on the subject of anti-social punishment, which relies
on both centralized and decentralized punishment.
These studies indicate that punishments significantly
impact the general evolution process. However, other
findings suggest that cooperation has more advantages
than defection, even when resulting in anti-social pun-
ishment [12,15,17].

The evaluation criteria chosen to assess the perfor-
mance of different players depend on the payoff value
that each individual could achieve in a game. Therefore,
strategies that offer the largest payoffs are the best [18].
Additionally, players can achieve higher payoffs if they
can predict their opponents’ behaviour.

Players must be aware of the rules about the pay-
off matrix applicable throughout the game. The payoff
functions involving INPPD should meet the following
conditions [19]:

(i) Condition 1: Monotonicity

This condition states that the payoffs are higher
for any additional cooperator if most players
among n individuals have cooperated. Due to the
inequality factor of monotonicity, the same rules
apply to any additional defector.

The equations below represent the monotonicity con-
dition:

ci > ci−1, (1)

di > di−1, (2)

where i = 1, 2, . . . , n−1.
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Table 1. Payoff matrix of INPPD.

Number of cooperators among the remaining n−1 players

0 1 2 . . . n−1

Player A Cooperate c0 c1 c2 . . . cn−1
Defect d0 d1 d2 . . . dn−1

(ii) Condition 2: The dominance of defection over coop-
eration

This condition states that rational players with
short-term thinking will select defection due to
the equation

di > ci, (3)

where i = 0, 1, . . . , n−1 is the number of players who
chose a given strategy, di is the corresponding payoff
for players who chose defection, and ci is the payoff for
players who chose cooperation.

(iii) Condition 3: Efficiency of cooperation over defection

This condition, formulated in Equations (4) and
(5), illustrates the increase of in-group payoffs
once individuals start to cooperate:

(i + 1)ci + (n − i − 1)di+1 > ici−1 + (n − i)di,
(4)

cn−1 > d0, (5)

Yao and Darwen [20] presented a model for INPPD
that meets all three conditions. The representation of
the data for the matrix is shown in Table 1. The rows
and columns show the number of cooperators and the
individuals’ choices, respectively. The numerical val-
ues represent and satisfy the three INPPD conditions
outlined above.

3. Players’ communication topologies

Cooperation may be seen in community and natu-
ral systems when selfless action is rewarded despite
the risk of exclusion. On the other hand, individual
health appears to be contentious in Darwinian natural
selection theory. Evaluating the genesis and sustainabil-
ity of prosocial behaviours between selfish individuals
becomes difficult [21–25]. Human beings collaborate
when they are organized in an unchanging network
of social relationships if the following rigorous crite-
rion is met: the advantage of collaboration must sur-
pass the entire cost of collaborating with all neigh-
bours. A fundamental issue in biological evolution,
community, and science is understanding why cooper-
ative behaviour originates and persists among uncon-
nected selfish individuals. Specific behavioural features
are examined using evolving game theory to tackle this
problem.

Figure 1. Representation of 20 players and neighbourhood
communication over a game space.

Zhuang et al. [26] and Li et al. [27] investigate the
evolutionary dynamics of a dilemma game on a net-
work. The research primarily demonstrates that coop-
erative behaviour becomes the prevailing option when
trust levels are above a specific threshold, allowing the
network’s whole community structure to be sustained.
The prisoners’ dilemma model depicts the social ten-
sion between self-interest and collaboration [28]. In the
simplest form, if a particular system is not added to the
community, the population faces a social dilemma in
which defection dominates the system, and cooperation
is abandoned.

The prisoners in the INPPD represent players in
our game space. The interactions between the players
depend on the neighbourhood topology of the game
since it determines the individuals who play against
each other [29,30]. Figure 1 illustrates the game space
of 20 players, where the main player has several neigh-
bours (denoted in red). The players can only interact
with players who are within specific pre-defined neigh-
bouring levels. Several studies indicate that this section
of the research focuses on the static neighbourhood
topologies’ content.

Wu et al. [31] demonstrated the significance of
community structure in the game. The researchers
emphasize the importance of community structure for
improving cooperation in spatial prisoner’s dilemma
games. Their findings show that the impact of spa-
tial structure varies in terms of increasing cooperation
depending on the game’s dynamics.

Ye and Fan [32] applied a Particle Swarm Opti-
mization (PSO) algorithm to the social dilemma and
investigated the influence of PSO on the evolutionary
passenger’s dilemma game using a continual version.
In the model, each individual changes their strategy
based on two criteria: the most lucrative strategy in
the past and the replication of the best strategy now
available in the community. The simulation results
showed that the suggested learning technique substan-
tially enhances the development and perpetuation of
cooperation. Furthermore, the PSO has a significant
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impact on interactions. Whenever the motivation is
minimal, social contact aids high-value claims in the
system, resulting in population variety over a wide
strategy interval. The variance magnitude of strategy
updating is represented by the velocity in this paradigm.
However, the authors observed that this way of upgrad-
ing improves the network at the price of community
turmoil and collapse. He et al. [28] suggested a novel
trust management method based on game theory and a
node-level penalty system to encourage social cooper-
ation, while Pei et al. [33] investigated the motivational
processes of collaboration. Under the effect of other-
centered desires, actors are prepared to forego their
benefit. This implies that trust is crucial since key data
spreads more rapidly and efficiently on networks with a
high trust rating.

Dong et al. [34] examined the influence of four com-
mon second-order reputation evaluation models on a
3D PD game. Using systematic Monte Carlo simula-
tions, researchers show that the model’s parameters
encourage cooperating beyond geographic reciprocity
in the examined prisoner’s dilemma game and that the
greater the reputation step size, the greater the col-
laboration. Chu et al. [35] argue that popularity and
strategy evolve in lockstep and investigate how this
setting influences the development of cooperation in
structured populations. The authors used simulation
to discover that this technique allows cooperation to
survive. The finding improves our comprehension of
cooperation in social systems. In addition, introduc-
ing popular selection based on heterogeneity can help
ensure the long-term viability of collaboration. Play-
ers choose to mimic more popular neighbours as the
vertex weight heterogeneity increases, leading to the
development of cooperation.

Fu et al. [36] present a compensation system based
on prior loyalty, in which a person who follows the
cooperation strategy for a long time receives a bonus.
As a result, surrounding defectors contribute equally
to the incentive for a loyal cooperator. The findings
of the PD game reveal that by setting adequate loyalty
barriers and incentive variables, the amount of cooper-
ation may be significantly increased. The spatial vari-
ation of collaborators and defectors and the temporal
history of cooperator concentration are also investi-
gated. In the spatial public goods game, the authors
discovered that prior loyalty could enhance coopera-
tion. Incentives based on past loyalty, as opposed to
no incentives, are more favourable to establishing and
developing large cooperative clusters. The evolution of
cooperators’ density and the changes in average payoff
and health are investigated in a microscopic viewpoint
to confirm the aforementioned result.

Guo et al. [37] investigated the influence of net-
work topology on the development of cooperation
using the PD game. The simulation findings suggest
that network structure entropy is a critical factor in

network collaboration and may accurately explain net-
work influence on cooperation. The findings reveal that
overall network entropy plays a common role in the
networks’ cooperation. The network structure entropy
follows the evolution of the cooperator density in the
PDG–DT model and exhibits an opposing evolution
tendency when the starting network structure entropy
increases. The network structure entropy is shown to be
a significant aspect of the network evolutionary game
and may be used to describe the effect of network
structure on cooperation.

Griffin et al. [21] developed a model for strategic
emulation in an arbitrary network of interacting play-
ers. The study illustrates a condition whereby the resul-
tant difference equations progress to consensus via a
discrete-time update. A simplified model for the trans-
mission of trends or informational cascades in (e.g.
interpersonal) networks is created using a variant of the
model. Researchers show that when topological mod-
ifications are permitted in the graph structure of the
extended PD game, the graph unites to a collection of
unconnected groups and is mutually stable.

Wang et al. [38] proposed a preferential selection
process in which players are more inclined to under-
stand their contributing peers. The reciprocated incen-
tive is continuously changed based on the adaptive link
optimizing parameters and the desired intensity. Sim-
ulation experiments show that the suggested incentive
system boosts cooperative development significantly.
According to the findings, the reciprocated reinforcing
mechanism considerably encourages the emergence of
interaction. In addition, the adaptive modification of
linkage weight and preferences impact factor promote
collaboration.

Lee et al. [39] investigated an adaptable network of
player pairs that coevolve while players try tomaximize
their gain in the Prisoner’s Dilemma game. Researchers
employed a node-based strategy model in which each
player follows a single strategy with its neighbours,
modifying that strategy and perhaps changing partners
in reaction to perceived modifications in the network
of player pairings and linked partners’ strategies. The
authors demonstrated that increasing the additional
incentive facilitates cooperative behaviour by establish-
ing large clusters for low defecting temptation. The
suggested technique was implemented in a typical PD
game with an undertaking in which players can select
one of three strategies in every round of the game: col-
laboration, defection, or voluntary involvement. When
considering self-interaction, the proportion of cooper-
ative actions is significantly aided by constructing tight
clusters, increasing the additional reward for low levels
of defection temptation. As a result, self-interaction is
critical in the evolution of cooperation.

Locodi and O’Riordan [40] proposed a topology for
spatial evolutionary game theory that enables resilient
cooperation; the standard PD is used as an interaction
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model. The authors discovered that the graph’s size
might be grown forever, making it more resilient as
it grows. They provide a demonstration of this char-
acteristic as well as the relevant graph restrictions. In
addition, given the typical game payoffs, they identify
the shortest graph with this characteristic.

Sinha et al. [41] presented the concept of cooper-
ator and defector graphs and a novel type of game
reward that is minimally affected by the fundamen-
tal network architecture. The authors show that with
such a modest reliance, the core gameplay dynam-
ics and the game’s essence may be altered. If early
cooperation is substantial, cooperation will most likely
become the population’s dominating approach. Addi-
tionally, the concept of topology-dependent payoffs is
relevant for all network games, not only the prisoner’s
dilemma instance addressed here. Fluctuating habi-
tats are those in which spatial and temporal variability
contributes significantly to the evolutionary dynamics.
Stojkoski et al. [42] expanded these findings by con-
ducting systematic research on the dynamics of coop-
eration in changing settings with structured, diverse
populations and individual entities bound to broad
behavioural principles. They concluded that, in the
face of environmental variations, cooperative dynam-
ics might result in the formation of numerous network
components, each of which has evolutionary features.
The researchers also discovered that environmental
fluctuations cause evolutionary behaviour, whichmight
result in the formation of components. Furthermore,
the authors showed that state-based generalized reci-
procity improves the development of cooperation in
volatile contexts by incorporating a simple behavioural
updating criterion.

Wang and Du [43] looked at an asymmetrical situ-
ation in which the number of interacting neighbours
for specific individuals differs significantly, resulting in
a PD model with an optimum selection method. They
discovered that when the proportion of the population
is increased to a larger value, collaboration is improved
substantially. They further demonstrate that micro-
scopic events influence the outcomes. They discovered
that when V increases, the influence of network reci-
procity in the structure population becomes stronger.
In the development of cooperative behaviour, the addi-
tion of eight replacement neighbours to the optimum
selection model is critical. Szolnoki and Perc [44] pro-
posed a strategy-neutral variation of the classic model
in which the beneficial impact on evolutionary out-
comes is not obvious. The authors proposed a relatively
modest adjustment to the standard model, considering
the possibility of a more cautious learner player who
does not readily accept information about the model
player. Regardless of the source, the population whose
participants place a higher value on averaged infor-
mation concerning the effectiveness of an alternative
approach can achieve a higher level of cooperation – the

greater the weight of this new knowledge in decision-
making, the greater the potential for improvement.

Wang et al. [45] examined the impact of a trust-
driven updating rule based on reputation in PD games
on random networks. The findings reveal that when
people renew their policies using this trust-based
updating rule, their degree of cooperation increases
considerably. The amount of collaboration improves
when the heterogeneity parameter is increased. Fur-
thermore, the authors investigate the impact of the
association between node degree and reputation het-
erogeneity on cooperation resulting from individual
effects. The simulation findings show that collaboration
increases dramatically when people change their poli-
cies using this trust-driven updating mechanism. The
simulations have proven that mimicking contributing
players can help people cooperate.

In the following sub-sections, we introduce the well-
knownneighbourhood strategies used to develop coop-
erative behaviour among INPPD players.

3.1. Ring communication topology

The ring topology involves players’ connection to their
immediate neighbours in a one-dimensional space;
therefore, the players can only interact with two neigh-
bours. Due to the small size of these structures, players
may be less cooperative since the player’s knowledge
is restricted to its neighbours. The emergence of coop-
erative behaviour among the players increases after n
number of games for a population of n players. Experi-
encing the games may encourage the players with low
payoff gains to alter their behaviour and cooperate. The
ring topology has narrower levels for the INPPDplayers
to experience.

3.2. Star communication topology

Star topology has a different structure since it allows
all players to interact within the game. This structure
primarily aims to help the players share the best expe-
riences among the entire player population. The neigh-
bourhood used by the players is the entire population.
Using a star topology results in information moving
among all players, and the majority of the group will
display a tendency towards superior behaviour [46].

Star topology increases the efficiency of the game,
especially among small populations. However, this
type of topography requires processing a consider-
able amount of information, which poses a challenge.
The exchange of large amounts of information among
numerous players constitutes an additional issue.

3.3. Von Neumann communication topology

Von Neumann’s topology has a different structure
that entails another dimension while searching for
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algorithms that extend the neighbourhood structure.
This topography allows the players to interact with the
immediate four players surrounding them. This struc-
ture helps solve optimization challenges. Most studies
indicate that von Neumann topologies are the most
efficient among all neighbourhood topologies [47].

Bo and Sichman [48] proposed an INPPD model
that utilizes the von Neumann topology as the primary
form of communication between the layers. The cells
at the edge of the lattice also have a neighbour on the
opposite side of the lattice. Selection of the interacting
player occurs randomly or sequentially.

3.4. Cluster communication topology

The cluster topology involves dividing the players inton
number of groups. Each cluster can communicate with
the other clusters. Specifically, each cluster has a diverse
number of connections equal to the number of neigh-
bouring clusters. The cluster topology typically features
three or four different clusters. Although the players can
interact through the connection, few inter-cluster con-
nections exist among the individuals. O’Riordan and
Sorensen [49] presented an INPPD model that dis-
plays a high degree of community structure, ensuring
that the players insulate themselves from the defectors.
The community structure involves the clustering pro-
cess since a collection of nodes occurs in knit groups
and thus features loose connections. Individuals from
the other communities update their behaviour tomatch
those of the neighbouring players. This study demon-
strates that cooperation can spread through society (Li
and O’Riordan 2013).

3.5. Random communication topology

If there are n players in a game, then there exist n ran-
dom symmetrical connections between the individuals;
hence, the links ensure that the players interact ran-
domly. Moreover, the structure’s lattice provides each
player with immediate neighbours.

Chiong and Kirley [50] analyzed the effectiveness
of co-evolutionary learning in neighbourhoods with
both fixed and random structures. The randomly struc-
tured neighbourhoods present inner and outer struc-
tures. In this type of structure, the inner neighbourhood
refers to a set of group members with eight immediate
players. Conversely, the outer neighbourhood involves
the selection of players from everywhere across the
population.

Huang et al. [14] conducted a study to determine the
impact of the ratio and strengths of the diverse con-
nections on the players’ behaviours. The researchers
used this concept to model real-life circumstances. The
study focuses on the importance of behavioural evolu-
tion in the evacuation process needing proper guidance
for smaller groups. The authors also concentrate on the

concept of the prisoner’s dilemma, which shows that
the group of players may be spread in different loca-
tions of the same building. The study’s findings indicate
that the topology supporting interconnected networks
increases the likelihood of cooperation compared to the
single regular lattice.

Schimit et al. [51] tried to use the games’ strategies
in a multi-agent context. In the study, the agents play
two-player groups with the individuals depending on
neighbours in cellular automata. The study’s findings
suggest that immediate punishments do not increase
the players’ level of cooperation. The researchers also
established that the notion of tit-for-tat did not pro-
mote collaboration among the populations in the exper-
iments.

This section concludes that choosing a suitable
topography depends on the size of the game space and
the number of individuals participating in each tourna-
ment. In the next section, we introduce an alternative
neighbourhood topology that facilitates communica-
tion among large populations.

4. Local-Universal neighbourhood topology

This section provides information about an alternative
neighbourhood topology relying on two levels: LVL1
and LVL2. LVL1 involves all the players in a given
local community, and theymust play against each other.
Equation (6) illustrates the interaction of players within
the same community for these local interaction levels:

Pi ∈ Licommunity(for i = 2, . . . n), (6)

where Pi and Licommunity represent a given player and
their local community, respectively.

The local-level interactions provide enough commu-
nication channels, facilitating effective communication
among the community members. Individuals can play
r number of games, which affects the behaviours of
the same players within the same community. Such
interactions encourage cooperation among the players.
Figure 2 shows the interactions between one INPPD
player and their four neighbours, represented in black
and red, respectively. The arrows illustrate the tie com-
munication lines between the members.

Restricting the player’s interactions within a spe-
cific community to encourage cooperative behaviour
can be beneficial. However, some communities lack
the experience to evolve and become cooperative soci-
eties. Therefore, adding another communication chan-
nel between these communities is necessary.

Players can share information about the best players
in their community with players in other communities.
The linking of different communities makes the game
more interesting since the players can share diverse
experiences. LVL2 involves universal interactions and
occurs by linking the various communities in a
topography.
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Figure 2. Local-level interactions in a community of five
players.

Figure 3. Universal-level interactions across three communi-
ties of five players.

The structure groups seven individuals in a set
S = P1, P7 for each game, containing the main player.
S1 ⊂ L1 and S2 ⊂ L2 represent four and two players,
respectively. Pi ∈ S is the main player, who is interact-
ing with six players: four immediate players from S1
and two other players from the universal set S2. The
corresponding algorithm is presented in Equation (7):

Gamer : Pi ↼⇁ [Pj ∈ S1 ∪ S2], (7)

where i �= j and ↼⇁ illustrates the interaction between
the players. Figure 3 below shows the universal level
of interactions in a community of five players. The
squares in the figure represent the communities within
the whole population.

This new topology model allows the players to con-
sider the behaviour of the other individuals in the com-
munity before choosing their moves. This affects the
behaviours of the player in the other communities (C),
as shown in Equation (8):

Pi ∈ Ci–1 ∪ Pj ∈ Ci ∪ Pz ∈ Ci+1, (8)

Figure 4 illustrates the connections between the players
in the community and the integration with a neigh-
bouring community.

The payoff matrix in Table 1 shows that the player
who chooses to defect does not achieve payoffs as high
as those achieved by players who cooperate. On the
other hand, this new local-universal topology allows the
defecting players to learn from the other communities.

Figure 4. Local-universal neighbourhood topology.

Figure 5. Structural design of the knowledge base.

Therefore, after several games, an evolving cooperative
pattern may emerge among the previously defecting
individuals.

Our proposed topological structure ensures that
INPPD maintains the following specific properties:

(i) The evolving cooperative behaviour among the
players in INPPD is facilitated by improved com-
munication and better local interactions.

(ii) The evolving cooperation also occurs through
sharing experiences among diverse communities,
representing universal interaction and communi-
cation.

Therefore, an individual in a tournament of m
games needs a knowledge base to track the players’
behaviours both at the local and universal levels. Ana-
lyzing and predicting other players’ moves significantly
determines a player’s payoffs. Using a knowledge base,
players can gather data and knowledge about the play-
ers in their communities and those at the universal
level. The designs for the supportive knowledge systems
are described in Figure 5.

The knowledge base is divided into two sub-bases
performing local and universal tracking. The first sub-
base (local tracking) tracks the moves chosen by the
participants in a community. In addition, the knowl-
edge base identifies neighbours with the highest pay-
offs and records their highest-paying moves during the
game. Tracking neighbours’ moves facilitates the play-
ers’ decision-making process as they can opt to align
with the dominant behaviour among players. All play-
ers learn from their interactions with other players
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Figure 6. Average payoffs in INPPD societies while relying on diverse topologies in tournament 4.

in the tournament. The learning process allows play-
ers to adapt their behaviours and achieve better out-
comes. This results in the development of cooperative
behaviour within a community.

The second sub-base (universal tracking) is respon-
sible for tracking each player’s moves in the INPPD.
This model tracks the moves resulting in the highest
payoffs among the universal players and stores them.
Using the universal tracking sub-base, players with
lower payoffs can evolve their behaviours and become
cooperative to match the behaviours of the other indi-
viduals in the population.

5. Performance tests and analysis

This section describes the comprehensive tests and
analyses conducted to measure the performance of
our proposed local-universal topology of players in the
INPPD game. We based our evaluation on three pri-
mary factors: the ratio of cooperation among players,
the average payoffs achieved by players while com-
peting at the local and universal levels, and the best
cooperative moves that the players make. These factors
were selected because they are directly related to the
cooperative behaviour conditions specified by Franken
and Engelbrecht [52]. Our experiment was composed
of four tournaments, each of which consisted of 1000
games. The population size for each of the four tour-
naments was 10, 30, 50, and 100 players, respectively.
The experiment was implemented in a Java environ-
ment installed on a Lenovomachine with Intel Core i7®,
6 GB RAM, 500 GB HDD, 128 GB SSD, and Microsoft
Windows 10 as the operating system.

The local-universal topology was tested against
the Von Neumann, cluster, ring, star, and random
neighbourhood topologies. The findings, presented in
Figure 6, illustrate the average payoff achieved by

players in INPPD. The players were grouped in com-
munities and utilized different topologies in the first,
second, third, and fourth tournaments, and each group
utilized a different topology in each of the four tourna-
ments. High payoffs in a game clearly indicate that the
game provides effective neighbourhood interactions,
allowing players to share experiences and information.
The ability of the players to interact with each other
effectively allows the players to choose the best course
of action.

The average payoff of each player in a tournament
was computed by summing the payoff of each move (C
or D) taken by the player in one tournament and divid-
ing by the total number of games in the tournament (i.e.
1000), as formulated in Equation (9), where g denotes
the total number of games in a given tournament:

Avg. payoff =
∑g

1 payoff (move)
g

(9)

The maximum payoff that players can achieve in a
game is reached when all the players within a commu-
nity choose to cooperate. For instance, within a coop-
erative community of seven, each player can achieve
2(n−1) = 2(7–1) = 12 points. Hence, if the whole
community cooperates, all seven players can achieve
12× 7 = 84 points together.

Our results, shown in Figure 6, indicate that the
local-universal topology performs significantly better
than the other topologies in tournaments with a larger
population. In addition, the local-universal topology
can achieve higher payoffs than other topographies for
the same population size. Our topology also shows bet-
ter performance with an increase in the size of the
INPPD. Interaction and communication among play-
ers improve, and players can evaluate the data before
making any decisions when the INPPD size increases;
this results in higher payoffs. Our local–universal topol-
ogy resulted in well-connected community members
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Table 2. Descriptive statistics of six topologies.

95% conf. interval
for mean

Mean Std. dev. Std. err. Lower Upper

Local-universal 47.38 4.941 .899 46.55 50.29
Von Neumann 38.99 7.988 1.460 35.03 43.11
Ring 38.85 5.449 .993 35.19 42.49
Star 40.04 1.977 .359 36.17 43.88
Random 38.22 3.551 .570 34.54 41.53
Cluster 41.31 6.321 .659 37.87 44.11

Table 3. one-way ANOVA tests for the payoff performance for
the various topologies

Sum of squares df Mean square F p-value

Between groups 1,838.399 5 369.879 11.599 .000
Within groups 5,536.998 173 31.819
Total 7,385.979 178

who interacted with the other communities in the
population.

Statistical significance tests were carried out to iden-
tify the topology achieving the best results. Table 2
below shows the descriptive statistics of the six topolo-
gies. The study findings indicate that the local–universal
topology’s mean value is the highest compared to the
rest. Results also show a 95% confidence interval for
the means for all six tests. The 95% confidence interval
of our group is 46.55, 50.29. The upper bounds of the
means’ 95% confidence interval are lower for the other
five groups of tests. Therefore, in 95% of cases, the local-
universal topology’smean value is higher than themean
value for the other topologies.

The Analysis of Variance (ANOVA) tests were
conducted to measure the effectiveness of the local-
universal topology against other topologies. The results
show that our topology achieves higher mean averages
than the other topologies. The null hypothesis assumes
that the mean for all topologies is equal, while the alter-
native hypothesis assumes that all topologies are not
equal. The results, shown in Table 3, reveal that the null
hypothesis is invalid as the p-value is 0.000. Therefore,
the mean of the local-universal topology is higher than
that of the other topologies. This study relies on post
hoc tests to prove the hypothesis.

Table 4 shows the 95% confidence interval of the
differences between all the topologies. Our findings fur-
ther indicate that the differences between the groups are
positive. Hence, we conclude that the sample mean for
the local-universal topology is significantly higher than
for the other topologies. In our experiment, we also
examined the average number of cooperative moves
taken by all INPPD players as a testing factor for the
effectiveness of the topology. This test assesses the
evolution of cooperative behaviour between players.
Figures 7–10 plot the average number of cooperation
moves taken by all players in tournaments 1, 2, 3, and 4.

Table 4. Posthoc tests for theplayerperformanceusingvarious
topologies

95% conf.
interval

(I) Group (J) Group
Mean
diff. (I-J) sig. Lower Upper

Local-universal Von Neumann 9.35 .000 6.21 12.49
Ring 9.60 .000 8.22 10.98
Star 8.43 .001 6.55 10.31
Random 10.36 .000 9.64 11.12
Cluster 7.42 .001 4.69 10.11

Von Neumann Local-universal −9.37 .000 −12.51 −6.21
Ring .25 .325 −1.82 2.35
Star −.91 .199 −.13 1.97
Random 1.00 .224 −.33 2.35
Cluster −1.93 .161 −5.53 1.64

Ring Local-universal −9.61 .000 −10.98 −8.24
Von Neumann −.26 .325 −2.34 1.83
Star −1.18 .421 −5.62 3.26
Random .75 .514 −.47 1.98
Cluster −2.20 .358 −6.61 2.22

Star Local-universal −8.43 .001 −10.31 −6.56
Von Neumann .91 .199 −1.97 .131
Ring 1.17 .421 −3.24 5.60
Random 1.92 .887 −1.6 5.35
Cluster −1.01 .578 −6.28 4.24

Random Local-universal −10.36 .000 −11.12 −9.59
Von Neumann −1.00 .224 −2.35 .339
Ring −.74 .514 −1.97 .479
Star −1.92 .887 −5.34 1.49
Cluster −2.94 .327 −10.28 4.37

Cluster Local-universal −7.41 .001 −10.11 −4.70
Von Neumann 1.93 .161 −1.65 5.449
Ring 2.21 .358 −2.21 6.61
Star 1.01 .578 −4.24 6.26
Random 2.94 .327 −4.37 10.24

The results indicate that our local-universal topology
can promote the evolution of cooperative behaviour
among INPPD players for diverse population sizes.
However, as the topology sizes increase, other indi-
viduals become demotivated and abandon coopera-
tive behaviours. The results further indicate that the
gap between the local-universal topology and the other
topologies increases with the population sizes. The effi-
ciency ratio of the local-universal topology against other
topologies was calculated; the results show that the
local-universal topology is more efficient than other
topologies in tournaments, as seen in (Table 5).

Franken and Engelbrecht [52] identified specific
conditions demonstrating that the population is reach-
ing cooperative behaviour during a game. The first con-
dition states that a specific player with the largest pay-
offs has achieved a total number of cooperation moves
ten times higher than the population size. The second
condition states that the whole population must have
reached an average total number of cooperative moves
ten times higher than the population size.

To evaluate the ability of the local-universal topol-
ogy to meet the requirements of the first condition,
the behaviours of the best players in the population are
analyzed for each tournament. Figure 11 presents the
number of cooperative moves made by the best players
in the first 2000 games for tournaments 1, 2, 3, and 4.
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Figure 7. Average cooperative moves taken by INPPD players in the first tournament.

Figure 8. Average cooperative moves taken by INPPD players in the second tournament.

Figure 9. Average cooperative moves taken by INPPD players in the third tournament.
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Figure 10. Average cooperative moves taken by INPPD players in the fourth tournament.

Table 5. Efficiency ratio of the local-universal topology against other topologies.

Local-universal Local-universal Local-universal Local-universal
(tourn.1) (%) (tourn.2) (%) (tourn.3) (%) (tourn.4) (%)

Von Neumann +10.4 +11.5 +11.6 +12.7
Ring +12.1 +12.3 +13.1 +13.2
Cluster +11.0 +11.7 +12.5 +12.7
Random +15.6 +17.1 +18.3 +18.1
Star +12.3 +11.7 +11.6 +12.4

The full lines represent ten times the population size for
each tournament.

Figure 11 shows whether INPPD with various pop-
ulation sizes could meet the requirements of the first
condition. Meeting this condition requires that the best
player of each population make a number of coopera-
tive moves exceeding ten times the population size for
each tournament. The best player for an INPPD size of
100 made a number of cooperative moves of approx-
imately 9.5 times the population size. Therefore, the

first condition is not met with a population size of 100.
This failure is likely related to the challenge of motivat-
ing players to be fully cooperative in a large population
composed of rational players. On the other hand, when
dealing with players in smaller population sizes, the
best players tend to show full cooperation after 1300
games or less.

To meet the second condition outlined above, each
player participating in the gamemustmake ten times as
many cooperative moves as there are individuals in the

Figure 11. Population’s behaviour in terms of the number of cooperative moves made by the best players.
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Figure 12. Population’s behaviour in terms of the average number of cooperative moves made by each player.

population. The results, presented in Figure 12, indicate
that local-universal topology helped the players develop
cooperative behaviour.

The local-universal topology is effective in pro-
moting the evolution of INPPD players’ cooperative
behaviour in all tournaments, except for the last tour-
nament with a population of size 100. Furthermore,
the findings indicate that the evolution of cooperative
behaviour among the large population is non-trivial.
Indeed, our topology succeeds in evolving cooperative
behaviour among INPPD players to become nine times
the population size.

As evidenced by the positive statistical analysis
results, the local-universal topology achieved a high
level of success, which primarily stems from its inter-
nal structure. Furthermore, the local-universal topology
allows players to share their experience with other indi-
viduals from different communities. The high level of
communication among diverse communities and the
use of the knowledge base as a repository for previously
taken moves helps reduce the number of defectors and
increase the chances of evolving cooperation.

6. Conclusion

This study aims to establish the significance of commu-
nication in influencing the results from players within
a population’s structure. We first noted that the inter-
actions between players are critical and may depend
on the other players’ performance. Although multi-
ple studies assumed fixed positions for players in one
community, this study provides an alternate model that
facilitates local and universal interactions.

This paper presents a local-universal topology that
contributes to the evolution of cooperative behaviour
among INPPD players. Our research focuses on this
topology because of its ability to facilitate the effective

exchange of information between diverse players. The
model design relies on establishing tight connections
within the community and developing links to diverse
societies globally. In addition, the players are supported
by gaining access to a knowledge base that helps them
learn from their own past experiences and that of other
players in their local and universal communities.

We first tested the ability of our model to evolve
cooperative behaviour, before comparing our model
with other topologies. The findings of this study indi-
cate that the local-universal topology can increase the
development of cooperative behaviour among players.
For example, the local-universal method is more effec-
tive in evolving cooperative behaviour among INPPD
players by up to 17.3% against other topologies. Future
research may focus on the impact of specific players’
strategies in evolving cooperative behaviours using dif-
ferent communication topologies.
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